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Abstract— In this paper, we propose a ball grid array (BGA)
module with an integrated 3-D-printed plastic lens antenna for
application in a dedicated 130 GHz OOK transceiver that targets
the area of 5G backhaul/fronthaul systems. The main design goal
was the full integration of a small footprint antenna with an
energy-efficient transceiver. The antenna system must be compact
and cost effective while delivering an approximately 30 dBi gain
in the working band, defined as 120 to 140 GHz. Accordingly,
a 2 × 2 array of aperture-coupled patch antennas was designed
in the 7 × 7 × 0.362 mm3 BGA module as the feed antenna
of the lens. This achieved a 7.8 dBi realized gain, broadside
polarization purity above 20 dB, and over 55% total efficiency
from 110 to 140 GHz (20% bandwidth). A plastic elliptical lens
40 mm in diameter and 42.3 mm in height was placed on top of
the BGA module. The antenna achieved a return loss better than
−10 dB and a 28 dBi realized gain from 114 to 140 GHz. Finally,
active measurements demonstrated a >12 Gbps Tx/Rx link at 5 m
with bit error rate (BER) < 10−6 at 1.6 pJ/b/m. These results
pave the way for future cost-effective, energy-efficient, high-data
rate backhaul/fronthaul systems for 5G communications.

Index Terms— 3-D printing, 5G, backhaul/fronthaul links,
ball grid array (BGA), dielectric lens, millimeter-wave (mmw)
antennas, organic module.

I. INTRODUCTION

IN LESS than a generation, wireless communications and
mobile data access have become essential features of
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daily life. In the never-ending race to provide mobile users
with greater data capacity, new wireless standards designed
to achieve next-generation capacity and latency goals are
emerging [1]. In this context, the 5G standard uses millimeter-
wave (mmw) frequency bands to achieve the aforementioned
goals of providing access to spatial degrees of freedom and
beamforming gains [2]–[5]. To realize these capacity targets,
urban small-cells (micro- and femtocells) need to replace
macrocell base stations. Therefore, an important challenge
lies in the transmission among these newly deployed small
cells and between those base stations and the core network.
Availability of cost-effective and energy-efficient solutions is
of paramount importance in the final implementation of such
5G networks.

Wireless backhaul and fronthaul systems are possible alter-
natives to fiber-optic small-cell links [6]. Existing backhaul
solutions operate in the V-band (57–66 GHz [7], [8]) and the
E-band (71–76 and 81–86 GHz [9]–[11]) frequency range,
but while they compete with fiber-optic links with respect to
cost, data rates remain an issue [12] with an achievable limit of
approximately 1–2 Gbps. This data rate range is insufficient for
many 5G applications, which will require >10 Gbps at 100 m
or more by 2020 [4]. Another drawback of the available V - and
E-band solutions is their high power consumption (20–35 W)
attributable to the highly complex modulation schemes chosen
for their spectral efficiency and interference mitigation.

All of these observations indicate that cost-effective,
energy-efficient, high-capacity, and easy-to-deploy point-to-
point wireless links at mmw frequencies are necessary for
the proper deployment of 5G infrastructure. Since 2013,
significant research has been conducted to find solutions in
frequency bands above 100 GHz [13]–[17]. The wide band-
width available in the F-band makes it possible to achieve
data rates greater than 10 Gbps [13]. It should be noted that
similar [14] and even higher data rates (up to 60 Gbps) [15]
already have been demonstrated in the 140 and 240 GHz bands
(25 Gbps) [16], [17], but complex modulation schemes are
used in those solutions, which compromise energy efficiency.
Operating above 100 GHz is interesting because it will enable
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compact system solutions that can deliver Gbps data rates
that compete with wired systems in many respects [18].
Further, the large frequency bandwidth available from 120 to
140 GHz allows relaxation of the spectral efficiency require-
ments and improves energy efficiency using an efficient mod-
ulation scheme. For mass-market deployment, we envision a
compact system that is fully packaged with low-cost, flip-
chip integrated circuits (ICs) on an organic substrate that
includes antenna-in-package integration [19]–[21]. However,
to increase the maximum operating distance, a higher gain
is required than the one provided by a simple integrated
antenna within a ball grid array (BGA) module. For this
purpose, the BGA antenna was used as a feeding source of an
integrated 3-D-printed lens to provide a small-footprint, fully
integrated, cost-effective, 30 dBi antenna solution that over-
comes traditional packaging challenges imposed at frequencies
above 100 GHz.

In this paper, we propose a lens-integrated BGA module
for 5G backhaul/fronthaul applications in the F-band (90 to
140 GHz). Section II describes the BGA module technology
and the design of the source antenna for a dielectric lens.
Section III presents the design and fabrication of the plas-
tic lens. In the same section, the optimized dome lens is
measured when fed by the BGA source. Section IV presents
briefly the active measurements of a Tx/Rx system arrange-
ment that demonstrates proof-of-concept results for a cost-
effective, energy-efficient, 5G backhaul/fronthaul commercial
solution. This paper ends with a conclusion and potential
future improvements of the integrated system.

II. BGA MODULE

To address the link requirements of potential 5G backhaul
systems, an antenna that delivers approximately 30 dBi in
the free-licensed 120–140 GHz frequency band was targeted.
The approach selected to maintain a compact design was to
employ a dielectric elliptical lens fed by a planar antenna
source integrated within a low-cost BGA module that may
yield an antenna gain that ranges from 20 to 35 dBi.

A. F-Band Antenna in BGA Packaging Technology

When fabricating feeding lines and antennas to operate
above 50 GHz, an accuracy of tens of microns is required.
Therefore, for the following reasons, the high-density inter-
connect (HDI) process [22], [23] was the technology selected
to fabricate the source antenna.

1) A 50 μm standard drawing rule (minimum conductor
width and spacing between conductors) is available.

2) It is possible to select low-cost organic substrates with
good performance above 50 GHz as build-up layers.

3) Automatic flip-chip assembly of the IC can be imple-
mented, which is important considering an industrial
approach and the target consumer mass market for
5G backhaul/fronthaul links [24].

Fig. 1 illustrates the integration scheme employed, which
is of paramount importance at mmw frequencies [25]–[28].
The chip is connected in a “flip-chip” configuration to the
BGA packaging using copper pillar technology (pad ring

Fig. 1. Antenna-in-package integration scheme.

Fig. 2. Cross-sectional view of the 1-2-1 HDI build-up of the BGA module.

pitch <150 μm). The BGA is then connected to the PCB using
solder balls with a 300 μm diameter and 500 μm pitch. The
dc signals are routed from the PCB to the BGA through the
solder balls and ad hoc routing lines are drawn on the BGA.
The antenna is integrated into the multilayer BGA and radiates
in the direction opposite to the chip, which minimizes the
effect of the chip and PCB on the radiation of the antenna. This
type of interconnection permits low-loss transmission between
the RF output of the chip and the antenna.

It should be noted that several mmw antenna-in-
package solutions [26], [29] have been published
previously by prestigious academic and industrial
researchers in various integration technologies such
as PCB [30], Low temperature co-fired ceramic
substrates [31]–[33], and organic/BGA assembly [34]–[42];
however, to date, we have found only one design that uses a
BGA module that operates above 100 GHz [43].

The build-up layers of the BGA module are shown in Fig. 2.
HDI technology imposes a symmetrical arrangement; thus, a
standard 1-2-1 build-up consisting of 1 prepreg simple layer
(30 μm), 1 core double layer (200 μm), and 1 prepreg simple
layer (30 μm) was chosen. The core is made of a Mitsubishi
CCL-HL972 substrate and the prepreg layers are made of
Mitsubishi GHPL-970 substrate, both with εr = 3.4 and
tan δ = 0.005. The 15 μm-thick solder mask is made of TaiYo
AUS410 with εr = 3 and tan δ = 0.03. All copper layers are
24 μm thick. As Fig. 2 indicates, the dc lines are drawn at
M1 (chip and PCB side), as well as the microstrip line. The
ground plane is set at P1. Both prepregs were protected by
a 20 μm thick solder mask. The chip was assembled using
standard industrial procedure. Consequently, standard underfill
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Fig. 3. Transparent view of all layers of the BGA module. (a) Bottom view
of the module with IC footprint and coupling slots fed by microstrip lines,
with indications of the direction of propagation of TM0 mode generated by
the slots. (b) Detailed view and dimensions of the 2 × 2 array of slot-fed
patches and feeding line of the module.

was used in this assembly, and was taken into account in the
electromagnetic simulation of the module.

The dimensions of the BGA module are 7×7×0.362 mm3.
Figs. 3 and 4 show a transparent view and the top and bottom
views of the BGA. Fig. 3(b) shows a detailed view of the
antenna together with the main dimensions of its components.

The BGA module integrates a specially designed 2×2 array
of four aperture-coupled patch antennas. Each patch in the
array is coupled to a microstrip-fed resonant slot to maximize
the matching and gain bandwidth. The thickness of the prepreg
substrates was minimized to increase the coupling between
the microstrip line and the slot, and took into account the
minimum resolution of the HDI technology (50 μm). The
slots were set at level P1 and the patches at P2. The 200 μm
thickness of the core was chosen to meet the target bandwidth
(120 to 140 GHz). A 1:4 microstrip divider divides the power
equally among all patches and is characterized by an input
impedance close to 50 �. Fig. 3(b) shows that the total
length of the signal path (transmission lines) in the power
divider is approximately 4.5 mm, yielding a total simulated

Fig. 4. (a) Photographs of bottom and top view of the BGA module
integrating the 2 × 2 antenna array. (b) X-ray of the BGA module.

loss of 1.1 dB at the center frequency of the working band. The
spacing between the patches was adjusted to obtain optimal
illuminating beamwidth for the elliptical lens chosen: 1 mm
(corresponding to 0.43 λ0 at 130 GHz) in both the x- and
y-transverse directions. The goal was to obtain a Gaussian
radiation pattern in both the E- and H-planes of the BGA
module with a level −10 dB below the maximum within
an 80°–100° angular region. This particular element arrange-
ment was chosen because it cancels in part the TM0 surface
wave modes generated by the slots within the core substrate
from out-of-phase natural recombination. In addition, the array
antenna was surrounded by a grounded metallic ring to collect
and radiate the residual energy from the TM0 mode with the
main radiation of the array antenna.

B. BGA Module Performance in Air

To validate the design within the HDI technology, the BGA
module radiating into air was probe-fed and measured with
the customized 3-D measurement range presented in [44], and
extended to the F-band with mmw extenders [45]. As shown
in Fig. 5, the measured reflection coefficient largely was
consistent with simulated results: the |S11| was less than
−10 dB from 96 to 140 GHz. The wide bandwidth achieved
is attributable to the complementary behavior of the slot,
the patch, and the metallic ring surrounding the array antenna.
The main discrepancies between the simulation and measure-
ments occurred because the probe and some of the elements
of the BGA, such as the IC dc traces, the dummy plates, and
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Fig. 5. Simulated and measured |S11| of the array antenna of the BGA
module radiating in air.

Fig. 6. Simulated normalized E- and H-plane radiation patterns of the
array antenna of the BGA module radiating in air from 116 to 140 GHz.
(a) H-plane (ϕ = 0°). (b) E-plane (ϕ = 90°).

the ball pads (which could not be taken into account during
the simulations), affect the measurements.

Fig. 6 presents the simulated radiation patterns in the
E-plane (ϕ = 90°) and H-plane (ϕ = 0°) at several frequencies
within the band of interest. A quasi-constant beamwidth

Fig. 7. Simulated and measured realized gain radiation pattern of the array
antenna of the BGA module radiating in air at 130 GHz. (a) H-plane (ϕ = 0°).
(b) E-plane (ϕ = 90°).

of 88° at −10 dB was maintained from 116 to 140 GHz
in the H-plane (in fact from 84–96°). However, a stronger
variation was noted in the E-plane despite careful optimization
of the metallic ring for TM0 surface-wave mode manage-
ment. A comparison between the simulated and the realized
gain measurements of the E-and H-planes radiation patterns
at 130 GHz is presented in Fig. 7. Very good agreement was
observed in the H-plane. Except for the masking effect of the
probing system that occurred in the E-plane and prevented
measurements in the range from −150° to 40°, the agree-
ment between the simulation and the measurement remained
acceptable in this plane. The beamwidth measured at −10 dB
(relative to the maximum gain) was 90° in the H-plane and
approximately 110° in the E-plane. The simulated Front-to-
Back ratio (F/B) was 12.5 dB, while that measured was 10 dB;
therefore, the fractional power delivered to feed the lens
was ∼90%. The broadside cross-polar level was below −25 dB
in both planes and below −15 dB in the backside direction of
the BGA module.
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Fig. 8. Measured realized gain radiation pattern planes in the extremes of
the working band of the array antenna of the BGA module radiating in air.
(a) H-plane (ϕ = 0°). (b) E-plane (ϕ = 90°).

