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Abstract — In this paper, we develop a systematic framework
for two-dimensional mm-wave imaging, based on the singular
value decomposition (SVD) of the Helmholtz wave equation
under the Born approximation. We identify the degrees of
freedom as a function of the geometry of the aperture and the
scene, and provide insight into the eigenmodes identified by the
SVD. For sparse arrays with number of elements smaller than the
degrees of freedom, we propose, and experimentally demonstrate
the efficacy of, an eigen-filtered pseudo-inverse algorithm which
selects the eigenmodes being imaged.
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algorithms, imaging eigenmodes, singular value decomposition.

I. INTRODUCTION

Significant recent advancements in silicon processes, RFIC
design and low-cost packaging at mm-wave frequencies [1],
along with the abundance of available bandwidth (e.g., 14 GHz
of unlicensed spectrum between 57 and 71 GHz), offer the
possibility of realizing high resolution, low cost and highly
integrated sensing and imaging systems. The applications
of such systems range from medical imaging, security
scanning, and human gesture recognition, to object recognition
and scene understanding on moving platforms, such as
autonomous vehicles, robots and drones. In this paper, we seek
to lay a systematic foundation for short-range two-dimensional
(2D) mm-wave imaging, identifying imaging eigenmodes and
proposing a new method for image reconstruction based on
an SVD of the Helmholtz wave propagation equation.

While SVD techniques have been successfully employed
in both optical imaging [2] and MIMO communications
[3], these systems involve one-way (transmission-based)
propagation, in contrast to the two-way (reflection-based)
propagation in radar imaging. The key contributions of this
paper are as follows:
• We identify the number of degrees of freedom (DoF)

as a function of aperture and scene geometry. While
our approach applies to both monostatic and multistatic
systems, we restrict attention here to a monostatic
system due to space restrictions.

• We provide insight into the nature of the SVD
eigenmodes, which are orthonormal basis functions for
the electromagnetic waves at the aperture and the scene.

• For imaging with a sparse array with number of
elements smaller than the DoF, we propose an
eigen-filtered pseudo-inverse reconstruction algorithm,
which limits the set of eigenmodes contributing to the
reconstruction.
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Fig. 1. Geometry of 2D planar imaging system.

• We demonstrate through experimental data that the
proposed algorithm is capable of suppressing the
“grating lobes” associated with sparse arrays, while
reducing the computational cost of the image formation
procedure.

II. SVD FOR THE HELMHOLTZ WAVE EQUATION

Consider the 2D planar imaging geometry depicted in
Fig. 1. The scene is located at z = D and is bounded
by A ⊂ R2, and the transmitter (Tx) and receiver (Rx)
elements are located on an aperture at the origin, and parallel
to the scene. The extent of the aperture is denoted by
B ⊂ R2. We consider a monostatic imaging array, in which
the Tx and Rx elements are co-located (i.e., when the scene
is illuminated by a Tx element, only the co-located Rx
captures the back-scattered electromagnetic wave). The scene
is characterized by the electromagnetic reflectivity function
γ(x′, y′), for any point scatterer located at (x′, y′). Under Born
approximation, the measurement s(x, y) acquired by a Tx/Rx
pair located at (x, y) is governed by Helmholtz wave equation
for isotropic homogeneous media (simplified by dropping the
space attenuation factors), given by

s(x, y) =

∫
A

γ(x′, y′)ξ(x, y, x′, y′)dx′dy′, (1)

where
ξ(x, y, x′, y′) , e−j

4π
λ R(x,y,x′,y′), (2)

is the space-variant impulse response of the system, and
λ represents the signal wavelength. The Euclidean distance
between the Tx/Rx pair at (x, y), and the point scatterer in
the scene located at (x′, y′) is denoted by

R(x, y, x′, y′) =
√

(x− x′)2 + (y − y′)2 +D2.

We now show that the SVD decomposes the Helmholtz
wave equation in (1) into multiple parallel and independent
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components [4]. It is easy to see that for a bounded aperture
and scene, the impulse response ξ is square integrable,∫∫

BA

|ξ(x, y, x′, y′)|2dx′dy′dxdy <∞. (3)

Hence, we can invoke the Spectral Theorem [5], and introduce
the SVD of the integral operation in (1), by expanding ξ as a
weighted summation of eigenmodes,

ξ(x, y, x′, y′) =
∞∑
i=1

σiφi(x, y)ψ
∗
i (x
′, y′), (4)

where (·)∗ denoted complex conjugate operation. The two sets
of orthonormal functions {φi(x, y)}i∈N and {ψi(x

′, y′)}i∈N
are the singular functions of the system defined over the
aperture B and the scene A, respectively. The associated
non-negative weights {σi}i∈N to each pair of singular
functions (φi, ψi) in (4), are known as singular values. We
term the triplet of {σi, φi, ψi} the ith eigenmode. Substituting
(4) in (1), gives

s(x, y) =
∞∑
i=1

σiφi(x, y)
〈
γ(x′, y′), ψi(x

′, y′)
〉
, (5)

where〈
γ(x′, y′), ψi(x

′, y′)
〉
,

∫
A

γ(x′, y′)ψ∗i (x
′, y′)dx′dy′, (6)

represents the inner product of the scene reflectivity function,
and ith singular function over the scene. Our goal is to
use the SVD-based formulation of Helmholtz wave equation
in (5) to devise a new image formation algorithm, and to
validate our results using measurement data. It is important
to note that the sets of singular functions {φi(x, y)}i∈N and
{ψi(x

′, y′)}i∈N provide orthonormal basis functions spanning
the measurements space (i.e., space of s(x, y) functions) and
the scene reflectivity space (i.e., space of γ(x′, y′) functions),
respectively. Hence the SVD representation in (5) decomposes
the overall measurement system into parallel, independent, and
non-interfering eigenmodes, where the signal to noise ratio
(SNR) of each eigenmode is proportional to its associated
squared singular value σ2

i .

A. Degrees of Freedom

We briefly discuss some of the practical implications of
the SVD representation in (5). Given the SVD expansion of
the impulse response ξ in (4), it is easy to see that the square
integrability in (3), translates to

∞∑
i=1

σ2
i <∞, (7)

that is, the sum of squares of singular values of the system
is finite. The inequality in (7) is known as the sum rule
[2], and indicates that if we order the singular values in a
non-increasing order, then

lim
i→∞

σ2
i = 0. (8)

In other words, among the infinitely many eigenmodes in (5),
only a finite number are practically useful, and they are the
ones with a large singular value σi, and hence a large SNR [2],
[3]. The singular values typically exhibit a step-like behaviour
where they are approximately equal up to a certain threshold,
after which they rapidly decay to zero [2]. This threshold is
also known as the degrees of freedom (DoF) of the imaging
system [4], [6].

In this paper, we skip the derivations of the DoF as a
function of the imaging geometry for our 2D reflection-based
imaging scenario due to space limitation. See [4] for a detailed
DoF analysis for monostatic and multistatic imaging systems,
and [7], [8] as example approximations of DoF for 1D
transmission-based imaging systems.

B. SVD for a nominal geometry

We consider the following nominal geometry for
illustrating our theoretical results and experiments: aperture
of 15 cm × 15 cm, in front of a 2D scene with the extent
of 20 cm × 20 cm. The distance of the aperture and the
scene is D = 30 cm. The singular values and the eigenmodes
corresponding to a certain imaging geometry do not depend
on the scene, hence they can be computed offline and later
used for image reconstruction after the data acquisition.

Fig. 2 shows the normalized singular values σi/σmax

corresponding to our nominal imaging geometry, where σmax

is the largest singular value of the system. We see that the
singular values follow a step-like behavior with a threshold at
approximately DoF ≈ 1130, after which they quickly decay
to zero. Fig. 3 shows multiple examples of the eigenmodes
at the aperture and the corresponding functions at the scene
for our nominal geometry. These orthonormal functions serve
as basis functions for the measured electromagnetic waves at
the aperture and the scene, respectively. In the next section,
we will use these basis functions to introduce a new image
formation technique.

III. PSEUDO-INVERSE IMAGE FORMATION

Image formation techniques aim to reconstruct the
reflectivity function of the scene by solving an inverse
scattering problem. In this section, we describe an image
formation technique based on the decomposition in Section
II. We first approximate the SVD-based formulation of

Fig. 2. Normalized singular values corresponding to the nominal geometry.
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(a) φ1(x, y) (b) ψ1(x′, y′)

(c) φ300(x, y) (d) ψ300(x′, y′)

(e) φ1100(x, y) (f) ψ1100(x′, y′)

(g) φ1125(x, y) (h) ψ1125(x′, y′)

Fig. 3. Magnitude of sample eigenmodes (i.e., basis functions derived from
the SVD) at the aperture (left column), and at the scene (right column), for
our nominal geometry.

the Helmholtz wave equation in (5) by only including the
practically useful eigenmodes:

s(x, y) ≈
DoF∑
i=1

σiφi(x, y)
〈
γ(x′, y′), ψi(x

′, y′)
〉
. (9)

This approximation is known as Truncated SVD (TSVD) [4],
[5]. Here we introduce an image reconstruction technique
based on computing the pseudo-inverse (PINV) of (9) in order
to find the best approximate solution of the inverse scattering
problem. The PINV reconstructed image is given by

γ̂pinv(x
′, y′) =

DoF∑
i=1

1

σi
ψi(x

′, y′)
〈
s(x, y), φi(x, y)

〉
=

DoF∑
i=1

wiψi(x
′, y′), (10)

that is, the PINV reconstructed image of the scene is derived
by computing a weighted summation of the eigenmodes

over the scene (i.e. ψi(x
′, y′) functions). The weight wi

corresponding to ψi(x
′, y′) is derived by

wi ,
1

σi

〈
s(x, y), φi(x, y)

〉
. (11)

Next we present PINV reconstruction for a uniform 2D array
of monostatic elements.

