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Abstract—We investigate synthesis of a large effective aperture
using a sparse array of subarrays. We employ a multi-objective
optimization framework for placement of subarrays within a
prescribed area dictated by form factor constraints, trading off
the smaller beam width obtained by spacing out the subarrays
against the grating and side lobes created by sparse placement. We
assess the performance of our designs for the fundamental problem
of bearing estimation for one or more sources, comparing perfor-
mance against estimation-theoretic bounds. Our tiled architecture
is motivated by recent progress in low-cost hardware realizations of
moderately sized antenna arrays (which play the role of subarrays)
in the millimeter wave band, and our numerical examples are based
on 16-element (4 × 4) subarrays in the 60 GHz unlicensed band.

Index Terms—Millimeter wave radar, estimation bounds,
compressive Estimation, gridless super-resolution, sparse subarray
design, multi-objective optimization.

I. INTRODUCTION

MANY sensing and situational awareness applications
(e.g., radar imaging for vehicles and drones) require

highly directional, electronically steerable beams. Reducing
beam width requires expansion of antenna aperture. This is
typically accomplished by filling the aperture with antenna
elements spaced at half the carrier wavelength or less, in order
to avoid grating lobes. However, this approach does not scale
well with aperture size since the cost, power consumption and
design complexity increases with number of antenna elements.

In this paper, we investigate the problem of synthesizing
narrow beams using a tiled architecture, with a sparse set of
subarrays spread over a large physical aperture. Each subarray
is a relatively compact antenna array with a moderate number of
elements at sub-wavelength spacing. This is a modular design,
in which each subarray can be controlled by a radio frequency
integrated circuit (RFIC) of moderate complexity, with multiple
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RFICs tiled to build up large aperture arrays with a much larger
number of elements compared to that of a single subarray. The
resulting array is “sparse” because, while the total number of
antenna elements summed across subarrays is large, this number
is far smaller than that for a classical design with antennas at
sub-wavelength spacing spanning the entire physical aperture.
The sidelobes and grating lobes resulting from such spatial
undersampling must therefore be controlled in order for our
proposed “array of subarrays” to be useful. Our goal here is
to determine the placement of a given number of subarrays over
a physical aperture in order to optimize multiple beam attributes,
including beam width, maximum sidelobe level, and directivity.

While our framework is general, the design of millimeter wave
arrays is of particular interest to us, because the small carrier
wavelength enables synthesis of narrow beams using relatively
compact apertures. As a running example throughout this paper,
we consider the design of a 60 GHz array of subarrays created
by placing 8 subarrays over an aperture size of 10 cm by 10 cm
(20λ× 20λ for wavelength λ = 0.5 cm), where each subarray
has 4× 4 elements arranged in uniform rectangular grid with
0.5λ horizontal spacing and 0.6λ vertical spacing. The total
number of antenna elements in such designs is 128, which is an
order of magnitude smaller than the 1600 elements required to
cover the entire aperture at half-wavelength spacing. In addition
to optimizing beam characteristics, our design framework also
accounts for practical placement constraints consistent with
existing prototype subarrays. For example, the subarrays need
to be aligned along their axes, assuming that all elements have
unidirectional linear polarization. Also, each subarray tile occu-
pies extra physical area on the plane, which must be accounted
for in the placement procedure.

A. Contributions

Our contributions are summarized as follows:
� We formulate the problem of subarray placement as multi-

objective optimization of key performance measures such
as beam width (BW), maximum sidelobe level (MSLL),
eccentricity (ecc) and directivity (GD),

Minimize BW(C,w), MSLL(C,w), ecc(C,w)

Maximize GD(C,w)

subject to AOS(C) (1)

where C is Ns × 2 Subarray center position matrix, w
is N × 1 beamsteering weight vector and AOS(C) are
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physical constraints to avoid overlapping subarrays. Note
that orientation of subarrays is not an optimization variable
in this architecture, since the polarization of the elements
has to be aligned for beamforming. We consider minimiza-
tion of a weighted linear combination of the objectives,
focusing mainly on beamwidth BW and maximum sidelobe
level MSLL. The configuration C that we optimize over is
characterized by a set of discrete-valued variables, and the
number of possible values for these variables is combinato-
rially explosive. Furthermore, we do not have closed form
expressions for the performance measures as a function of
C, hence significant computation is required to evaluate
the cost function for each configuration. In order to control
the complexity, we use geometric heuristics to eliminate
similar configurations in the first stage of our algorithm,
and then employ a second stage of refinement using small
perturbations around the first stage solution. We numeri-
cally explore the Pareto front for (1) by sweeping through
the weights, and illustrate how the beam attributes depend
on the weights.

� We evaluate our designs using estimation-theoretic bench-
marks for two-dimensional (2D) direction of arrival (DoA)
estimation. At low signal-to-noise ratio (SNR), large side-
lobes can lead to large errors in the DoA estimate. At high
SNR, on the other hand, the DoA estimation error is gov-
erned by beam width. We derive a Ziv-Zakai bound (ZZB),
which captures the effect of both large and small estimation
errors, for DoA estimation for specular paths. The ZZB
exhibits a distinct transition in its behavior from low to
high SNR, tending at high SNR to the Cramer-Rao bound
(CRB), which captures the effect of small errors around
the true parameter value. Thus, we use the ZZB transition
SNR as a measure of efficacy of sidelobe reduction, and
the CRB as a measure of efficacy of beam width reduction.

� We report in detail on two array designs, A1 with primary
emphasis on reducing beamwidth and A2 based on joint
optimization of beamwidth and maximum sidelobe level.
These designs are compared against two benchmark ar-
rays. The first is termed a “compact array,” with subarrays
packed closely together: this is expected to have worse
beam width but smaller sidelobes than our sparse designs.
The second is termed a “naive array,” obtained by placing
subarrays in diamond pattern to obtain beamwidth equiva-
lent to that of sparse array A2. Some illustrative numerical
results for our running example are as follows. The sparse
design A1 is 11 dB better than the compact array in terms
of CRB, while degrading less than 1 dB in terms of ZZB
threshold. The sparse design A2 is 4 dB better in terms of
CRB than the “naive array,” while also having a better ZZB
threshold.

� We investigate DoA estimation performance numerically
using a state of the art algorithm for off-grid estimation. The
impact of the higher sidelobes due to sparse placement, and
hence that of our optimization procedure, is more evident
when estimating DoA in the presence of multiple interfer-
ing targets. We show that, depending on the strength of
interferers, our optimized arrays achieve better estimation

accuracy than the “compact” and “naive” benchmark arrays
at moderate to high SNR due to a combination of sharper
beamwidth and lower sidelobes. We also show that the
efficacy of DoA estimation using our sparse designs, and
the associated benchmarks, is maintained when we employ
compressive measurements.

B. Related Work

There is a rich body of work on sparsifying linear arrays,
including minimum redundancy arrays [1], genetic optimiza-
tion [2], joint Cramér Rao Bound and sidelobe level optimiza-
tion [3], and simulated annealing [4]. Most popular design strate-
gies try to find an element pattern which minimizes beamwidth,
along with some notion of DoA ambiguities such as sidelobe
level or probability of DoA outlier. Recent approaches like
Nested 2D arrays [5] and H-arrays [6] utilize the idea of “dif-
ference co-array” to reduce the number of redundant spacings
and maximize the randomness of element positions, so that the
number of spatial frequencies being sampled by the array is
maximized.