Fig. 8 shows the normalized realized gain for the main cuts
at the extremes of the frequency band: 120 and 140 GHz.
The measurement results exhibited good agreement with the
simulations of BGA behavior depicted in Fig. 6. Fig. 9 shows
the simulated and measured realized gain in the broadside
direction of the top face of the BGA module. The sim-
ulated realized gain varied between 9 and 10 dBi from
116 to 140 GHz, and the measured realized gain values
were very close to those simulated (above 7.8 dBi in the
working band at minimum). Note that the uncertainty of the
measurement setup [44], [45] was ±1.2 dB at 140 GHz.
The broadside polarization purity was greater than 20 dB along
the F-band. It is very interesting to notice the gain flatness
and a total simulated efficiency greater than 66% within the
working band, defined as 120 to 140 GHz.

The hybrid method described in [46] has been employed
to compute the efficiency measured. This method combines

Fig. 9. Simulated and measured broadside realized gain (co- and
cross-polarizations) versus frequency of the BGA array antenna.

a quasi-3-D acquisition of the realized gain radiation pattern
(representing 73.5% of the surface of the sphere), with simu-
lation data in the region in which the radiated field cannot be
acquired because of the mechanical restrictions of the setup
(see Fig. 16). The total efficiency measured was estimated to
be 55% at 130 GHz. Therefore, considering that 90% of the
power radiates toward the lens, 49.5% of the input power to
the source is used to feed the lens.

All of the air measurements of the BGA module validated
the HDI technology and the build-up chosen for an efficient
120–140 GHz planar source for an elliptical dielectric lens.
The next step was to design an elliptical lens illuminated by
this array-antenna source.

III. LENS DESIGN

A. ABS Material

As the target design was a cost-effective antenna system for
mass-market production, the use of 3-D printing technology
and adequate materials for the fabrication of the elliptical
lens were evaluated next. Usually, above 60 GHz, quartz
material [47], [48] or high-density polyethylene [49] is used
for mmw lenses. However, these materials are expensive and
require dedicated tooling. Therefore, the method chosen was
fused deposition modeling (FDM) using ABS-M30 plastic.
To the authors’ best knowledge, ABS-plastic has been used
rarely to date to design/fabricate an antenna that operates at
frequencies above 100 GHz [50]; however, several attempts
have been made at lower frequencies [51]. The FDM 3-D
printing technology relies on the deposition of a thin plastic
filament to build layers in an additive manufacturing process.
In our case, the in-house machine was able to deliver an
ABS-M30 plastic filament with a diameter of 178 μm. This
kind of plastic is used frequently for the casing of common
communication devices (e.g., smartphones, cameras, laptops).

A dielectric lens made of this plastic can focus the
waves originating from the planar BGA source in a narrow
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Fig. 10. (a) Profile and ray tracing of an integrated elliptic lens in ABS
material. (b) Profile and ray tracing of a dome-type integrated elliptic lens in
ABS material.

radiated beam. At the same time, it also can serve as part of
the casing of the backhaul system. In this way, the radome
casing’s negative effect on the performance of the antenna is
minimized while a low-cost system design is achieved.

The method described in [52] was implemented to extract
the complex permittivity of the ABS-M30 in the 110–125 GHz
band, and the value computed was εr = 2.49−j0.027. A quasi-
optical method developed at ESA/ESTEC [53] also was used
to extract the permittivity at 137.5 GHz, and a value very close
to the previous one was found: εr = 2.48 − j0.025.

B. ABS Elliptical Lens

As mentioned previously, the target gain of the antenna of
the full system for 5G backhaul links at 130 GHz (central
frequency of the working band) was set at approximately
30 dBi. This high gain can be achieved by adding an integrated
3-D-printed dielectric lens on top of the BGA module that is
used as a primary feed. A simple single-material lens config-
uration that simultaneously maximizes the achievable gain is
the elliptical lens [54]. The elliptical lens [see Fig. 10(a)] was
defined here as a half ellipsoid with radius a along the x-axis,
and a cylindrical extension L from the feed to the center of
the ellipse. The ellipse radius along the z-axis is b [54]

b = a√
1 − 1/Real(εr )

(1)

L = b/
√

Real(εr ). (2)

The radius a should be chosen according to the target direc-
tivity in dB, which can be estimated from

Dir[dB] = 20Log10(2πa/λ) (3)

where λ is the operating wavelength. However, the dielectric
material dissipation losses in the lens, which can be estimated
by (4) [55], affect the gain

Loss[dB] = 27.3
√

Real(εr )(L + b)tanδ/λ (4)

where L + b is the lens height at the axis and the loss tangent
is tanδ = −Imag(εr )/Real(εr ).

