Millimeter-Wave Wireless Networking and Sensing

Xinyu Zhang

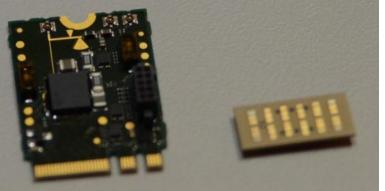
Associate Professor

Department of Electrical and Computer Engineering

University of California San Diego

mmWave communication and networking standards

A Roadmap of mmWave standards

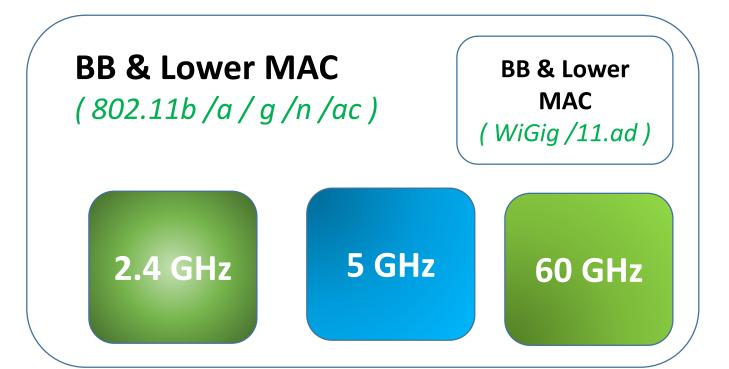

	Wireless PAN	Wireless LAN	Cellular
Standards (year ratified)	802.15.3c (2006)	802.11ad (2012), 802.11ay (?)	5G NR (?)
Use cases	Cable replacement	Gbps Internet access, cordless computing, mesh networking, wireless data center	Gbps wireless broadband, mobile edge computing, V2X
Spectrum	60 GHz band (57-64 GHz)	60 GHz band (57-64 GHz)	28 GHz band (24.25-29.5 GHz)
Channel bandwidth	2.16 GHz	2.16 GHz	?
Range	Below 10m	10s of meters	100s of meters
Rate	5 Gbps	7 Gbps	Gbps

802.11ad Overview

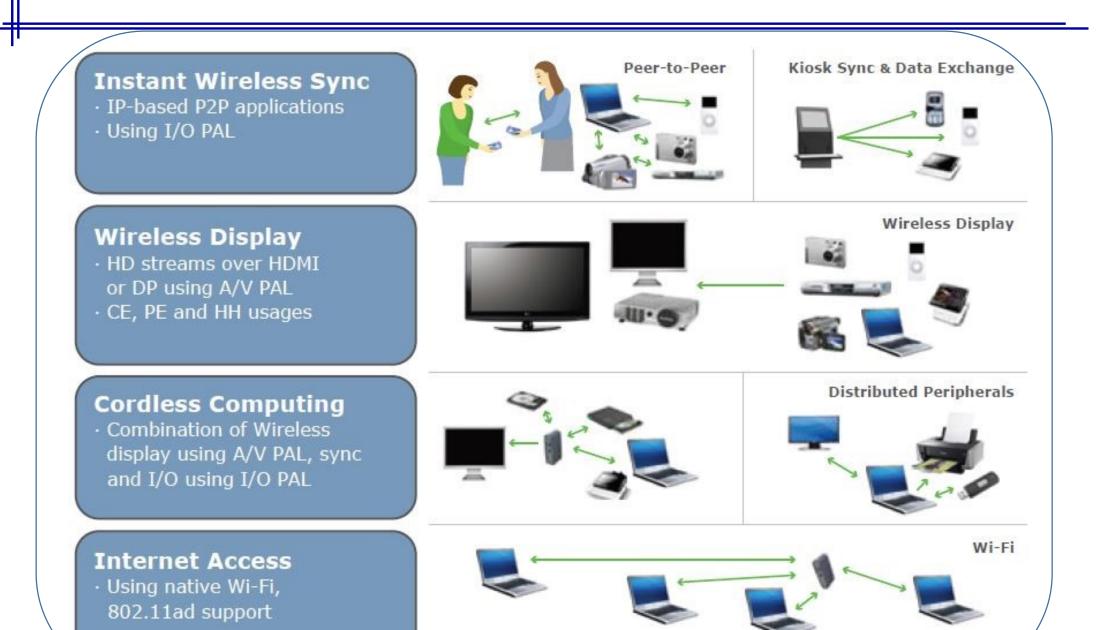
> 802.11ad (WiGig)

- mmWave "WiFi", with up to 7 Gbps rate
- Arguably the most mature mobile mmWave standard, with many commercial products since 2013