A closely related sparse array design methodology is the
sensor selection problem, wherein a smaller subset of individual
antenna positions is to be chosen from a predefined grid. By
employing certain surrogate measures, near-optimal arrays can
be obtained in polynomial time using standard convex relaxation
methods [7], [8]. Array thinning methods such as these are well
known to avoid complicated nonlinear optimizations for linear
case [9].

Most existing techniques, however, assume that antenna ele-
ments can be placed freely. Hence, they do not apply in our set-
ting, where element placement within subarrays is constrained.
The prior work most similar to our is [10], which investigates
design of linear arrays with two and three subarrays. However,
the focus there is on performance criteria for comparing a
number of sensible designs in a far smaller design space, rather
than searching over a large space of possibilities as we do here.

Our performance evaluation requires implementation of DoA
estimation algorithms. Classical subspace-based algorithms
such as MUSIC [11] and ESPRIT [12], as well as their extensions
to arrays of subarrays such as [13]–[16], rely on regular array
geometries for efficient computation. Recently developed super-
resolution algorithms such as Basis Pursuit Denoising (BPDN)
[17] and Newtonized Orthogonal Matching Pursuit (NOMP)
[18] are both more general and have better performance. It
is worth noting that [19] shows that, for large arrays, BPDN
and other sparse estimation techniques with compressive mea-
surements outperform subspace-based methods. In this paper,
we employ NOMP in our numerical experiments, since we
have found it to provide better performance than BPDN at
lower complexity. We also show that the performance trends are
unchanged under compressive measurements, consistent with
recent general theory [20].

C. Outline

We first describe the beam attributes to be optimized while
designing the sparse arrays and discuss constraints for the
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Fig. 1. (a) 2D Array Geometry and Spherical coordinate system. (b) ROI:
Uniform distribution of 2D-DoA u in spherical cap with half angle θmax.

optimization in Section II. The geometric heuristics and design
approach are described in detail in Section III. We then provide a
brief review of estimation bounds for 2D bearing estimation and
discuss their utility for analyzing the sparse arrays in Section IV.
Numerical results are provided in Section V. These include ex-
ploration of the Pareto front, and comparison of example designs
against benchmarks in terms of both beam characteristics and
DoA estimation. We show in Section VI that the performance
trends hold for compressive DoA estimation, and conclude in
Section VII.

II. SPARSE SUBARRAY DESIGN

We formulate the array design problem in terms of jointly
optimizing multiple beam parameters that are expected to affect
DoA estimation performance.

A. Beam Pattern Basics

We use the directional cosines

u = sin(θ) cos(φ), v = sin(θ) sin(φ) (2)

to represent the DoA of target. The elevation θ and azimuth φ
angles are measured from the broadside direction (perpendicular
to the baseline array plane). The 2D beampattern R(u, v) in
direction (u, v) when the beam is steered towards the broadside
is given by

R(u, v) =
1

N2

∣
∣
∣
∣
∣

N∑

i=1

ejk(ud
x
i +vdy

i )

∣
∣
∣
∣
∣

2

(3)

whereN is the number of array elements; [dxi , d
y
i ]

T � di are the
2D co-ordinates of arrays elements and k = 2π

λ
is the wavenum-

ber. We assume isotropic antenna elements with ideal steering
weights and far-field sources with normalized response. The
term “subarray” refers to the subset of elements with uniform
half-wavelength spacing, while “super-array” refers to the place-
ment of these subarrays, which is described by the subarray
centers. Since the elements in a subarray are fixed, the array
element locations, D can be expressed in terms of the subarray
centers, C, as D = C ⊗ 1Ne

+De ⊗ 1Ns
, where De is the

fixed2×Ne matrix containing the subarray element coordinates

with respect to its center, Ns is the number of subarrays, Ne

is number of elements in individual subarrays, 1n is an n× 1
column vector of ones, and ⊗ denotes the Kronecker product.

When beamforming in a general direction (u0, v0) (broadside
corresponds to (u0, v0) = (0, 0)), the beam pattern is given by

R(u0,v0)(u, v) = R(u− u0, v − v0) (4)

For Direction of Arrival (DoA) estimation, the ideal beam should
have small beamwidth with minimal sidelobes and high direc-
tivity. We consider the following beam attributes, some of which
depend on the steering direction (u0, v0), as key performance
metrics to be optimized:
� 2D beamwidth (BW): Although the main beam of non-

uniform array has non-trivial shape in 2D, we approx-
imate it as an ellipse to define beamwidth. We evalu-
ate the 2D beamwidth in terms of the 3-dB beamwidths
along the major and minor axes of this ellipse, denoted
by BWmax and BWmin, respectively. The mean squared
error of DoA estimation depends on the sum of these
beamwidths (see Appendix A), hence we define beamwidth
as BWDoA =

√

BW2
max + BW2

min.
� Maximum sidelobe level (MSLL): Is the relative level of the

strongest sidelobe in the beampattern with respect to the
main lobe, MSLL = 10 log(Rmax/Rmsl). Thus, Rmax and
Rmsl are the largest and second largest magnitude local
maximas of beampattern R(u, v) given by

Rmax(u0, v0) = max
u,v

Ru0,v0
(u, v)

= Ru0,v0
(u0, v0) = R(0, 0)

Rmsl = max
u∗,v∗

Ru0,v0
(u∗, v∗)

s.t. (u∗, v∗) �= (u0, v0),

Ru0,v0
(u∗, v∗) ≥ Ru0,v0

(Dε(u
∗, v∗))

where Dε(u
∗, v∗) = {(u, v) : |u− u∗| < ε, |v − v∗| < ε}

denotes ε-neighborhood. Note that Rmax does not depend
on steering direction (u0, v0), but Rmsl might.

� Directivity (GD): The directivity is the ratio of main lobe
power to average power, GD = 10 log( Rmax

Ravg
) The average

power does not have a closed form expression for general
planar arrays, and is evaluated in (u, v) domain by the
integral [21]:

Ravg =
2

4π

∫ 1

−1

∫ √1−v2

−√1−v2

Ru0,v0
(u, v)√

1− u2 − v2 dudv

� Eccentricity (ecc): is a measure of the asymmetry of
the main beam. We add this additional parameter to
suppress the trivial linear placement solution, ecc =
√

1− (BWmin/BWmax)2.
For non-uniform planar arrays, none of these beam param-

eters have a closed form expression [22], hence they must be
computed numerically. In our simulations, we compute these
beam attributes using a beampattern over a 512× 512 grid in
UV space as shown in Fig. 2.
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Fig. 2. Beam Attributes from array Beampattern.

B. Problem Formulation

In order to develop geometric heuristics for optimization, we
first analyze the effect of increasing aperture width, keeping
the number of antenna elements fixed, for linear and planar
arrays, with uniform and subarray-based architectures as shown
in the rightmost section of Fig. 3. In the plots of beam attributes
in Fig. 3, the dashed line represents the aperture width for
half-wavelength inter-element spacing, when the uniform and
subarray-based configurations match.
� The MSLL for the array of subarrays increases much faster

than for a uniform configuration due to a grating lobe
appearing close to main beam. This attribute is sensitive
to the element distribution and behaves unpredictably for
non-uniform arrays.

� The 3 dB Beamwidth (BWmax for planar array) for both array
types reduces congruently, confirming that it is inversely
proportional to aperture width independent of the distribu-
tion of elements.

� Directivity increases as we increase the inter-element spac-
ing, but only up to a certain limit, and then becomes
constant [23]. This generalizes well to planar arrays as
shown in the Fig. 3. As one can see the directivity for
subarrayed configurations remains approximately constant
with increasing aperture width beyond standard spacing.
We therefore do not include this metric in our cost function.

The objectives that we wish to trade off against each other
do not have the same units: for example, MSLL is measured in
dB relative to the maximum for the main lobe, whereas BW is
measured in deg. We therefore normalize each raw objective
value, oraw by its range as follows:

o(C) =
oraw(C)−min∀C ′ {oraw(C ′)}

max∀C ′ {oraw(C ′)} −min∀C ′ {oraw(C ′)}
The range of each objective is computed numerically while con-
structing the dictionary of all configurations, C ∈ C, described
later in III-A.

The constrained multi-objective optimization can now be
formulated as follows:

C∗,w∗ = argmin
∀C,w

f(C,w)

subject to AOS(C) (5)

where

f(C,w) = αBW(C,w) + βMSLL(C,w) + γecc(C,w) (6)

is the weighted cost function in terms of the normalized objective
functions and [α, β, γ] are weights that can be used to sweep
through the optimal surface for this optimization. We show
some example arrays obtained for different choices of weights
in Table I.

Since the cost function f(C,w) is evaluated numerically
from its beampattern for specific values of (C,w), exploring
the entire solution space is computationally infeasible. This
discrete-valued nature of the optimization variables leads to
a combinatorial problem without closed form objectives and
constraints. Furthermore, beam characteristics in general depend
on the steering weights w, which in turn depend on the direction
(u0, v0) in which we are steering. We therefore employ two key
simplifications:
� We remove the dependence of the cost function on beam-

forming direction, and hence on steering weights, by com-
puting the objectives based on an expanded beam pattern,
as discussed in Section II-C.

� We employ geometric heuristics to cut down the solution
space to a reasonable size, as described in Section III.

C. Invariance to Beamforming Direction

The cost function in (6) is evaluated using the beampattern
R(u− u0, v − v0), which depends on the beamsteering direc-
tion (u0, v0). It would be prohibitively expensive to evaluate
the beam attributes over all such beampatterns for finding the
optimal (C,w). However, for arrays with isotropic elements, we
can define an Expanded Beam pattern (EBP) which subsumes
beampatterns of all steering direction in a Region of Interest
(ROI) [24]. Suppose that our maximum steering angle in the
ROI is θmax. From (2), we see that (u0, v0) lies within a circle of
radius sin θmax. On the other hand, sidelobes can appear at any
(u, v) within a circle of radius 1. It is easy to see, therefore, that
(u− u0, v − v0) is guaranteed to lie within a circle of radius
1 + sin θmax. We can therefore compute beam attributes using
the following EBP:

Rρ(ũ, ṽ) =
1

N2

∣
∣
∣
∣
∣

N∑

i=1

ejkρ(ũd
x
i +ṽdy

i )

∣
∣
∣
∣
∣

2

ρ = 1 + sin(θmax) (7)

Fig. 4 shows the EBP,R1.5(ũ, ṽ) for ROI with θmax = 30◦, and
the beampattern for the steering angle ((u0, v0) = (0.3, 0.4)).
The shape of the main beam is preserved under the transforma-
tion (7), hence beam width and eccentricity can be directly eval-
uated from (7). The MSLL evaluated from EBP is a worst-case
value, corresponding to an argument ρ(ũ, ṽ) which, in principle,
might not correspond to a feasible value of (u− u0, v − v0) in
(4). However, the maximum sidelobe always lies within the main
lobe of the subarray beam pattern, so that physically implausible
values of ρ(ũ, ṽ) do not correspond to large local maxima of the
EBP.
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Fig. 3. Comparison of beam attributes of subarrayed and uniform architecture with increasing aperture width.

TABLE I
SAMPLE ARRAY CONFIGURATIONS

Fig. 4. Expanded Beampattern for ROI (θmax < 30◦).

With the introduction of the EBP, we can, without loss of
generality, assume that the main beam is being steered towards
broadside, settingw = 1N . Our problem now reduces to finding
the optimal configuration C∗ as follows,

C∗ = argmin
C

f(C,1N ) subject to AoS(C) (8)

III. PLACEMENT OPTIMIZATION

In order to optimize the placement, we need to evaluate
the cost function over all array configurations. The number
of configurations depends on the allowed form factor, and the
size of the subarray module, and an exhaustive search over all
configurations is computationally infeasible: for example, the
number of configurations for a discrete grid of size 20× 20 is
of the order 1020. We therefore propose a two-stage approach,
first performing a combinatorial search on a reduced search

Fig. 5. Super-arrays with equal covariance but different beam attributes.

space, and then obtaining the final solution by searching over
perturbations around the solution from the first stage.

A. Combinatorial Search

We reduce the solution space by removing geometrically
“similar” arrays. We employ the covariance of the element
positions, and pairwise element separations, as measures of
similarity. The choice of covariance of element positions Σ(C)
as similarity metric is motivated by its inverse proportionality
to Cramér Rao Bound on accuracy of DoA estimation (see
Section IV-A1). However, array configurations with similar
array covariance but diverse beam attributes also exist: Fig. 5
shows an example of two array configurations with differ-
ent shapes but the same covariance. The arrays have similar
beamwidth but their MSLL levels are different. We observe that
the variance of pairwise element distances ψ(C) is different
for these arrays, and use it as an indicator for these large scale
deviations. This allows us to reduce the dimensionality of the
solution space from 2×Ns down to 3 array shape parameters:
the eigenvalues (λ1, λ2) of Σ(C) and ψ(C).

1) Subarray Placement Algorithm: We construct a prefix
tree dictionary to find feasible solutions using a breadth first
search based enumeration technique. The element position co-
variance for an array of subarray can be uniquely represented
by the covariance of its subarray centers, ΣD = ΣC +ΣDe

.
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Algorithm 1: Prefix Tree Dictionary Search.