Disregarding for now the efficiency of the array
antenna (BGA) radiation, the lens base radius should be

chosen so that Dir-Loss is ∼30 dB. For a low-cost material,
such as ABS (εr = 2.48 − j0.0248), which is compatible
with FDM 3-D printing, choosing a = 20 mm provides a
directivity of ∼34 dBi. Using (1) and (2), the other lens
dimensions become b = 25.89 mm and L = 16.44 mm. Then,
the dissipation loss estimated from (4) is 7.3 dB. Therefore,
the lens’ directivity needs to be increased. One possibility
is to increase the overall size of the lens, i.e., increase the
radius, a. However, in doing so, the dissipation loss also
increases. A much more elegant and efficient approach is
to optimize a dome-type elliptical lens with air below it to
reduce the dissipation losses without reducing the focusing
capability and, consequently, directivity. The simplest dome
configuration would have a spherical surface at the feed side
with a radius of ad that is centered at the array antenna of
the BGA module. Because one must ensure that there is a
lateral wall of ABS material to attach the IC to the lens,
the maximum value for the radius would be ad = 19 mm with
a 1 mm thick lateral wall. This would reduce the dissipation
path length inside the ABS material to L+b−ad = 23.33 mm.

To achieve even greater reduction of the path length inside
the ABS material, the lower surface of the dome can be
elliptical instead, with a base radius of ad along the x-axis,
a radius of bd along the z-axis and a cylindrical extension,
Ld [see Fig. 10(b)]. However, this will cause the radiation
from the array antenna to be refracted at the dome’s elliptical
surface. Therefore, to ensure that the lens does not lose
directivity, the dome parameters must be optimized. Using
the Genetic Algorithm routine in the ILASH tool [56], those
optimized dome parameters were ad = 19 mm, bd = 14 mm,
and Ld = 10 mm. As can be seen in Fig. 10, the ray tracing
of both the full lens and the dome lens present a collimation
effect with exiting rays almost parallel to the lens axis. With
this dome lens, the height of the ABS material in the lens was
reduced to L + b−Ld−bd = 18.33 mm, and by using (4),
the dissipation loss was now estimated to be 3.2 dB. The
advantages of this dome lens were confirmed by performing a
full-wave simulation in HFSS software. Fig. 11 compares the
results to a full (material) elliptical lens. Gain is represented
versus a radius, where the dome radius is ad = a−1 mm. It is
clear that for larger lenses, the proposed dome configuration
is very advantageous. In fact, there is an optimal radius for
the full ABS-M30 lens, because increasing the lens radius
further does not increase the gain, but on the contrary, reduces
it because of higher dissipation losses, as shown in Fig. 11.

C. Fabrication and Measurements of the Dome Lens
To measure the performance of the quasi-optical antenna of

the full system composed of the BGA source and the elliptical
dome lens, a thin plastic support was designed specially.
To place the BGA module accurately at the focal point of
the lens, a small cavity the size of the BGA module was
included in the design [see Fig. 15(a)]. The support and the
dome lens were realized separately by FDM 3-D printing and
then attached together using the rotating fin mechanism shown
in Fig. 12(a).

The overall optimized dimensions of the dome lens are
shown in Fig. 12(b). The thickness of the support for the
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Fig. 11. HFSS full-wave simulations of the directivity and gain of a full
elliptical lens and a dome elliptical lens (called chopped) of ABS-30 material
versus the lens base radius a at 130 GHz.

Fig. 12. Description of the elliptical dome lens with BGA source.
(a) Photograph of the assembly scheme. (b) Overall dimensions of the dome
lens.

BGA cavity was optimized to achieve optimal illumination of
the dome lens from the source antenna. An HFSS simulation
model was elaborated and a parametric study was conducted
to determine the best thickness t (see Fig. 13).

Fig. 13. HFSS 3-D view of the dome lens antenna (left). HFSS model (right)
of the BGA source radiating into an ABS-M30 plastic support of thickness t .

Fig. 14. Directivity in the broadside direction (plain line) and reflection
coefficient |S11| (dashed line) of the HFSS model versus the plastic support
thickness t at 130 GHz.

The best performance was found at t = 600 μm, giv-
ing a |S11| < −16 dB and a BGA module directivity of
approximately 11 dBi in its broadside direction (Fig. 14). For
this selected thickness t , Fig. 15 shows the main cuts of the
normalized radiation pattern of the array antenna radiating
into the plastic support at 130 GHz. Those simulated patterns
were compared to simulated patterns of the BGA source
radiating into air, and showed no significant disturbance in the
H-plane, but beneficial differences in the E-plane where, inter-
estingly, the −10 dB beamwidth was reduced. The beamwidth
at −10 dB (relative to the maximum directivity) was 80° in
both planes, and the side lobes levels were less than −15 dB
in the H-plane, and −10 dB in the E-plane.

The next step was to measure the input matching and the
radiation pattern of the full antenna system. Fig. 16 shows
the employed antenna measurement setup. The measured |S11|
with microelectronic probing revealed −10 dB impedance
matching from 114 to 140 GHz and possibly more (20% band-
width: see Fig. 17). The setup allowed measurement distances
from 20 to 60 cm up to 140 GHz. Taking into account the size
of the dome lens (D = 40 mm), the far-field (FF) distance
was RFF = 1.5 m at f = 140 GHz, indicating that near-
field (NF) acquisitions and a NF to FF (NF–FF) transformation
are required to obtain the FF radiation patterns.
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Fig. 15. Simulated normalized radiation patterns of the BGA module
radiating through the support thickness of 600 μm (dashed lines) and in the
air (plain lines) at 130 GHz. (a) H-plane (ϕ = 0°). (b) E-plane (ϕ = 90°).

Positioning accuracy and thermal stability requirements
of the F-band are very demanding and increase the cost
and complexity of the measurement setup. Thus, for this
purpose, phaseless techniques are more suitable (and real-
istic) than are complex field acquisitions with amplitude
and phase. Among available phaseless techniques an iter-
ative phaseless retrieval method [57] has been considered.
Iterative techniques rely on the information provided by the
spatial variation of the NF with distance and require the
acquisition of the field on two or more surfaces [57], [58].
The main limitation is the risk of stagnation because
of the use of iterative solvers for nonlinear systems of
equations.

Because of mechanical restrictions in the measurement
setup (Fig. 16), a radiated field can be acquired in the
truncated spherical domains with 0.5° resolution in both the
θ and ϕ angles. The NF measurement results are depicted
in Fig. 18 at 140 GHz, the highest frequency of the band

Fig. 16. (a) Scheme of the measurement setup. (b) Measurement setup
arrangement and mounting.

Fig. 17. Measured |S11| of the full antenna system. BGA source radiating
into the plastic support and the dome lens.

in which positioning and sampling errors can have a greater
effect during the NF–FF transformation. Notice that the cross-
polarization level is close to the average noise floor level,
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Fig. 18. NF measured at R = 40 and 60 cm, f = 140 GHz, for the main
cuts. (a) H-plane (ϕ = 0°). (b) E-plane (ϕ = 90°).

so only the co-polar component at R = 40 and 60 cm was
considered for NF–FF transformation.

The phaseless NF–FF transformation is outlined in [57].
The goal of the technique was to compute a magnetic current
distribution in the aperture from the NF amplitude acquired.
Therefore, a cost function was set that related the amplitude of
the measured field and the amplitude of the field radiated by
the equivalent magnetic currents at both observation surfaces
(R = 40 and 60 cm). This cost function is nonlinear, so min-
imization techniques, such as Levenberg–Marquardt, that pro-
vide a monotonic decrease in the error were considered. The
iterative solver stops when the error between the iterations n
and n + 1 is less than 0.001, or if the number of iterations is
greater than 50. For this problem, the number of NF samples
was 7062 (3531 samples per acquisition surface), and the
number of unknowns was 841 (aperture plane of the Antenna
Under Test discretization into 29×29 subdomains). A Graphics
Processing Unit implementation has been developed [57],
so the calculation time is less than 10 s overall.

Fig. 19. Full antenna-system radiation patterns at f = 140 GHz. Comparison
between FF simulations and measurement results. (a) H-plane (ϕ = 0°).
(b) E-plane (ϕ = 90°).

Next, the FF can be evaluated from the reconstructed
equivalent magnetic currents on the lens antenna aperture.
A comparison between the lens antenna patterns obtained from
simulations and from NF measurements followed by a NF–FF
transformation is plotted in Fig. 19 at 140 GHz. The agreement
between the FF simulation and the NF–FF transformation
obtained from the measurements was good for both planes
of the main lobe and first sidelobes within the valid margin
of the NF–FF transformation. The directivity was calculated
by integrating the radiation pattern, which yielded 35.7 dB
for simulation results, and Dlens,FF = 34.6 dB in the case of
NF measurements followed by a NF–FF transformation.

The lens antenna gain was obtained by means of the well-
known intercomparison technique [59] with a standard gain
horn in the F-band. As the lens antenna gain is measured
in the NF region, NF–FF compensation must be applied
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Fig. 20. Simulated (FF) and measured (NF � FF and gain compensation)
dome lens antenna gain in the F-band. Measurements were fitted according
to a fourth-order polynomial.

as follows:
Glens,FF[dBi] = Glens,NF + (Dlens,FF − Dlens,NF) (5)

where Glens,NF = 26.4 dBi at 140 GHz (Fig. 18), and
Dlens,FF = 34.6 dBi. Dlens,NF was calculated by integrating
the NF pattern at 60 cm, yielding Dlens,NF = 32.5 dBi. Thus,
Glens,FF = 28.5 dBi, just 0.5 dB lower than the value obtained
from FF simulations (Fig. 20, simulation results: 29 dBi at
140 GHz). It also should be noted that simulated values of the
gain with a 1° offset from the broadside direction were used in
the computations, which were fully consistent with the offset
observed in 40 and 60 cm NF radiation patterns in Fig. 18(b),
primarily because of alignment inaccuracy.

Finally, the main cuts of the measured antenna patterns after
NF–FF transformation are shown in Fig. 21 for three different
frequencies. Low variability in the radiation pattern versus
frequency was observed in the FF.

IV. ACTIVE MEASUREMENTS FOR 5G
BACKHAUL/FRONTHAUL LINKS

For 5G point-to-point backhaul links, the full antenna
system was integrated with a specially designed transceiver
chip [60] (Fig. 22).

An effective isotropic radiated power (EIRP) of more
than 33 dBm was measured for the Tx with the lens.
Data rates above 12 Gbps with less than 10−6 bit error
rate (BER) were achieved at nearly 5 m in a complex
nonideal scenario with a metal reflector that closes the
Tx-Rx loop. The energy efficiency achieved was better than
1.6 pJ/b/m, at least 40 times better than state-of-the-art
high-speed transceivers [13], [61]–[67] because of the high
EIRP/PDC,TX (>130 times compared to [61]–[66]) achieved
with the high gain compact antenna system and the use
of energy-efficient OOK modulation schemes, yielding a
low-cost and low-consumption system.

Fig. 21. FF pattern comparison at different frequencies. (a) H-plane (ϕ = 0°).
(b) E-plane (ϕ = 90°).

Fig. 22. Fully packaged system with active chip and lens integrated on the
PC board for 5G backhaul links.

V. CONCLUSION

This paper proposed a BGA module with an integrated
3-D-printed plastic lens for application in a dedicated 130 GHz
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OOK transceiver that targets 5G backhaul/fronthaul systems.
First, the BGA module technology and the design of an
efficient planar source antenna were described. The source
antenna was a 2 × 2 array of aperture-coupled patch antennas
integrated in the BGA module of 7×7×0.362 mm3. It exhib-
ited more than 7.8 dBi realized gain, broadside polarization
purity greater than 20 dB, and over 55% total efficiency
from 110 to 140 GHz (20% bandwidth). Second, the design,
fabrication, and measurement of the ABS-plastic lens using the
BGA module as a source feed were presented. Measurement
results largely were consistent with simulations in particular,
greater than 28 dBi realized gain from 114 to 140 GHz
(20% bandwidth) was achieved. Finally, active measurements
together with a transceiver demonstrated data rates higher
than 12 Gbps with a BER less than 10−6 at nearly 5 m,
showing the potential for the antenna system proposed in
this paper. These results are promising, and the performance
achieved represents a contribution to cost-effective, energy-
efficient backhaul/fronthaul systems for 5G. Future research
will focus on the design of competitive prototypes with more
efficient sources with radiation pattern stability and higher
total efficiency.
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