Qualcomm/Intel 802.11ac/adTP-Link 802.11ac/ad tri-bandDell 802.11ad laptop &
docking stationtri-band adapteraccess pointdocking station

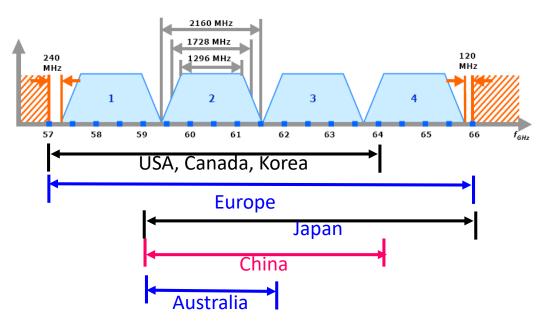

802.11ad Protocol Stack

Extending 802.11


Common Upper MAC

(Management)

Multi-band Operation (WiGig/ .11ad)



802.11ad Usage Models (From standard group)

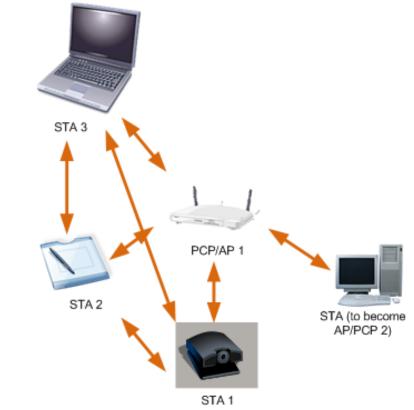
6

Channelization: up to 4 channels (depending on regulation), each 2.16 GHz

Unlicensed 60 GHz spectrum bands (Note: FCC further released 64-71 GHz band in 2016).

Support phased-array antenna beamforming (but not MIMO)

802.11ad PHY Layer: MCS Levels


- Control PHY: Robust, low-rate (27.5 Mbps); for signaling, management and control frames
- Data PHY: High-rate
 - OFDM: Support longer distances (larger delay spread), up to 7 Gbps
 - Single-carrier (SC): Simpler hardware, more power-efficient, suitable for mobile devices, up to 4.6 Gbps

Control (CPHY)									
MCS	Coding	Modulation	Raw Bit Rate						
0	1/2 LDPC, 32x Spreading	π/2-DBPSK	27.5 Mbps						
Single Carrier (SCPHY)									
MCS	Coding	Modulation	Raw Bit Rate						
1-12	1/2 LDPC, 2x repetition	π/2-BPSK,	385 Mbps						
	1/2 LDPC,	π/2-QPSK,	to						
	5/8 LDPC	π/2-16QAM	4620 Mbps						
	3/4 LDPC								
	13/16 LDPC								
Orthogonal Frequency Division Multiplex (OFDMPHY)									
MCS	Coding	Modulation	Raw Bit Rate						
13-24	1/2 LDPC,	OFDM-SQPSK	693 Mbps						
	5/8 LDPC	OFDM-QPSK	to						
	3/4 LDPC	OFDM-16QAM	6756.75 Mbps						
	13/16 LDPC	OFDM-64QAM							
Low-Power Single Carrier (LPSCPHY)									
MCS	Coding	Modulation	Raw Bit Rate						
25-31	RS(224,208) +	π/2-BPSK,	625.6 Mbps						
	Block Code(16/12/9/8,8)	π/2-QPSK	to						
			2503 Mbps						

802.11ad: Network Architecture

PCP/AP: Central coordinator in a 802.11ad network

- Enhanced 802.11 AP to support directional networking
- > STA: 802.11ad client (can be mobile)
- Topology: Simultaneously support infrastructure and P2P connections

802.11ad MAC: Overview

Key functionalities

• Association, scheduling, beamforming training, interference management, etc.

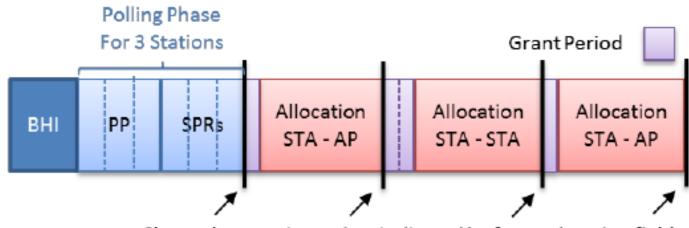
> Isn't it the same as the directional MAC 10+ years ago? No!

- Large phased-array with hundreds of antennas, instead of a horn
- Much narrower beams (down to a few degrees)
- Electronically steerable beams
- Stronger attenuation at mmWave frequency (vulnerable to blockage)
- Need new system design for scalability and robustness!

802.11ad MAC: Framing

Beacon interval

- