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Abstract—We investigate the problem of localizing multiple
targets using a single set of measurements from a network of
radar sensors. Such “single snapshot imaging” provides timely
situational awareness, but can utilize neither platform motion,
as in synthetic aperture radar, nor track targets across time, as
in Kalman filtering and its variants. Associating measurements
with targets becomes a fundamental bottleneck in this setting.
In this paper, we present a computationally efficient method
to extract 2D position and velocity of multiple targets using
a linear array of FMCW radar sensors by identifying and
exploiting inherent geometric features to drastically reduce the
complexity of spatial association. The proposed framework is
robust to detection anomalies, and achieves order of magnitude
lower complexity compared to conventional methods. While our
approach is compatible with conventional FFT-based range-
Doppler processing, we show that more sophisticated techniques
for range-Doppler estimation lead to reduced data association
complexity as well as higher accuracy estimates of target positions
and velocities.

Index Terms—Sensor Networks, Aggregation, Approximation
Algorithms, Single Snapshot Localization

I. INTRODUCTION

RECENT advances in low-cost design and fabrication en-
able the potential application of high-accuracy millimeter

wave (mmWave) radar sensors to a variety of commercial
sectors, including automotive, drones and robotics [1], [2]. The
large available bandwidths enable high range resolution, while
the small wavelength enhances Doppler and microDoppler
resolution. In this paper, we explore the utility of a network
of such sensors in providing timely situational awareness for
highly dynamic environments, by considering estimation of the
kinematic state of the scene (i.e., the positions and velocities
of targets) via a single set of measurements obtained by a
network of sensors. We do not rely on tracking targets across
time, or on platform motion to synthesize larger apertures.

The specific problem we consider is that of localizing
multiple targets in a 2D scene using a linear array of radar
sensors. Figure 1 shows a scenario with two targets being
observed with a linear array of four spatially separated sensors
positioned along x-axis. Each sensor collects the relative
range and Doppler observations for the targets in the scene.
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Since these observations are not ordered a priori, each range-
Doppler measurement must first be associated with a target,
and then the measurements associated with a given target
from multiple sensors can be used to estimate its position
and velocity. Since the number of possible associations grows
exponentially in the number of sensors, it is critical to develop
efficient algorithms for spatial association. It is also important
to build in robustness to missed detections, since millimeter
waves can be easily occluded by objects in the scene.
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Fig. 1. 2D System model with a linear array of radar sensors placed on
x-coordinates, [l1, l2, l3, l4]. The kinematic states z1,z2 of two targets are
to be estimated using the unordered range and doppler observations from the
sensors.

A. Contributions

Our goal is to develop robust and computationally efficient
algorithms for single snapshot spatial data association. The
main contributions of our study are as follows:
(1) We examine the geometric relations between instantaneous
range, Doppler, and sensor locations, and show that features
obtained via those geometric relations simplify the association
problem. Specifically, we observe and exploit linear relation-
ships between functions of the range-Doppler observations for
a target across the linear array of sensors.
(2) We provide a low-complexity solution for the association
problem by introducing a new graph-search based algorithm
which prunes the set of feasible associations based on geomet-
ric relationships. In particular, our proposed algorithm consid-
ers a cost function based on the linear geometric relationships
together with the triangle inequality constraint for the range
observations at pairs of sensors and eliminates a significant
number of possible associations. In addition, our approach
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accounts for detection anomalies such as missed detections
and false alarms while reducing the complexity.
(3) We compare our proposed algorithm against conventional
algorithms in the literature and evaluate performance in terms
of localization accuracy, cardinality errors, robustness, and
complexity. Also, we show that using an enhanced accuracy
estimation algorithm (i.e., NOMP [3]) instead of conventional
FFT-based approach improves localization accuracy and re-
duces association complexity as the number of targets and
sensors increases.

B. Related Work

The majority of prior work addresses temporal data as-
sociation for tracking, relying on the temporal continuity of
target state to assist in associating observations across multiple
frames. While the problem of spatial association studied in this
paper has received relatively less attention, we provide a brief
overview of conventional approaches in the literature that can
be extended for the spatial problem.

The association problem between a pair of sensors can be
optimally solved using the well-known Hungarian algorithm
[4]. However, a naive approach to extend this to multiple
sensor case by factorizing into pairwise (2D) association over
consecutive sensors does not work well in the presence of
detection anomalies such as miss, false alarm, clutter, and
close-target interactions [5].

The multi-sensor association problem can be formulated
as the Maximum A-Posteriori (MAP) estimation of most
likely chain of observations across sensors. In order to solve
this problem, a graphical model is defined, where a node
represents sensor detection and an edge represents pairwise
association likelihoods [6]. The association between the sen-
sors is obtained by solving the Minimum Cost Maximum
Flow (MCF) problem over this graph. A variety of methods
such as Linear Programming [7], Dynamic Programming [8],
[9], and push-relabel maximum flow [6] has been proposed
to efficiently solve the MCF problem. Although those meth-
ods solve the optimization in polynomial time, they require
specialized mechanisms such as expansion of observation
set over successive iterations to resolve detection anomalies.
Moreover, the complexity of the MCF problem grows quickly
as O(N3 logN), where N is the number of sensors [6]. In
comparison with prior work, our approach reduces complexity
by leveraging the high accuracy of sensor observations and
their geometric properties.

Probabilistic approaches such as the gated Nearest Neighbor
(NN) [10] method sequentially associate observations across
the sensors. At each sensor, each observation is associated
with its closest match to the state predicted by the chain
of observations from the past sensors. However, using only
single most likely observation to form association is prone
to clutter and anomalies in noisy scenarios. Also, a single
association error can cause significant contamination in final
state estimate. This problem is well known in the literature on
Simultaneous Localization and Mapping (SLAM), and various
improvements such as Multiple Hypothesis Testing [11], K-
best assignment [12], and JPDAF [10] have been proposed.

In contrast, we propose an alternative search approach based
on geometric fitting criteria which does not depend on such
probabilistic models and avoids the contamination of state.

Bottom up approaches based on grid search over a set of
candidate target states have been suggested in the literature
[13]. In [14], an approach based on enumerating all possible
candidates followed by pruning and merging shows promis-
ing results. Randomized adaptive search procedures such as
random consensus sampling (RANSAC) [15], Interpretation
Tree [16], Joint Compatibility Branch and Bound [17] have
been shown to address the detection anomalies. These methods
utilize a suitably defined metric to check the consistency
of a set of associated observations and employ branch and
bound type search strategies to reduce the search complexity.
Our graphical approach also uses similar pruning techniques
to perform the graph search, but with the additional use of
geometric constraints and a geometric fitting error metric for
guiding the search.

Outline: The rest of the paper is organized as follows. In
Section II, we introduce the association problem in the single
snapshot localization setting. In Section III, our graph associ-
ation algorithm is presented. Then, the proposed algorithm is
evaluated over different system parameters in Section IV and
Section V concludes the paper.

Notation: a,a, A,A represent scalar, vector, matrix and set
respectively. We use [.] to construct vector, matrix and {.}
to construct set. ×,∪,∩ denote the cartesian product, union
and, intersection of two sets and ∅ denotes a NULL value.
n(A) represents the number of non-empty elements in set A.
◦ denotes element-wise multiplication between vectors. AT

denotes transpose of matrix A and ∧ denotes logical “and”
operator.

II. PROBLEM DESCRIPTION

A. System Model

Consider a linear array of NS radar sensors in a two-
dimensional (2D) scene with NT targets as in Figure 1.
Without loss of generality, we assume that the sensor array
is static and located along x-axis and centered at origin. The
absolute kinematic state of the targets can be obtained by using
the target location relative to this sensor array along with its
own odometer information.

The kinematic state (i.e., instantaneous position and velocity
information of all targets) of the scene is given by

Z = {zk}NT

k=1

where zk = (xk, yk, vkx, v
k
y ) is the kinematic state of target k

with an instantaneous velocity of (vkx, v
k
y ) at position (xk, yk).

The range-Doppler of target k observed at sensor i, can be
expressed in terms of the desired kinematic state as follows,

rki =
√

(xk − li)2 + (yk)2, dki =
(xk − li)vkx + ykvky

rki
.

(1)

where li is the x-coordinate of sensor i. We denote this non-
linear mapping as (rki , d

k
i ) = Ti(zk).
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B. Single Snapshot Localization

In order to extract range and Doppler information of target
k, each sensor i uses the signal (i.e., mobs

i (t)) reflected back
from the scene in monostatic mode. In this study, we focus
on localization of the scene using a single snapshot. For that
reason, the kinematic state of the scene is assumed to be
constant for a certain time interval and the scene localization is
performed based on the range and Doppler information gath-
ered during that time interval. Based on those, the Maximum
Likelihood Estimator (MLE) for the scene including all NS
sensors can be expressed as,

ẐML = argmax
Z

Ns∏
i=1

L
(
mobs
i |Ti(Z)

)
(2)

where mobs
i corresponds to the observed signal in a single

snapshot and L
(
mobs
i |Ti(Z)

)
is the conditional log likelihood

of the observed signal for scene Z .
The optimization problem in (2) is difficult in general since

the number of targets (i.e., NT ) is not known and a brute force
search for Z incurs exponential complexity in the number of
targets; that is, n(D(z))NT for a grid D(z). In addition, the
observations contain a variety of anomalies such as clutter,
missed detections, and false alarms, which further complicates
the solution.

In order to facilitate the solution of the problem in (2), the
problem is divided into two stages as follows:

1) Estimation: The Range-Doppler pairs of Mi ≤ NT non-
occluded targets are estimated from received signal mobs

i at
sensor i using efficient algorithms proposed in the literature
[18]. The estimate at sensor i for kth target can be modeled
as follows,

(rki ) = (rki )true + wRi + b̃ki , (3a)

(dki ) = (dki )true + wDi + b̄ki (3b)

where wRi ∼ N (0, σ2
ri) and wDi ∼ N (0, σ2

di
) denote indepen-

dent Gaussian distributed noises with zero mean and b̃ki and
b̄ki denote the bias errors introduced due to proximity with any
other Mi− 1 targets in the scene. The noise variance depends
on estimation accuracy at the given SNR which, in turn,
depends on target radar cross section (RCS), path loss, and
antenna directivity. For simplicity, we assume equal received
signal power across all targets in the scene.

We denote the set of estimated range-Doppler pairs at

sensor i by Θi = {
⋃Mi

k=1 θ
k
i } where θki =

[
(rji ), (d

j
i )
]T

. It
is important to note that the superscript of estimated range-
Doppler pairs θki is different from the true target index since
we do not know the true target index that the observation at
the sensor belongs to.

2) Association problem: The estimation of kinematic state
Z requires the association of those un-ordered range-Doppler
pairs, Θi, collected across all sensors. An association chain
is defined as the ordered set of range-Doppler observations,
A : {{θi}NS

i=1|θi ∈ Θ̃i} which is constructed from the NULL
augmented sets; that is, Θ̃i = Θi ∪ ∅. θi = ∅ corresponds
to the NULL state and represents the occurrence of missed
detection at sensor i.

The spatial association problem can be formulated as the
following maximum a posteriori (MAP) estimation problem,

A∗ = argmax
A⊂Θ̃1×···×Θ̃NS

logP (A)P (Θ|A) (4)

such that Ai ∩Aj = ∅ ∀i 6= j, n(Ak) ≥ 2

where Θ =
⋃NS

i=1 Θi denotes the set of all range-Doppler ob-
servations, A = {A1,A2, · · · } denotes a subset of association
chains chosen from the set of all possible potential chains,
Θ̃1×Θ̃2×· · · Θ̃NS

. The optimal solution A∗ consists of the set
of chains which jointly maximizes overall log likelihood while
the constraints ensure that no two chains share a common
observation and each chain contains at least two observations.

When the targets are well-separated, the bias terms in (3a)
and (3b) vanish and the likelihood for the individual targets
becomes independent across multiple targets. In this case, the
log likelihood in (4) simplifies to

logP (A)P (Θ|A) =
∑
A∈A

logP (A) + logP (Θ|A)

where P (Θ|A) =
∏NS

i=1 P (Θi|A) is the probability of de-
tecting the range-Doppler pairs which can be modeled by a
Bernoulli distribution,

P (Θi|A) =

{
α , if target missed at sensor i ,Ai = ∅
1− α , else

where α denotes the probability of detection errors in (5) and
is set to nominal value α = 0.05 [6]. This model accounts
for the occurrence of both miss and false alarms across the
sensors in the likelihood, which is given by

P (Θ|A) = αNS−n(A)(1− α)n(A)

.
Also, P (A) is the likelihood of chain modeled using the

perceived range-Doppler pairs, (r̂i, d̂i) = Ti (ẑ) for a target
state ẑk predicted by the chain (see Section III-B2). By
ignoring the constant terms which preserve the MAP solution,
we define the normalized negative log likelihood as follows,

L(A) =
∑
θi∈A

(
(r̂i − ri)2

σ2
r

+
(d̂i − di)2

σ2
d

)
+ n(A) log

α

1− α
(5)

where θi = [ri, di]
T is the observation from ith sensor in

association chain A and σ2
r and σ2

d are the nominal variance
terms for range and Doppler, respectively (see Appendix A
for details). The first term in (5) denotes the squared error
between the estimated and observed range-Doppler pairs in
the chain while the second term penalizes the selection of
smaller chains which prevents formation of duplicate chains
for the same target. Hence, the association problem is reduced
to the following constrained minimization problem:

A∗ = argmin
A⊂Θ̃1×···×Θ̃NS

∑
A∈A

L(A) (6)

such that Ai ∩Aj = ∅ ∀i 6= j, n(A) ≥ 2
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The joint minimization problem over all potential association
chains in (6) is difficult in general. For that reason, we
use an iterative approach where the most likely chains of
observations are identified and removed from observation set
Θ sequentially,

argmin
A∈Θ̃1×···×Θ̃NS

L(A) such that n(A) ≥ 2 . (7)

Without any prior knowledge of association between the
nodes, the number of potential chains Θ1×Θ2×· · ·ΘNS

still
grows exponentially. However, the formulation in (7) enables
the utilization of various network optimization methods to
identify the most likely chain. Once the associated chains
of range-Doppler observations are found across sensors, the
kinematic state of the scene can be easily obtained by solving
the inverse kinematic problem [x̂, ŷ, v̂x, v̂y] = T−1(A) using
Gauss-Newton algorithm [18].

III. GRAPHICAL ASSOCIATION

In order to solve the association problem in (7), we for-
mulate the spatial association problem using graphical models
and present our low-complexity graphical search method to
obtain association chains efficiently via geometric relations.

A. Graph Generation

To begin with, we define a target-based graph to perform
data association with following elements:
• Node θki represents the kth range-Doppler pair at sensor
i. Nodes for a given sensor are arranged along a single
column of the graph as shown in Figure 2.

• Edge eklij = [θki ,θ
l
j ] denotes the linkage between pairs of

observation across sensor i and sensor j, which can cor-
respond to a feasible target zklij referred to as “candidate”
location.

• Chain Aj is represented by the sequence of two or more
nodes spanning distinct sensors, which is associated to a
single target, ẑj .

Fig. 2. Target-based observation graph for a scene with 3 targets and 4
sensors. Sensors 1, 2 observe all 3 targets in different orders. Sensor 3 misses
the observation of target state z2 while sensor 4 contains a false observation.
Desired association chain, A is shown by the shaded set of nodes.

Geometric Constraint: A significant portion of the edges
can be easily discarded in the graph generation phase by
using the following geometric constraint on target’s range (for
noiseless case),

CG(eij) : (ri − rj < lij) ∧ (ri + rj > lij) (8)

where lij = |li − lj | represents the separation between sensor
i and sensor j.

Graph G = (V,E) is initialized with vertices for all range-
Doppler pairs V = {Θi}NS

i=1 and edges E between any two
consecutive nodes that satisfy condition CG(ek,li−1,i),∀k ∈
[1,Mi−1],∀l ∈ [1,Mi] for all i ∈ {2, . . . , NS} given in (8).

B. Spatial Association using Geometric Features

In this subsection, we describe the solution of the associ-
ation problem presented in (7) using graph G by exploiting
geometric relations between range, Doppler, and sensor ge-
ometry. For clarity of exposition, we focus on the association
procedure of a single target z = [x, y, vx, vy] and, therefore,
drop the superscript k for the sake of simplicity.

1) Geometric Relations: The range of target observed at
ith sensor is given by

ri =
√

(x− li)2 + (y)2 . (9)

The Doppler component is the rate of change of range and it
is given by,

di = ṙi =
(x− li)vx + yvy

ri
ridi = (x− li)(vx) + yvy . (10)

For a linear array of sensors, the range and Doppler measure-
ments for a target satisfy the following relations based on (9)
and (10):

r2
i = r2

j − 2x(li − lj) + (l2i − l2j ) (11a)

ridi = rjdj − (vx)(li − lj) (11b)

where ri (rj) and di (dj) are the range and Doppler estimated
at the ith (jth) sensor, respectively. li (lj) is the x-coordinate
of ith (jth) sensor. (9) and (10) indicate that for the noiseless
setting, the range-Doppler products and range squared are
linear with respect to target’s velocity and position at x-
coordinate, respectively. Therefore, the correct associations
can be identified by fitting the observations to those geometric
relations.

2) State Prediction and Fitting Error: The presence of
noise in (ri, di) causes high error in these geometric relations
due to the quadratic dependence. An estimate of target state
parameters x̂, v̂x can be obtained by minimizing that error
between observed and predicted range and Doppler values. Let
q1 = [ridi|(ri, di) ∈ A] and l = [li|θi ∈ A] denote the vector
of range-Doppler products using observations in chain A and
the vector of corresponding sensor x-coordinates, respectively.
Predicted fit q̂1 can be expressed using the geometric relation
in (11b) as follows:

q̂1 = −vxl+ κ11 = Hs1
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where H = [l,1], s1 = [−vx κ1]
T , and κ1 is a constant.

Then, the least squares estimate for ŝ1 is obtained as

ŝ1 = argmin
s1

‖q1 −Hs1‖2 (12)

= (HTH)−1HTq1 .

Therefore, the least square estimate is obtained as v̂x =
uTq1 where u = −H(HTH)−1e1 and e1 = [1, 0]T .

Similarly, let q2 =
[
r2
i |(ri, di) ∈ A

]
denote the vector of

range squared observations in chain A, predicted fit q̂2 can be
expressed using the geometric relation in (11a) as follows:

q̂2 − l ◦ l = −2xl+ κ21 = Hs2

where s2 = [−2x κ2]
T and κ2 is a constant. The least squares

estimate of x̂ is obtained as

ŝ2 = argmin
s2

‖q2 − l ◦ l−Hs2‖2 (13)

= (HTH)−1HT (q2 − l ◦ l) .

Hence, we obtain x̂ = uT (q2 − l ◦ l)/2.
The remaining state parameters (i.e., ŷ and v̂y) are obtained

using the geometric relations in (9) and (10) as

ŷ =

√
1

n (A)

∑
θi∈A

(r2
i − (x̂− li)2) ,

v̂y =
1

n(A)

∑
θi∈A

ridi − (x̂− li)v̂x
ŷ

.

The normalized geometric fitting error of a chain A can be
computed using these estimates as follows:

F (A) =
‖q1 − q̂1‖2

η1
+
‖q2 − q̂2‖2

η2
(14)

=

∥∥(I −H(HTH)−1HT
)
q1

∥∥2

η1

+

∥∥(I −HT (HTH)−1H
)

(q2 − l ◦ l)
∥∥2

η2

(15)

where η1 and η2 are normalization constants that are set based
on CRB (see Appendix B for details) and (15) is obtained
by substituting the predicted fits into (14). It is important to
note that the error in (15) is additive over the observations
in chain A. Therefore, the extension of the chain cannot
reduce the fitting error. In other words, F (A) is monotonically
non-decreasing over the length of chain A. For that reason,
the fitting error provides a simple measure of the geometric
consistency of a chain, which can be used to traverse the graph
and extract the chains efficiently.

3) Geometric Association: We now present a graph search
procedure which obtains the associated chains by minimizing
geometric fitting error F (A) in (15) and negative log likeli-
hood L(A) in (5). We apply the geometric relations by adding
constraints on the desired chain, A to the optimization problem
in (7) as follows,

min
A∈Θ̃1×···×Θ̃NS

L(A)

such that n(A) ≥ γ, (16a)

F (A) < τ
n(A)
f (16b)

The constraint in (16a) restricts the number of missed obser-
vations to be less than NS − γ and the constraint in (16b)
only allows chains with good geometric fit to be selected. In
order to provide a solution for the optimization problem in
(16), we perform Depth First Search (DFS) over the graph
generated in Section III-A to extract the chains, where those
additional constraints help in reducing the search complexity.
Our complete Spatial Association using Geometry Algorithm
(SAGA) is outlined in Algorithm 1. Here is a brief description:

1) We start the graph search by setting γ = NS so that
only chains that include observations from all sensors
are extracted. For that reason, we consider a graph
having edges between consecutive sensors only. This
helps to reduce the chains encountered during initial
DFS procedure (see Appendix C for details).

2) The DFS is guided by geometric fitting error F (A).
After each node is visited, the fitting error of candidate
chain is calculated and the chain is ignored if it has a
fitting error higher than predefined threshold τNS

f . Since
the fitting error is non-decreasing over the length of the
chain, most of the candidate chains are eliminated before
reaching at the end of the graph, which reduces the com-
plexity further. Details of DFS are shown in Appendix D.
At the termination of the DFS, the corresponding chain
of nodes is added to solution A† if it satisfies all the
constraints in (16) and the negative log-likelihood of the
association chain is below a predefined threshold (i.e.,
L(A) < τ

n(A)
l ). The nodes belonging to the selected

chains are removed from the graph together with their
corresponding edges to keep subsequent chains disjoint.

3) In order to deal with missed detection cases at sensors,
the minimum chain length constraint (i.e.,γ) is relaxed in
steps upto robustness level ρ. Due to that relaxation, the
graph includes not only the edges between consecutive
sensors but also the edges among the nodes that skip
over h consecutive sensors. Those edges are called Skip-
h edges where h = NS−γ. Then, the DFS procedure is
repeated for different minimum chain length constraints.
Consequently, in this procedure, NULL states are taken
into account and the generated chain does not include
any observation from a sensor that misses the corre-
sponding target by skipping over the observations of that
sensor via Skip-h edges. In addition, the DFS procedure
implicitly accounts for NULL state in the beginning and
end of a chain by starting searching from different nodes
in consideration of minimum chain length constraint.

4) The thresholds (i.e., τf and τl) for the geometric fitting
error and the likelihood depend on length of the chain
n(A) and their initial value is set based on CFAR
criteria (see Appendix B for details). Using a tight initial
threshold τf for F (A) restricts the number of branches
to be explored at each node to a smaller set. This reduces
the initial complexity of DFS while allowing only a
subset of association chains A† ⊂ A∗ to be found. The
thresholds are later relaxed by a factor of β > 1 to allow
the observations contaminated with noise to be selected.
The relaxation is stopped when no further chains with
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length n(A) ≥ NS − ρ exist in the graph.

Algorithm 1 Spatial Association using Geometric Assistance
Input: Graph G, Robustness level ρ

1: INITIALIZE Chains A† = ∅, τ = [τf , τl]init
2: repeat
3: REMOVE all Skip edges
4: for h = 0 to ρ do
5: Set minimum chain length: γ = NS − h
6: ADD SKIP-h EDGES TO GRAPH G

7: for v ∈ V do
8: DFS from node v: A← GA-DFS(v, γ, τ )
9: if Valid Chain, A is found then

10: A† ← A

11: Remove chain from graph V = V− {A}
12: end if
13: end for
14: end for
15: Relax thresholds: τ ← βτ
16: until Chains with length n(A) ≥ NS − ρ exists in G

Output: Selected chains A†

Robustness: During chain length relaxation, a Skip edge is
added between the observations across sensor i and sensor q
if

1) Observations θi and θq satisfy the geometric constraint
CG(eiq) in (8), and,

2) The target state predicted by θi and θq differs by a
predefined threshold τz from the ones predicted by using
all observations on the paths that connect θi and θq .

CS(eiq) :
∥∥ẑAp

− ẑiq
∥∥ > τz ,∀Ap : {θi,θq} ∈ Ap

(17)

where Ap is in the form of Ap = {θi,θj , · · · ,θq} with
θi and θq at the edges of the path, τz is set based on
CRB (see Appendix E), ẑiq indicates the predicted target
state based on θi and θq , and ẑAp

shows the predicted
target state using the observations in Ap.

Enforcing the condition in (17) avoids the formation of
multiple chains corresponding to the same target and avoids
unnecessary increase in the number of edges. The number of
skip connections introduced in the graph is controlled by the
robustness level; that is, 0 ≤ ρ ≤ (NS − 2), which sets the
maximum number of missed detections that can be tolerated
across the sensor array. In this way, addition of such edges
provides a flexible mechanism to provide robustness against
missed detection in the sensors while keeping search space in
control.