1: INITIALIZE: C1 = {C(n=1)
i }; i ∈ [1, Ninit];n = 1

2: while n < Ns do
3: LIST all vacant Gridpoints

Vi = TG(C
n
i ); i ∈ [1, |Cn|]

4: APPEND subarray at vacancies Vi,

Ĉ
n+1

=
|Cn|⋃

i=1

Cn
i × Vi

5: PRUNE: Cn+1 ← Prune (Ĉ
n+1

)
6: n = n+ 1
7: end while
8: Return CNs

Hence the super-array center covariance can be used instead
of that of the full array in the Dictionary search algorithm.
Each node in the tree stores a subarray center position, and
the path from root to a node at the nth layer of prefix tree
represents a unique configuration of n subarrays. The subarray
centers are constrained to lie on a fixed set of discrete grid
pointsG. The algorithm is described in Algorithm 1. We briefly
discuss the key steps below.
� INITIALIZE: In order to allow for sufficient exploration, we

employ multiple random initializationsC1
i of the root node

being placed on Ninit different locations on the grid. (For
example, circular configurations cannot be obtained if the
root subarray is fixed at the center).

� LIST: Define the operator TG : G|C
n
i | → G|Vi| which maps

the set of subarrays centers Cn
i ∈ Cn to the set of |Vi|

vacant gridpoints in G available for placement of next
subarray which are not blocked by the subarrays al-
ready placed at Cn

i . This operator also accounts for addi-
tional surface area occupied by the subarray module apart
from the physical antenna elements (see Appendix C for
details).

� APPEND: The (n+ 1)th subarray configuration is con-
structed from the vacancies, Cn

i × Vi where × denotes

cartesian product of sets. A temporary dictionary Ĉ
n+1

is
formed by inserting |Vi| = κ child nodes for each node in
the nth layer.

� PRUNE: Nodes corresponding to “similar” configurations
are deleted based on the array shape parameters
1) Find eigenvalues (λ1, λ2) of the subarray center covari-

ance matrix, Σ(C) and variance of array separations,
ψ(C) = E[(lij − E[lij ])

2], where, lij denotes the dis-
tances betweeen ith and jth elements.

2) Enumerate unique configurations by binning the
(λ1, λ2, ψ) triplets over a 3-D grid with resolution τ
and randomly picking one configuration from each bin
(see Appendix D for criteria to choose τ ).

This procedure is repeated until the number of dictionary atoms
reach the desired number of subarrays,n = NS . All arrays in the
dictionary C obtained from this algorithm satisfy the AOS(C)
constraint by construction. This simplifies the constrained

Fig. 6. Objective costs variation over iterative refinements.

Algorithm 2: Local Refinements.

1: INITIALIZE: C = Cinit; B = oversampled bin.
2: while n < Nref do
3: for i = 1 to Ns do
4: LIST Find positions available for adjustment,

Vi = TB(C \ Ci)
5: CORRECT: Select position with least cost

Ci ← minb∈Vi
f({(C \ Ci), b},1)

6: end for
7: n = n+ 1
8: end while
9: Return C

multi-objective optimization in (5) to

C∗ = argmin
C∈C

f(C,1N ) (9)

B. Iterative Placement Refinement

In the second stage, we try to improve the cost function (9) by
applying small local perturbations (within a bin of the gridG) to
the subarray positions obtained from the combinatorial search
in the first stage, as described in Algorithm 2.

Fig. 6 shows a sample of how costs are minimized using
sequential refinement overNs = 8 subarrays. After running few
iterations, the final array has 0.8 dB lower MSLL, while keeping
other beam attributes relatively unchanged.

C. Computational Complexity

The complexity of this approach is dominated by the construc-
tion of the prefix tree dictionaryC in the first stage. Our algorithm
progresses by growing leaf nodes of the tree in a breadth first
fashion until a tree depth of Ns is reached. In each step, the key
bottleneck lies in pruning the temporary dictionary Ĉ

n
which

lists all possible vacancies for every leaf node of existing tree.
The number of operations and space can be upper bounded as
follows (see Appendix E for details):

TAlgorithm1 =

Ns−1∑

n=1

∣
∣
∣Ĉ

n+1
∣
∣
∣ ≤

Ns−1∑

n=1

|G||Cn
max| ∼ O

(|G|4N4
s

)

SAlgorithm1 = max
n∈[1,Ns]

|Cn| ≤ |Cn
max| ∼ O

(|G|3N3
s

)
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The resulting dictionary is independent of cost function weights
[α, β, γ], and represents a thinned version of the entire design
space. Thus, optimized arrays for different weights can be evalu-
ated by solving (9). The solution of (9) hasO(|C|) time complex-
ity, assuming that cost evaluation for each array configuration
takes constant time. The second stage of the algorithm requires
cost evaluation of fine perturbations over an oversampled bin of
size |B| around each subarray, repeated Nref times. This stage
requires TAlgorithm2 = |B|NrefNs operations using constant
space, which is significantly lower compared to first stage.
Hence, the overall algorithm complexity is O(|G|4N4

s ) in time
and O(|G|3N3

s ) in space.
We note that the polynomial complexity of proposed al-

gorithm is significantly better compared to exhaustive search,
which exhibits exponential complexity O(|G|Ns). For our
running example, the proposed algorithm’s complexity is
TAlgorithm1 = (400× 8)4 ≈ 1014 compared to the complexity
of exhaustive search, TExhaustive = (400)8 > 1020.

IV. ESTIMATION-THEORETIC BENCHMARKS

We now seek to evaluate the efficacy of our sparse designs for
the canonical application of 2D DoA estimation. We compare
different array designs in terms of estimation-theoretic bounds
as well as simulated performance using a super-resolution algo-
rithm. For clarity in exposition, from here onwards we overload
u � [u, v] to denote the DoA.

A. Signal Model

We model the received signal from K sources in the scene
with distinct DoAs Θ = [u1, u2, . . . , uk] as

x =
K∑

j=1

αjs(uj) + z (10)

wheres(uj) = [ejku
T
j d1 , . . . , ejku

T
j dN ]T is the array response,

z = [z1, . . . , zN ]T is complex white noise such that E(zzH) =
σ2IN , and {α}Kj=1 are complex gains which are unknown de-
terministic constants. The joint probability density of received
signal conditioned on (Θ, {α}Kj=1) is given by,

p(x|Θ,α) =
∏

uj∈Θ

1

πNσ2
exp

(

−‖x− αjs(uj)‖2
σ2

)

(11)

For any DoA estimator Θ̂, the covariance of estimation error is
defined as,

Rε(Θ̂) = E

[
K∑

i=1

(u − ûi)(u − ûi)
T

]

Rε can be geometrically interpreted by its trace
√

tr(Rε) which
represents the expected overall Root mean square error (RMSE)
in DoA estimation (see Appendix A). We use this measure
to compare the performance of array designs in Section V.
For single source case (K = 1), the joint maximum likelihood
estimator of u and α yields a noncoherent estimator for u

as follows:

ûML = argmax
u

∣
∣s(u)Hx

∣
∣
2

(12)

For this case, we derive the Cramer Rao (CRB) and Ziv-Zakai
(ZZB) bounds on Rε to assess the best possible estimation
accuracy of different designs. Although derived for single source
case, we use these bounds for multiple source case as well to
compare DoA estimation performance.

1) Cramér Rao Bound: The Bayesian Cramér Rao Bound
for this signal model is given by [24]:

CRB(Rε) = (JF + JP )−1 (13)

where JF , JP denote the Fisher Information Matrix (FIM)
contributions from the observation and the prior distribution of
DoA respectively.