A. PINV reconstruction using a monostatic array

Consider an N × N array of monostatic elements,
uniformly spaced over the aperture B. The location of (n,m)th

element is given by xn = (n − 1)d, and ym = (m − 1)d,
where d = L/(N − 1), and m,n ∈ {1, 2, . . . , N − 1}. The
consequence of using a discrete array of Tx/Rx elements for
capturing the data is that we only have the value of s(x, y)
over a discrete grid. Therefore, evaluating the weights of the
PINV image in (11) is carried out by the following summation
over the discrete grid of elements,

wi ≈
d2

σi

N∑
n=1

N∑
m=1

s(xn, ym)φ∗i (xn, ym). (12)

Increasing the number of array elements N , provides a more
accurate approximation of (11), while increasing the overall
SNR.

IV. EXPERIMENTAL RESULTS

In this section we provide experimental results of applying
PINV reconstruction technique using an array of monostatic
elements. We investigate the effect of the number of array
elements on PINV image quality, as well as the choice of
eigenmodes used for PINV reconstruction.

A. Experimental setup

Our experimental setup, shown in Fig. 4, is a 60 GHz
quasi-monostatic transceiver element with dual high-gain horn
antennas, mounted on a mechanical platform used to move the
transceiver on a plane parallel to the scene to emulate an array
of antenna elements for static scenes. The Tx/Rx antennas
are slightly separated but appear to be co-located as viewed
from the target. We consider two planar array configurations
covering the aperture of size 15 cm × 15 cm: (1) dense array
of 75 × 75 elements (d ≈ 0.4 × λ = 0.2 cm), and (2) sparse
array of 15×15 elements (d ≈ 2λ = 1 cm). The scene contains
copper strips placed on a cardboard at the nominal distance
of D = 30 cm from the aperture.

Fig. 4. Experimental setup for emulating a 2D 60 GHz monostatic array
using a mechanical platform.
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(a) Dense array (b) Sparse array

Fig. 5. PINV-based reconstructed image of the scene |γ̂pinv(x
′, y′)|, using

the entire set of eigenmodes (i.e., with indices in the interval (1, DoF )),
for the dense and sparse array configurations. Note that applying a standard
matched-filter algorithm for image reconstruction using a sparse array leads to
a very similar result as the image (b), and is omitted due to space limitation.

As we discussed in Section III-A, using a discrete array of
elements for data capture leads to an approximate evaluation
of PINV weights based on Equation (12), with the quality
of approximation directly proportional to the density of array
elements. For sparse spatial sampling, the eigenmodes can lose
their orthogonality and interfere with each other, leading to
poorer reconstruction. Fig. 5 shows the reconstructed images
of the scene using the PINV method in (10). We see that
the dense array produces a clean and high resolution image,
while the sparse array fails to produce an image due to the
extreme sub-sampling of the aperture. Specifically, we see that
the sparse (sub-Nyquist) array leads to aliasing effects (also
known as “grating lobes”) that significantly reduces the quality
of the image. However, as discussed below, it is possible to
get vastly improved imaging performance by examining the
eigenmodes under spatial sub-sampling.

B. Eigen-filtered pseudo-inverse

In order to suppress the grating lobes in the sparse array,
we apply a filter in the SVD domain by choosing a small
subset of the eigenmodes for image reconstruction. To this
end, we have analyzed the spatial bandwidth of the singular
functions over the aperture, and have identified those with
a low pass structure. The intuition behind this choice of
functions is that natural scene are often slowly varying in
the spatial domain, hence exhibit a low pass structure in the
spatial frequency domain. Specifically, we only use 10% of
the available eigenmodes within the interval (1018, 1130),
most of which have a low pass structure, for computing
the PINV in (10). Such an eigen-filtered PINV has two
main consequences: (i) reducing the interference between
the eigenmodes, and suppressing the grating lobes that were
generated as a result of sparse deployment of the array, (ii)
reducing the computational complexity of the PINV image
formation procedure and speeding up the algorithm drastically.
For example, for the filter implemented in this subsection, the
speed of the algorithm has increased by a factor of 10.

Fig. 6 shows the result of PINV-based reconstruction
technique after applying the eigen-filter in the SVD domain.
We see that constructing the images using this partial sum

(a) Dense array (b) Sparse array

Fig. 6. PINV-based reconstructed image of the scene after applying a filter
in the SVD domain to choose a subset of the eigenmodes within the interval
(1018, 1130), for the dense and sparse array configurations.

leads to a significant improvement in the image corresponding
to the sparse array by suppressing the grating lobes, while
reducing the computational cost of the image formation
procedure for both dense and sparse array configurations.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated 2D mm-wave imaging
based on SVD analysis, and demonstrated the applicability
of this framework for suppressing grating lobes associated
with sparse imaging arrays through experimental data. The
proposed SVD approach offers new criteria for designing
non-uniform antenna arrays: for example for a given collection
of eigenmodes, we can choose the location of antenna
elements such that the weights of PINV image evaluated over
the non-uniform discrete grid best approximates the weights
over the continuum in (11). Moreover, SVD framework
provides an interesting opportunity for designing eigen-filters
based on the available eigenmodes.
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