Complexity: The non-decreasing property of F (A) is used
to discard unlikely chains in the early stages of DFS. This
allows for rapid extraction of associations without requiring
search over all possible chains in the graph. The minimum
track length threshold, γ, is reset to its maximum value
after each relaxation. Therefore, the skip edges in the graph
can be removed at the end of the inner loop to reduce
search complexity further. Therefore, our approach exploits the
geometric structure of observations across multiple sensors to
reduce search complexity.

C. Spatial Association using Edge-based State Likelihoods

Before evaluating the performance of our main algorithm,
we describe an iterative search method, which relies on the fact
that an approximate kinematic state estimate can be derived by
using two connected observations in a graph. In other words, a
state estimate can be obtained for each edge in a graph, which
is a part of the association chain A. Therefore, the search space
for the association problem in (7) can be reduced to the set of
edges.

The likelihood of a candidate ze corresponding to an edge
e ∈ E can be computed as,

L(ze) =

NS∑
i=1

[
min
θ∈Θi

(
(r′i − ri)2

σ2
r

+
(d′i − di)2

σ2
d

)]
(18)

where [r′i, d
′
i] = Ti(ze) is the perceived range and Doppler at

sensor i for target state ze. Then, the most likely candidate
can be selected by evaluating (18) over all edges and choosing
the one that achieves the minimum negative log likelihood;
that is, z∗ = ze∗ for e∗ = argmine∈E L(ze). Then, the
observations associated with z∗ can be identified via the
following neighborhood constraint:

N(z∗) =

NS⋃
i=1

{(ri, di)|(ri − r∗i ) ≤ δr ∧ (di − d∗i ) ≤ δd}

where [r∗i , d
∗
i ] = Ti(z

∗) are the perceived range-Doppler at
sensor i and δr and δd are the range and Doppler resolution
parameters defined in Appendix A. The algorithm carrying out
this Spatial Association using Edge-based State Likelihoods
(SAESL) procedure is presented in Algorithm 2.

Algorithm 2 SAESL Algorithm
1: INITIALIZE GRAPH WITH OBSERVATIONS Θ: G = (V,E)
2: AUGMENT GRAPH with skip edges
3: for h = 0 to ρ do
4: ADD SKIP-h EDGES TO GRAPH G

5: end for
6: INITIALIZE Z = ∅
7: while E 6= ∅ do
8: FIND MOST LIKELY CANDIDATE, Z← z∗

from edge z∗ = argmine∈E L(ze)
9: REMOVE ALL VERTICES EXPLAINED BY z∗,

V← V−N(z∗)
10: UPDATE EDGES E

11: end while
12: RETURN Selected candidates Z

Since all edges in the graph are checked while selecting the
candidates, this approach exhibits higher complexity than our
proposed algorithm. Moreover, evaluation of state likelihood
L(ze) in (18) is more expensive than evaluation of chain
likelihood L(A) in (5) as it involves a minimization over all
other observations. In Section IV, we use this algorithm as a
benchmark against our proposed algorithm.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-
posed spatial association algorithm, SAGA against the SAESL
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algorithm through various performance metrics. We consider
a linear array of NS FMCW radar sensors each of which
collects range and Doppler observations from the scene. The
FMCW radar system parameters are set based on the ones that
are used in typical low cost automotive systems at mm-Wave
frequencies [19] where range and Doppler resolutions are
δr = 0.3 m and δd = 0.5 m/s respectively. In the simulations, a
single snapshot of the scene is considered with multiple targets
having equal received SNR at all sensors. The kinematic
states of targets are randomly selected based on uniform
distributions x ∼ U(−8m, 8m), y ∼ U(2m, 12m), vx ∼
U(−10m/s, 10m/s), vy ∼ U(−10m/s, 10m/s).

It is important to note that when range and Doppler separa-
tion between two targets gets small, the estimation algorithm
either provides a merged estimate or results in detection
anomalies such as miss and false alarm. In order to differ-
entiate the scenes with such estimation errors due to range-
Doppler proximity, we consider two different scenarios with
two different scenes. The well-separated scene is generated
by enforcing a minimum separation between the range and
Doppler of the targets at all sensors. The adverse scene does
not have such constraints and contains additional missed detec-
tion anomalies by randomly removing measurements from the
sensors with probability Pmiss. Unless stated otherwise, the
nominal values of system parameters are presented in Table I.

TABLE I
SIMULATION PARAMETERS

Number of targets NT = 20
Number of radar sensors NS = 6

SNR −10 dB
Sensor Array Width LW = 4 m
Max range, Doppler 19.2 m, ±16 m/s

Simulated misses Pmiss = 0.05
Robustness Level ρ = 4

A. Localization Accuracy

In this subsection, we analyze the localization accuracy
of kinematic state estimates obtained using associated sensor
observations. This depends on the accuracy of underlying
range-Doppler estimates. The position and velocity estimation
errors for state estimates Ẑ are computed as follows:

Dp(Ẑ) =
1

n(Ẑ)

∑
ẑ∈Ẑ

min
z∈Z true

dp(z, ẑ)2

Dv(Ẑ) =
1

n(Ẑ)

∑
ẑ∈Ẑ

min
z∈Z true

dv(z, ẑ)2

where dp(z, z′) =
√

(x− x′)2 + (y − y′)2 and dv(z, z
′) =√

(vx − v′x)2 + (vy − v′y)2 are the errors in position and
velocity, respectively. The CRBs for Range-Doppler and
Position-Velocity estimates are evaluated in Appendix A and
Appendix E, respectively. Figure 3 shows the Root Mean
Square Error (RMSE) in range-Doppler estimated at sensor
level for different number of targets in a well-separated case.
We observe that range-Doppler RMSE at individual sensors
achieves CRB at a SNR= −15 dB threshold. The RMSE for
position-velocity estimates obtained from sensor observations
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Fig. 3. Range-Dopper estimation accuracy and Position-Velocity estimation
accuracy versus SNR. The position-velocity RMSE converges to the CRB
bound as SNR increases and the SNR at which this convergence occurs is
called as SNR threshold. The SNR threshold provides an indicator for the
localization performance when multiple targets, NT > 1 are present.

also achieve their CRB at the same SNR threshold. This shows
that association using SAGA does not introduce any additional
errors to the localization process when SNR is above this
threshold. However, the RMSE increases sharply below the
SNR threshold due to the difficulty in associating noisy range-
Doppler pairs. Therefore, we use nominal SNR = −10 dB
in our simulations to perform further analysis.

Cardinality Error and OSPA: In the case of multiple
targets, the number of valid targets identified by the system is
also an important performance metric. An estimated target ẑ
is classified to be valid only if it lies within a region “close”
to the true targets, minz∈Z true ‖ẑ − z‖ < d̄ where d̄ sets the
maximum error threshold. The cardinality error is defined
as the difference between actual number of targets and the
number of estimated target; that is, NT −Ne = |Z true| − |Ẑ|.
That error is caused due to the detection anomalies in the
estimation algorithm at sensor level as well as during the
association stage. In such cases, the localization accuracy by
itself does not capture the true performance of the system.
Therefore, we use the OSPA metric [20], which combines the
localization and cardinality error into a single performance
metric and is given by,

OSPA(Ẑ) =

√√√√ 1

n(Ẑ)

(
m∑
i=1

min
(
dc(ẑi), d̄

)2
+ |Ne −NT |d̄2

)

where m is the number of valid targets, Ne − NT is the
cardinality error and, dc(ẑi) is the localization error computed
relative to closest true target given as

dc(ẑi) = min
z∈Z true

dp(z, ẑi)
2 + dv(z, ẑi)

2 .
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Figure 4 shows the OSPA error along with the localization
and cardinality errors with increasing scene density in the well-
separated case. Both localization error and cardinality error
start to increase as the scene gets denser until a breaking
point where the cardinality error increases significantly. At
SNR=-15 dB, this breaking point occurs near NT = 17 for
SAGA whereas NT = 21 for SAESL algorithm. Notice that the
localization error is misleading beyond this point since it only
considers the errors in the reduced set of valid targets. Hence,
the OSPA metric effectively combines both quantities so that
it represents localization error only when scene is sparse and
cardinality errors when the scene is dense. We observe that
SAGA has slightly worse overall performance compared to
the SAESL as the number of targets increases. However, the
performance difference reduces as we increase SNR. More-
over, SAGA obtains the association with significantly lower
complexity than SAESL as we show in the next section.
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Fig. 4. Overall localization accuracy versus number of targets at SNR =
−15,−10 dB. The solid and dotted lines represent the performances of SAGA
and SAESL association algorithms, respectively.

B. Complexity Reduction

In this section, we analyze the computational savings
achieved by the proposed SAGA algorithm and provide com-
parison against traditional approaches. In order to effectively
compare the performance, we now consider adverse scenes
in which the sensor observations contain detection anomalies.

Figure 5 shows the graph truncation over the iterations of
the graph search with different miss probabilities for SAGA
and SAESL. When miss probability is low, SAGA rapidly
extracts all chains. As the missed detections increase, the
robust scheme automatically increases the number of iterations
by allowing the relaxation of constraints in DFS graph search.
On the other hand, SAESL always requires large number of
iterations.

SAGA provides robustness to the missed detections by
selectively adding skip edges to the graph. This mechanism
reduces the OSPA error in adverse scenarios at the expense
of more computational complexity. The level of robustness
can be tuned using parameter ρ based on the adversity of
the scene. Figure 5 also shows the estimation performance
for different robustness levels with increasing scene adversity
(i.e., increasing miss detections). OSPA error reduces with
higher robustness levels. However, low robustness level (e.g.,
ρ = 1) is sufficient to obtain good performance at typical
miss detection probability Pmiss < 0.05. Similarly, the higher
robustness level helps to reduce the cardinality errors when
the scene contains higher number of targets. The highest
robustness level is ρ = 4, which corresponds to the minimum
chain length constraint in (16a) with n(A) ≥ 2.
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Fig. 5. (Top) Graph size at end of each iteration of association algorithm for
different Pmiss. SAGA is denoted by solid line while SAESL is denoted by
dotted line. (Bottom) OSPA versus Pmiss with different robustness levels ρ

Runtime Comparison: We now compare the computational
complexity of our approach against SAESL. Computing the
number of operations that occur during the association pro-
cess is difficult since the number of chains visited depends
on a variety of factors such as the fitting error thresholds
and minimum chain length. However, given the same sensor
estimates for the simulated scenes, we compare the relative
complexities of SAGA against other methods in Figure 6
in terms of total number of operations of Floating Point
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operations (FLOPS) conducted during association and the total
runtime. We observe that SAGA exhibits an order of magnitude
lower complexity reduction compared to the SAESL algorithm.
Moreover, this improvement increases as the number of targets
increases, which highlights the advantage of our approach. In
addition, the increase in the robustness level of the proposed
algorithm (e.g., from ρ = 0 to ρ = 4) causes a slight increase
in complexity compared to the SAESL approach.

We also compare the complexity against traditional methods
such as gated Nearest neighbor filter (NN) and Minimum
cost flow (MCF). The NN association scheme [10] builds
the association chain by starting with a local kinematic state
estimate from a pair of sensor observations and sequentially
adding the nearest measurement from other sensors to update
this state. The MCF association scheme [6] identifies the most
likely set of chain by solving the minimum cost maximum
flows over the graph. The cost of each edge is set based on
its relative likelihood similar to our SAESL method. We use
an optimized implementation [21] of MCF for the comparison
purposes.

In order to compare the complexity of those algorithms,
we count the number of times that the primary objective
function (i.e., the likelihood cost in (7)) is computed during
the graph search procedure. Figure 7 provides that comparison
with increasing number of targets. Since the NN method is not
able to predict the correct chain due to the greedy criteria and
requires repeated search over the graph, the total complexity
of it approaches to the complexity of the SAESL algorithm as
the scene becomes dense. On the other hand, MCF algorithm
predicts the chains relatively well and its complexity lies
between our approach and NN.

Figure 8 shows the overall runtime of algorithms for an
increasingly denser scene. We observe that SAGA is faster
than the other methods by an order of magnitude. Since, the
FLOPS count is not available from those implementations,
we only compare the overall runtime which follows similar
trends as FLOPS count and provides a reasonable estimate of
algorithmic complexity.
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Fig. 6. Association complexity versus the number of targets averaged over
100 trials using nominal parameters with robustness levels ρ = 0 and ρ = 4.
Total number of FLOPS is denoted by blue line while the runtime is in red.

0 10 20 30 40

Num Targets

101

103

105

L
ik

el
ih

o
o
d

E
v
a
lu

a
ti

o
n
s

MCF

SAESL

SAGA

NN
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lowest complexity across all scene densities while NN and MCF lie between
SAGA and SAESL.

C. Benefit of Super-Resolution

Our algorithm extracts the geometric relationships between
range-Doppler measurements based on the sensor array geom-
etry and builds the association chains by adding likely observa-
tions at new sensors to the existing chains. In this section, we
investigate the role of enhanced accuracy of range and Doppler
estimates obtained using NOMP [3] super-resolution algorithm
in spatial association by providing comparison against coarse
estimates obtained using DFT. Figure 9 shows the localization
and cardinality error for both cases. From the figure, it is
obtained that the localization accuracy using NOMP estimates
achieves the CRB when number of targets are moderate,
whereas DFT has higher RMSE as expected. However, the
RMSE of NOMP deviates away from CRB as the number of
targets increases and approaches to the DFT accuracy for dense
scenes. It is important to note that our association algorithm
works even with the coarse estimates even though NOMP
provides accuracy boost for our algorithm which identifies
more targets resulting in lower cardinality errors compared
to DFT in the presence of multiple targets.

Since NOMP estimates are more accurate, their geometric
fitting errors are better than DFT. This allows the reduction
in association time at the expanse of some computation
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Fig. 8. Runtime comparison with traditional algorithms.
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Fig. 9. Estimation accuracy (thin) and cardinality error (thick) versus number
of targets at SNR = -15 dB.

overhead over DFT during estimation. Figure 10 compares the
runtime of the estimation and association stages with different
number of sensors for NT = 20 targets. We observe that the
association time with NOMP estimates is 10 times lower than
the one with DFT estimates while the estimation overhead
is about 2 − 3 times higher. This complexity reduction is
due to the lower geometric fitting error of association chains
formed using higher accuracy NOMP estimates. Figure 10
also shows that the complexity of association stage becomes
more significant than the one of estimation stage for the
overall complexity as the number of targets and the number
of sensors increases. Therefore, the overall complexity reduc-
tion achieved via enhanced accuracy estimates becomes more
pronounced with a denser scene and larger number of sensors.
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Fig. 10. Runtime comparison of association (solid) & estimation (dotted)
stages versus number of sensors.

D. Array Geometry

In this subsection, we analyze the localization performance
of linear sensor arrays from the perspective of data association.
We consider the adverse scene with Pmiss = 0.2 to emphasize
our findings. The array width and the number of sensors affect
both localization accuracy and association complexity.

Increasing the array width generates more spatial diversity
in range-Doppler measurements across sensors. This helps to

reduce the OSPA error for a given number of sensors. On the
other hand, larger distance among the sensors weakens the
pruning criteria for the graph edges used in (8) resulting in a
denser graph with a higher number of potential associations
between sensors. Therefore, the overall localization perfor-
mance improves with wider arrays at the expense of slightly
more association complexity. The available sensor width is
an important design constraint in practical applications (e.g.,
length of side profile of a vehicle). For that reason, we analyze
the effect of number of sensors in the presence of fixed array
width LW = 4 m.

We find that increasing the number of sensors also improves
association performance as well as association complexity.
Figure 11 shows OSPA versus number of sensors for SAESL
and SAGA. While the OSPA for SAESL association reduces
with more sensors, we observe that the OSPA for SAGA with
robustness level ρ achieves minimum OSPA with NS = ρ+ 3
sensors, and increases for NS > ρ + 3. This is caused due
to the missed observations, which prevent formation of chains
with minimum length constraint NS − ρ. For an array with
NS sensors and a robustness level of ρ, the expected number
of missed targets can be expressed as

E[miss] =

min (NS−2,ρ+1)∑
k=1

(
NS
k

)
P kmiss(1− Pmiss)NS−k .

Figure 12 shows that missed targets observed using our
approach closely match this expected value for various values
of ρ and NS .

As a result, we obtain that the robustness level needs to be
increased to avoid higher cardinality errors even though local-
ization error reduces with more sensors. That causes increase
in the complexity of our algorithm; however, it still achieves
lower complexity compared to SAESL algorithm. We leave as
an open issue the design of more sophisticated methods for
selection of a subset of sensors during the association stage to
reduce the complexity further.

V. CONCLUSION

We have shown that simple constraints relating range-
Doppler observations to sensor geometry can be exploited
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to significantly reduce the complexity of spatial association.
Our system-level simulations demonstrate that our framework
for spatial association based on these geometric constraints
is robust to noisy observations and detection anomalies, and
that it scales well with the number of sensors and targets.
Our approach is compatible with standard FFT-based range-
Doppler processing, but enhanced accuracy estimation at each
sensor (i.e., super-resolution of range and Doppler) signif-
icantly improves both localization accuracy and association
complexity. Important topics for future investigation include
extending these concepts to more complex target models (e.g.,
for extended targets, and targets causing both specular and
diffuse reflection), and combining them with complementary
strategies utilizing platform and/or target motion across mul-
tiple snapshots.

APPENDIX A
CRB FOR RANGE AND DOPPLER

The Cramér Rao Bound provides an estimation theoretic
lower bound on the sample covariance of range-Doppler
estimates; that is, Cov(θi) ≥ I(θi)

−1 where I(θi) is Fisher
Information Matrix (FIM) given by,

I(θi) = E
[(
∇θiL(mobs

i |θi)
) (
∇θiL(mobs

i |θi)
)H]

where L(mobs
i |θi) is the log likelihood of the observed signal

for a given target range-Doppler θi. For an FMCW radar, this
expression simplifies to [18],

I(θi) = κSNR

[
1/δ2

r 0
0 1/δ2

d

]
(19)

where κ is a constant, δr and δd are the Rayleigh range and
Doppler resolutions, respectively. We set the nominal variance
of range-Doppler estimates based on the value of CRB at
nominal SNR = −20 dB; that is, σ2

ri = δ2
r/(κSNR) and

σ2
di

= δ2
d/(κSNR).

APPENDIX B
ASSOCIATION CONSTRAINT RELAXATION

The choice of initial stopping thresholds τnf and τnl and
scaling factor β for subsequent relaxations in SAGA algorithm
governs the total complexity of association algorithm. In order

to initialize the association algorithm, we set tight thresholds
for L(A) and F(A). Assuming the range-Doppler observations
have small error (i.e., wRi � ri, w

D
i � di in (3)), the expected

negative log likelihood in (5) can be approximated as

L(A) ≈
∑
θi∈A

(
(wRi )2

σ2
r

+
(wDi )2

σ2
d

)
.

Since wRi ∼ N (0, σ2
r) and wDi ∼ N (0, σ2

d) are standard
Normal distributed random variables, L(Ak) has chi-squared
distribution, χ2

2n(A) with 2n(A) degrees of freedom. Then, the
expected fitting error in (14) can be approximated as

F (A) =
∑
θi∈A

(
(r̂id̂i)− (ridi)

)2

η1
+

(
(r̂i)

2 − (ri)
2
)2

η2

≈
∑
θi∈A

(
riw

D
i + diw

R
i

)2
η1

+

(
2riw

R
i

)2
η2

(20)

where (r̂i and d̂i) denote the perceived range-Doppler pair at
sensor i for predicted state z and θi = (ri, di) denotes the
observed range-Doppler pair at sensor i. The normalization
factors η1, η2 are set to the variance of numerator terms which
is,

(η1)i = Var[riwDi + diw
R
i ] ≈ σ2

rid
2
i + r2

i σ
2
di + σ2

riσ
2
di

(η2)i = Var[2riwRi ] ≈ 4r2
i σ

2
ri .

Using those values to normalize (20) results in F(Ak) ∼
χ2

2n(A) being chi-squared distributed with 2n(A) degrees of
freedom. Hence, the thresholds for the association algorithm
are determined as follows,

τ
n(A)
f : Pr(F (A) > τ

n(A)
f ) = PFA

τ
n(A)
l : Pr(L(A) > τ

n(A)
l ) = PFA

where PFA is the nominal false alarm rate set to PFA = 0.01.
Note that while the normalization factors η1, η2 depend on

ri, di, we set this based on the maximum range, Doppler
values to get a conservative initial value. This does not cause a
problem since the sucessive relaxation procedure loosens that
threshold so that chains with high fitting error can be extracted.

The relaxation factor, β should be set appropriately. Choos-
ing a high value causes faster convergence but might lead to
false chains being identified. On the other hand, a low value
delays the extraction of loose chains. In the simulations, we
find that β = 2 performs well.

APPENDIX C
MINIMUM AMBIGUITY ASSOCIATION

Lemma 1. In the ideal detection scenario (i.e., no miss or
false alarms), the number of candidate locations generated
between a pair of sensors is minimum for consecutive sensors.

Proof. Recall that candidate locations are generated when
range perceived at a pair of sensors satisfy conditions in (8).
For a candidate, zpqij generated by incorrectly associated obser-
vations, θpi ,θ

q
j , across consecutive sensors i, j, the following

relations hold,

rpi − r
q
j < lij , rpi + rqj > lij . (21)
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Now consider q̄th observation at sensor k adjacent to sensor j
which corresponds to same target as θqj , the following relations
hold,

rqj − r
q̄
k < ljk (using (8))

rqj + ljk > rq̄k (ljk ≥ 0, Triangle inequality)

Using these along with (21) we obtain,

rpi − r
q̄
k < lik, rpi + rq̄k > lik

Hence any candidate produced between consecutive sensors
i, j also generates a candidate between sensors i, k by skipping
over intermediate sensor j. Hence,

n(Θi)∑
p=1

n(Θi+1)∑
q=1

n(zpqi,i+1) ≤
n(Θi)∑
p=1

n(Θk)∑
q=1

n(zpqi,k)

Therefore, the number of candidates generated between a pair
of sensors is minimum for consecutive sensors.

Association complexity is due to the presence of unwanted
candidate targets which need to be discarded based on their
likelihood. When a target is observed at all sensors, it is
sufficient to associate observations along consecutive sensors.
Lemma 1 states that the association of observations along
consecutive sensors generates the lowest number of phan-
toms during graph search. Hence, the number of potential
ambiguities is minimized when the graph search procedure
is conducted across consecutive sensors first.

APPENDIX D
DEPTH FIRST SEARCH

A depth first search algorithm is outlined in Algorithm 3. At
each node, the DFS procedure traverses through all branches
which have geometric fitting error below the maximum error
threshold τNS

f . On reaching the end of the graph, we select the
chain if it satisfies the likelihood, fitting error, and minimum
chain length constraints. In addition, we check for possible
chain termination at each node after going through all its
branches. This step implicitly accounts for the NULL state
at the end of a chain.

APPENDIX E
CRB FOR POSITION AND VELOCITY

Using the range-Doppler model in Section 3, we evaluate
the single target CRB for kinematic parameters z̄ using the log
likelihood of range-Doppler observations A = {θi}NS

i=1 given
kinematic state z̄, which is

L
(
{θi|z̄}NS

i=1

)
=

NS∑
i=1

(
(r̄i − ri)2

σ2
ri

+
(d̄i − di)2

σ2
di

)
where θi = (ri, di) is the observed range-Doppler pair for
sensor i, (r̄i, d̄i) = Ti(z̄) is true range-Doppler pair for given
target state z̄ and σ2

ri and σ2
di

are, respectively, the range
and Doppler CRBs obtained in (19). The FIM for z̄ can be
evaluated as

I(z̄) = E
[
∇zL

(
{θi|z̄}NS

i=1

)]
.

Algorithm 3 Geometry Assisted Depth First Search
1: procedure GA-DFS(v,A, γ, τ )
2: Get list of children of v that geometrically fit,

B(v) =
{
vj : F([A, vj ]) < τNS

f

}
3: if B(v) 6= ∅ then
4: Sort B(v) using geometric fitting error, F ([A, vj ])
5: for vj ∈ B(v) do
6: BRANCH out a new chain Aj : A← vj
7: Ao ←GA-DFS(vj ,Aj , γ, τ )
8: Exit loop if valid chain Ao is found.
9: end for

10: end if
11: CHECK IF CHAIN CAN BE TERMINATED AT v
12: if n(A) ≥ γ,L(A) < τ

n(A)
l , F (A) < τ

n(A)
f then

13: SELECT Ao ← A,
14: end if
15: Output: Ao

16: end procedure

The CRB obtained from inverse FIM is used to find position
and velocity CRB as follows,

CRBp = I(z̄)−1
(1,1) + I(z̄)−1

(2,2) ,

CRBv = I(z̄)−1
(3,3) + I(z̄)−1

(4,4) .

The CRB of velocity is a function of both range and Doppler
variances whereas the CRB of position only depends on the
variance of range. We use the nominal range and Doppler
CRB values to set the minimum separation distance threshold,
τz = 10

√
CRBp + CRBv between targets. This threshold is

also used to check similarity between chains in the association
algorithm.
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