(JF )ij = −Ex,u

[
∂2l(x|u)
∂ui∂uj

]

, (JP )ij = −Eu

[
∂2l(u)

∂ui∂uj

]

where l(x|u) and l(u) are the conditional log likelihood and
prior log likelihoods, respectively. In addition, the following
regularity condition needs to be satisfied,

Ex,u

[
∂l(x|u)
∂u

]

= 0

Ex,u

[

jk
N∑

i=1

di

(

xie
jkuTdi − x∗ie−jku

Tdi

)
]

= 0

jk

(

α

N∑

i=1

di − α∗
N∑

i=1

di

)

= jk(α− α∗)
N∑

i=1

di = 0

In order to always satisfy this condition, we enforce the array
element positions to be centered i.e.,

∑N
i=1 di = 0.

For a single source, the FIM is given by,

JF = − 1

σ2
E

[

∂s(u)

∂u

H ∂s(u)

∂u

]

(14)

= 2k2γDTD (15)

which depends only on the element positions, D and Signal to
Noise ratio (SNR) (γ = |α|2/σ2). Assuming the DoA prior to
be uniformly distributed in the ROI (θ ≤ 30◦), the prior FIM
simplifies to JP = 1.343I2.

2) Ziv-Zakai Bound: The CRB is a local bound, which ac-
counts for estimation performance dependent on mainbeam,
hence it is only useful at high SNR. In order to better characterize
the estimation performance of Sparse arrays at low SNR, we
calculate the Ziv-Zakai Bound (ZZB) which incorporates the
effect of sidelobes and predicts the threshold behavior. For any
directional vector a = [cos ξ, sin ξ]T , the ZZB is given by [25]

aTRεa ≥
∫ ∞

0

V
{

max
δ:aT δ=h

∫

A(u, δ)Pe(u, δ)du

}

hdh

where, A(u, δ) = min {p(u), p(u + δ)}, V(.) is the valley
filling function andPe(u, δ) is error probability of the following
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vector parameter binary detection problem,

H0 : û = u; Pr(H0) =
1

2
,x ∼ p(x|uuu)

H1 : û = u + δ; Pr(H1) =
1

2
,x ∼ p(x|u+ δu+ δu+ δ)

This error probability can be lower bounded by the minimum
probability of error of the following optimal non-coherent
detector:

Decide(u) =

{

u if ρ1 > ρ2

u + δ if ρ1 < ρ2

where ρ1 = |xHs(u)| and ρ2 = |xHs(u + δ)|. Given
u = u0, ρ1, ρ2 are rician distributed with scale parameter
s = σ2/M and non-centrality parameter ν = |α|N, |αR(δ)|N
respectively where R(δ) = R(δx, δy) is the beampattern from
(3). The error probability is given by [26]

Pnc(u, δ) =
1

2
(Pr (ρ1 < ρ2|u) + Pr (ρ1 > ρ2|u + δ))

= Pr (ρ1 < ρ2|u)

= Q1(a, b)− 1

2
e−

a2+b2

2 I0(ab)

where,

a =

√

γN

2

(

1−
√

1− |R(δ)|2
)

b =

√

γN

2

(

1 +
√

1− |R(δ)|2
)

(16)

which is not a function of u. For ROI in our case, the maximum
error h(max) = (aT δ)(max) = 1. Note that for a uniformly dis-
tributed DoA in spherical coordinates (θ, φ), the distribution of
u is not uniform. However for simplicity of analysis, we make
the assumption that u is uniformly distributed on a circular disc.
Hence, the ZZB expression simplifies to

aTRεa ≥
∫ 1

0

V
{

max
δ:aT δ=h

∫

A(u)duPnc(δ)

}

hdh

ZZB(aTRεa) =

∫ 1

0

V
{

max
δ:aT δ=h

Pnc(δ)

}

hdh (17)

The maximum error probability over all directions δ cannot be
expressed as closed form expression. However, due to the mono-
tonicity of Marcum’s Q function, Q1(.) and Bessel function
of 0th order, I0(.), the error probability in (16) is maximized
only when R(δ) is maximized. Therefore, for each values of h,
we compute the maxδ:aT δ=h |R(δ)| numerically by searching
over a discrete set of points on the line segment aT δ = h and
substitue in (17).

B. DoA Estimation Algorithm

Grid-based sparse estimation for a set of DoAs models the the
received signal (10) as follows:

x = S(Ψ)b+ z (18)

whereS(Ψ) = [s(u1) · · · s(u|Ψ|)] contains the array response
at discretized set of DoAs ui ∈ Ψ as columns. The nonzero
entries in b point to presence of target in the corresponding DoA
in Ψ. The DoA and gain pair (ûi, α̂i)

K
i=1 can be estimated by

jointly minimizing the residual power,

T (û, α̂) =

∥
∥
∥
∥
∥
∥

x−
K∑

j=1

α̂js(ûj)

∥
∥
∥
∥
∥
∥

2

The NOMP algorithm summarized below provides a two stage
estimator:

1) Detection: Using precomputedS(Ψ), coarse estimates of
DoA and complex gain are obtained

û = argmax
u∈Ψ
|s(u)Hx|2

α̂ = s(u)Hx/N

2) Refinement: The estimates are refined using the Newton
method:

û′ = û− (H∇T (û, α̂))
−1∇T (û, α̂) (19)

α̂′ = s(û′)Hx/N (20)

where H∇T and ∇T denote the Hessian and gradient
of T (u, α) with respect to u at current estimate (û, α̂)
(see [27] for details).

The algorithm is repeated with the residual signal, r =
x− α̂′s(û′) to estimate other DoAs. The refinement steps are
repeated after each new detection for all DoAs in a cyclic manner
for few rounds to improve accuracy.

The algorithm yields Kest DoA estimates, with estimation
performance degrading when Kest does not match the true
number of DoAs, KDoA. Hence, in order to evaluate the arrays
independent of such errors, we implement both algorithm where
K = KDoA is known.

We also run extensive simulations with another state of the art
algorithm, BPDN [17], with default parameters and 5 refinement
stages. The computational complexity of BPDN is significantly
higher than that of NOMP. The grid Ψ needs to be adapted
at each iteration for BPDN, depending on the DoAs, whereas it
remains fixed for NOMPS(Ψ), and can be precomputed, which
makes it suitable for faster implementation in large arrays. Since
the NOMP algorithm also yields somewhat better estimation
accuracy than BPDN, we only present results obtained with
NOMP here.

V. NUMERICAL RESULTS

A. Design of Arrays

Using the combinatorial search algorithm, we create a search
space of array configurations, C ∈ C of size |C| = 657, 000
for Nsub = 8 subarrays. Fig. 7(a) shows the values of two
major objectives, MSLL, BW over this space. The beamwidth
is improved by spreading out the subarrays, but this typically
leads to a deterioriation in the MSLL. Fig. 7(a) clearly shows the
Pareto front corresponding to the multiple solutions of (9), corre-
sponding to different relative weights, trading off these opposing
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Fig. 7. Pareto-front exploration and multi-objective optimization.

objectives. Fig. 7(b) shows the weighted cost function obtained
for an example set of weights (α = 0.1, β = 0.5, γ = 0.1) as
a function of the eigenvalues of the array covariance matrix.
We observe that for a similar set of eigenvalues, many of the
solutions we explore (shown in yellow) are substantially worse
in terms of the weighted cost than the solutions shown in blue
from which we choose our solutions, indicating the complexity
of the optimization landscape. Choosing one more variable, the
variance of the element locations ψ(C), for binning is therefore
crucial for exploring this landscape more thoroughly. Fig. 7(c)
shows the array B obtained using the proposed algorithm, and
its beampattern. We mark the locations of B, and of two other
Pareto optimal designs, A1 and A2 (to be discussed shortly)
along the Pareto front in Fig. 7(a).

As we change the relative values of weights α, β and γ in ex-
ploring the Pareto front, we can make the following observations
regarding the corresponding subarray placements:
� For a larger relative value of α (more importance given to

beamwidth), the subarrays are widely distributed over the
available aperture area.

� When we increase the relative value of β to suppress
MSLL, the array becomes restricted to a smaller area.

� The relative weight ofγ, which corresponds to the objective
of reducing eccentricity, affects both the shape of the main
lobe and the positions of the sidelobes. For positive γ, the
solution is not expected to lie on the BW-MSLL Pareto
front boundary. Indeed, Fig. 7(a) shows that the solutions
from first stage dictionary search lie slightly away from this
boundary. However, the second stage iterative refinement
reduces this gap.

Based on these observations, we set the weights to obtain
following sample array configurations:

1) A1: Primary emphasis is given towards minimizing
beamwidth by setting α = 1, β, γ = 0.1.

2) A2: In this case, we emphasize all beam attributes by
setting all weights equal to 1.

We compare these array designs against two simple array
configurations, 1) a “compact” array where subarrays are placed
together such that overall element pattern becomes a uniform
rectangular array, 2) a “naive” array where subarrays are spread
along a diamond shape such that its resultant beamwidth is
equal to that of A2. Table I lists the weights and resulting beam
attributes of these arrays.

Fig. 8 shows the array designs obtained using our optimization
approach and their beam patterns. The A2 array has a sharp
beamwidth and only 2.6 dB worse MSLL compared to the
compact array. On the other hand, a naive sparse array with
circular arrangement of subarrays yields 2.6 dB higher MSLL
compared to A2 for similar beamwidth. Our designs A1, A2
exhibit several small sidelobes (the highest sidelobe for A2 is
−10.2 dB), whereas the naive array exhibits fewer but more
pronounced sidelobes. Since large sidelobes and grating lobes
can cause large errors in DoA estimation, we expect our designs
to yield better estimation performance, which is borne out by
the results presented in the next section.

We note that the sidelobe levels and locations are primarily
dependent on the super-array (i.e., the location of subarray
centers C), while the subarray pattern mainly affects the large-
scale beampattern. Therefore, we obtain similar solutions, with
similar beam characteristics, using our optimization approach
with small variations in the subarray element patterns (e.g,
replacement of a rectangular pattern with a plus pattern). Such
results are not reported here due to space constraints.

B. Comparison of Estimation Performance

We evaluate the arrays based on their DoA estimation accu-
racy at different SNRs for both single and multiple source cases.
We use the RMSE in estimating DoA for comparison which is
given by ε̄ =

√

E[|û − u0)|2] =
√

tr(Rε)/2.
1) Estimation Bounds: The Cramér Rao Bound is evalu-

ated using (13),CRB(ε̄) =
√

tr(CRB(Rε))/2. The Ziv Zakai
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Fig. 8. Beam patterns (Bottom row) for designed (Left half) & benchmarking (right half) arrays.

Fig. 9. Comparison of estimation theoretic bounds for arrays.

Bound is evaluated using (17),

ZZB(ε̄) =
√

ZZB(aT
1 Rεa1) + ZZB(aT

2 Rεa2)

where a1, a2 denote the directions of maximum and minimum
beamwidths of the array. We also computed the ML estimation
(MLE) error by Monte Carlo simulation using (12) with an over-
complete dictionary of array responses. Fig. 9 shows the CRB,
ZZB and MLE curves for all the arrays. CRB is proportional
to beamwidth (see Appendix B for details). The ZZB bound
converges to CRB at the so-called “ZZB threshold” SNR: when
the SNR is below this threshold, far-ambiguities in DoA estima-
tion caused by large sidelobes dominate the MSE. The tradeoff
between beamwidth and MSLL is thus expected to translate

to one between CRB (better with smaller beamwidth) and ZZB
threshold (worse with larger MSLL). Thus, as expected, “A1” ar-
ray achieves the lowest CRB, followed by “naive” and “A2” with
equal CRB, while “Compact” array has the largest beamwidth
and hence highest CRB. The trend in MSLL is weakly reflected
in the ZZB thresholds (for a single target, sidelobes do limited
damage): the degradation in ZZB threshold, relative to that of
the compact array for the optimized arrays (A1, A2) is less than
1 dB, while the gain in CRB due to smaller beamwidth is 4 dB
and 2 dB, respectively. The MLE error curve also agrees with
the threshold behavior predicted by ZZB. We see in the next set
of results, however, that the size of the sidelobes becomes much
more important when we consider multiple targets.

2) Estimation Algorithm Performance: We obtain DoA es-
timates using the NOMP algorithm [18], [27] with a known
number of sources to compare the best case performance of
these arrays. (The NOMP algorithm also performs as well as
the brute force MLE for a single target discussed earlier–results
omitted here.) The RMSE is evaluated across N = 1024 DoAs
uniformly sampled over the ROI (spherical cap of half angle
30◦). For evaluating the estimation performance in presence of
multiple targets, (K = 5) we compute the RMS error in the DoA
estimate for a primary target fixed at broadside, while interfering
targets are distributed uniformly in ROI at separation of Δu ≥
0.16 or Δθ ≥ 9.2◦ away from primary target. This separation is
imposed because the estimation problem is ill-posed for DoAs
in close proximity. For uniform arrays, the minimum separa-
tion is typically defined with respect to the DFT bin size (e.g.
ΔDFT = 2π/L for an L-element linear array). Since this quan-
tity cannot be defined for non-uniform planar arrays, we choose
a minimum separation halfway between the RMS beamwidths
of the “compact” and sparse arrays, to capture the effect of both
local errors and far ambiguity errors due to sidelobes.
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Fig. 10. Estimation accuracy with multiple targets.

In addition to RMSE vs SNR curves, we also analyze the dis-
tribution of error magnitudes. The complementary cumulative
distribution (CCDF) of the estimation errors is used to compare
the “outage probability” corresponding to too large an error,
which captures the impact of large sidelobes.
� With multiple sources, the estimation accuracy is degraded

by interference from other sources, and RMSE does not
converge to the single-target CRB. Fig. 10 shows the
estimation performance for strong and weak interference.
1) Weak interference: When the interfering sources are

6 dB weaker than primary target, sparse arrays offer
more than 5 dB SNR gain compared to compact arrays
for SNR > −5 dB. Also, the difference between A2,
naive array widens to about 1 dB in the threshold region
indicating the benefit of suppressing sidelobes.

2) Strong interference: When interfering sources have
same magnitude, RMSE severely degrades for both
arrays with high sidelobes (A1, Naive) as well as arrays
with high beamwidth (Compact). On the other hand, A2
has lowest RMSE at SNR > −5 dB because of the dual
benefit of small beamwidth and lower sidelobes.

� The increase in estimation errors at high SNR is attributed
to ambiguity errors from sidelobes, hence the overall
sidelobe suppression for the arrays can be compared using
the distribution of these error magnitudes. Fig. 11 shows
the CCDF curves of all arrays at SNR = −5 dB. The

Fig. 11. CCDF of estimation errors in multiple targets.

initial curvature of these curves (RMSE upto −22 dB) is
expected to depend on local errors, hence the rate of change
follows same order as CRB which isA1 > A2 = naive >
compact. But the curvature reverses order at higher RMSE
indicating the tradeoff with far-errors. We can see that
A2 achieves lower outage probability in both scenarios
(e.g. for RMSE threshold set to −15 dB) as it strikes a
balance between near and far errors. In contrast, both A1
and naive exhibit high outage probability due to frequent
far ambiguity errors caused by higher sidelobes.

Therefore, depending on the expected magnitude of interfer-
ers either one of the designed arrays with suitable sidelobe sup-
pression can be selected. For a desired beamwidth reduction our
design algorithm yields an array superior to a naively designed
sparse array.

VI. COMPRESSIVE ESTIMATION

We now evaluate the arrays for sparse estimation using com-
pressive measurements at each subarray given by:

y = Φx

where x is the full measurement from (18) and Φ =
diag(Φ1, . . . ,ΦNs

) is theM ×N measurement matrix consist-
ing of the subarrays measurement matrices as its block diago-
nals. Each subarray takes Mi compressive measurements with
an independent Φi ∈ C

Mi×Ne whoose elements are chosen uni-
formly and independently from QPSK samples 1√

Mi
{±1,±j}.

In addition, columns of Φi have unit norm to preserve signal
norm on average (E[||ΦS(u)||2] = ||S(u)||2) while scaling
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Fig. 12. Maximum and minimum values of ratio in (21) for sparse array.

Fig. 13. Estimation performance with Compressive measurements.

noise variance by N/M . The underlying DoA, u can be ex-
tracted by minimizing the ML cost:

∥
∥
∥
∥
∥
∥

y − Φ
K∑

j=1

α̂js(ûj)

∥
∥
∥
∥
∥
∥

2

The efficacy of compressive parameter estimation in AWGN
depends on preserving the geometric structure of the parame-
terized signals [20]. Specifically, if Φ satisfies the 2K isometry
property for discretized basis S(Ψ) [20],

C(1− ε) ≤ |ΦS(Ψ)b|2
|S(Ψ)b|2 ≤ C(1 + ε) (21)

whereC is a constant for any arbitrarily chosen 2K sparse vector
b, the performance of the compressive system follows that for
the original system, except for an SNR penalty ofM/N . Fig. 12
shows the minimum and maximum values of this ratio over 106

random realization of 8 sparse b for sparse array. The ratio is
within [−5, 3] dB for M > 32 signifying that 32 compressive
measurements are sufficient to estimate K = 4 DoAs.

Fig. 13 shows estimation performance with M = 32 com-
pressive measurements collected across eight subarrays (Mi =
4, i ∈ {1..8}). Comparing with Fig. 9, we observe that the
estimation algorithms preserve the same characteristics as with
full measurements with approximately 6 dB SNR penalty as
expected (N/M = 4).

VII. CONCLUSIONS

Our results demonstrate that trading off beam width versus
side lobes when synthesizing a large effective aperture does
indeed produce performance gains in bearing estimation. Com-
pared to a compact placement of subarrays, an optimized sparse
placement produces smaller mean squared error because of its
smaller beam width. Compared to a naive sparse placement, the
control of side lobes via our optimized placement produces the
most significant gains when estimating the bearing for multiple
sources.

Exploring the application of our framework for communi-
cations, where transmit and receive beamforming gains are
fixed by the number of elements, but control of beam width
and sidelobes affects interference, is an interesting direction.
In the context of sensing, our work may be viewed as design
of an individual sensor which can be placed within a more
comprehensive architecture, such as a network of sensors for
localization and tracking.

In our tiled architecture, the locations of antenna elements in
a subarray are fixed once we specify the location of the subarray
center. This constraint makes it difficult to adapt the extensive
literature on sparse array optimization, which typically considers
elements that can be freely placed, for our present purpose. The
difficulty is compounded by the lack of closed form expressions
for beam attributes of interest. However, since the objectives are
only mildly dependent on the configuration of elements within
a subarray, it might be possible to simplify the optimization
problem, and possibly adapt ideas from the literature on sparse
array optimization. This is an interesting direction for future
research, especially given the importance of tiled architectures
in realizing a large aperture leveraging low-cost hardware for
subarrays with a moderate number of elements.

APPENDIX A
MEAN SQUARE ERROR IN 2D DOA ESTIMATION

For 2D DoA estimation, the error along any given angle ξ is
given by aTRεa, where a = [cos ξ, sin ξ]T is the directional
cosine and Rε is the error covariance matrix. Assuming that
{νi, qi, i = 1, 2}, denote the eigenvalues and eigenvectors of
Rε, the MSE averaged over a (assume ξ uniform over [0, 2π])
is given by

MSE = Ea

[

aTRεa
]

= ν1Ea

[∣
∣aT q1

∣
∣
2
]

+ ν2Ea

[∣
∣aT q2

∣
∣
2
]

= ν1
||q1||2

2
+ ν2

||q2||2
2

= (ν1 + ν2)/2 =
1

2
tr(Rε)

where we have used E[cos2 ξ] = E[sin2 ξ] = 1
2 .

APPENDIX B
2D BEAMWIDTH & CRB

We define 2D beamwidth using the Taylor series expansion
of beampattern Ruo

(u) around mainlobe Ruo
(0). Since the

beampattern around the main lobe. and hence the beamwidth,
is invariant to beamforming direction (see II-C), we assume
uo = 0 without loss of generality, and drop the subscript:
R0(u) � R(u). By taking the derivatives of (3), theTaylor series
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Fig. 14. 2D Beamwidth.

expanision up to second order is obtained as

R(u) ≈ R(0)− k2

N
uTDTDu (22)

We define Half Power Beam Contour (HPBC) as the closed
contour around mainbeam with {u : R(u) = 0.5R(0)}, which
is approximated as an ellipse using (22) as follows:

uTDTDu =
N

2k2
R(0) (23)

Consider the eigendecomposition of DTD given by,

DTD = λ1p1p
T
1 + λ2p2p

T
2 (λ2 ≥ λ1)

The eigenvectors p2,p1 correspond to major and minor axis
of HPBC ellipse respectively, and depend only on the element
positions.

Fig. 14 shows the mainlobe of a beam and the dotted shaded
region represents its HPBC ellipse. ǔo, ǔ

1, ǔ2 correspond to
unit vectors in the direction of main beam, vertex and co-vertex
of the HPBC where, ǔ = [u, v,

√
1− u2 − v2] is the unit vector

towards directional cosine u = [u, v]. These can be expressed
as,

ǔo =

⎡

⎢
⎣

0

0

1

⎤

⎥
⎦ , ǔ1 =

⎡

⎢
⎣

sinϑ cosφmax

sinϑ sinφmax

cosϑ

⎤

⎥
⎦ , ǔ2 =

⎡

⎢
⎣

sinϕ cosφmin

sinϕ sinφmin

cosϕ

⎤

⎥
⎦

(24)

where φmax, φmin are perpendicular azimuthal angles and ϑ, ϕ
are the maximum and minimum beamwidth angles subtended
from the major and minor axis of this ellipse to the mainbeam.

BWmax = ϑ =

(
360

π

)

cos−1 (ǔoǔ1) (25)

BWmin = ϕ =

(
360

π

)

cos−1 (ǔo.ǔ2) (26)

Substituting the major and minor axis from (24) in (23), we
obtain

λ1 sin
2 ϑ =

N

2k2
R(0)⇒ sinϑ ≈ BWmax ∝ 1/

√

λ1

λ2 sin
2 ϕ =

N

2k2
R(0)⇒ sinϕ ≈ BWmin ∝ 1/

√

λ2

That is, the beamwidths along extremal directions are inversely
proportional to the square roots of the eigenvalues of DTD.

Fig. 15. The Subarray module and its two possible poses. Golden section are
copper patch antennas on the green colored chip.

Relation to CRB: Using (14), the error covariance matrix is
lower bounded by

Rε ≥ CRB = J−1F =
N

2k2γ

(

DTD
)−1

=
N

2k2γ

(
1

λ1
p1p

T
1 +

1

λ2
p2p

T
2

)

(using (λ2 ≥ λ1))

Using Appendix A, the MSE can be lowerbounded by

MSE ≥ CRB =
1

2
tr(J−1F ) =

N

4k2γ

(
1

λ1
+

1

λ2

)

=
N

4k2γ

(

sin2(ϑ) + sin2(ϕ)
)

∝ (BWDoA)2

SNR

where BWDoA =
√

BW2
max + BW2

min =
√

ϑ2 + ϕ2 is defined
as MSE beamwidth (sin θ ≈ θ for small angles θ).

APPENDIX C
VACANCY SEARCH OPERATOR T

Our reference subarray module shown in Fig. 15 occupies
space in addition to antenna elements. In order to keep element
polarizations aligned, these modules can be placed in either
up (0◦) or down (180◦) pose. We outline a procedure to list
the vacant gridpoints Vi = T(Cn

i ) where the new subarray can
be placed without overlapping with already placed dormant
subarrays at Cn

i . We define the subarray state as the center c
of the element pattern and its pose ν, since vacancies depend on
both parameters.

c̃ = {c, ν}∀c ∈ Cn
i , Vi

The pose variable ν ∈ {νu, νd, νf} denotes whether subarray
can be placed in up only (νu), down only (νd) or free pose (νf ,
either up or down) at the location c. For a given set of dormant
subarray states, C̃

n

i we identify all vacant states Ṽi for placing
the new subarray. Once a new subarray is placed, the states of
all dormant subarrays are updated (e.g., a free pose may switch
to an up pose if the down pose becomes infeasible).

APPENDIX D
PERTURBATION OF ARRAY

In order to design a bin size for pruning array configurations,
we analyze the effect of perturbing the location of a single
array element on the eigenvalues of the array covariance matrix.
Consider a small perturbation υ = [υx, υy] added to ith array
element position: d̄i = di + υ. The covariance for the perturbed
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array is

ΣD̄ =
(

DTD + υTυ + 2dT
i υ
)

/N = ΣD + G + 2H
where

G =
1

N

[

υ2x υxυy

υxυy υ2y

]

, H =
1

N

[

υxdxi υxdyi

υydxi υydyi

]

Using Weyl’s inequality [28] for real symmetric matrices, the
eigenvalue perturbation is bounded as

|λ̄i − λi| ≤ ‖G + 2H‖2 ≤ ‖G‖2 + 2 ‖H‖2
≤ ‖G‖F + 2 ‖H‖F

The frobenius norms of G,H are

‖G‖F =
(

υ2x + υ2y
)

/N

‖H‖F = Ri

√
(

υ2x + υ2y
)

/N

where Ri =
√

d2xi + d2yi is the distance of the ith element from

the array center. Hence, the overall variation of eigenvalues with

variation Δe =
√

(υ2xi + υ2yi) of the ith element is

|λ̄i − λi| ≤ (2Ri +Δe)

N
Δe (27)

Thus, the eigenvalues are more sensitive to perturbations in the
locations of elements further from the center. For perturbations
within one grid size used in our placement search algorithm,
the eigenvalue of the subarray center covariance can vary at

most by (2Ri+
√
2Δg)

Ns

√
2Δg , and we use this as a guideline for

discretizing the eigenvalues for removing geometrically similar
configurations.

APPENDIX E
ALGORITHM COMPLEXITY

The number of operations at the nth iteration of Algorithm 1
is given by

Tn = |Ĉn+1| =
Ns−1∑

n=1

|Cn|
∑

i=1

|Vi| ≤ |G||Cn| (28)

where Cn denotes the set of leaf nodes at the nth level of prefix
tree, and |Vi| is the number of vacancies for the ith leaf node. The
vacancies are a subset of a grid with cardinality |G| = ( 2Rmax

Δg
)2

where Rmax is the radius of the aperture and Δg is the grid
resolution.

The maximum number of array configurations (which cor-
respond to leaves of the prefix tree) in any given iteration is
bounded by the maximum number of unique triplets (λ1, λ2, ψ),
which can be expressed as follows:

|Cn| ≤ |Cn
max| =

λmax
1

τmin

λmax
2

τmin

ψmax

τmin
(29)

where λmax
1 , λmax

2 , ψmax represent the maximum value of each

parameter and τmin =
2Δ2

g

Ns
is the minimum bin resolution (using

(27)). The eigenvalues of the array covariance are bounded by

Fig. 16. Complexity over 12 iterations of Prefix Tree Dictionary Search.

the maximum aperture radius λmax
1 < R2

max, λ
max
2 < R2

max and
the array separation variance can be bounded as

ψ = E

[

(lij − E[lij ])
2
]

≤ R2
max (∵ 0 ≤ lij ≤ 2Rmax)

Substituting these upper bounds in (29) and (28), we obtain

|Cn
max| ≤

(
R2

max

τmin

)3

= N3
s

(
R2

max

2Δ2
g

)3

=
N3

s |G|3
29

Tn ≤ |G||Cn
max| ≤

N3
s |G|4
29

Note that the upper bound derived here is conservative, as
can be readily verified through simulations. Fig. 16 shows the
time and space complexity bounds over Ns = 8 iterations for
a sample run of the algorithm with |G| = 1600 grid points. We
observe that in practice, computational complexity increases up
to Ns = 4 but starts reducing afterwards. The latter is because
of the reduction in the number of vacancies in the aperture as
the space occupied by the existing subarray modules increases.
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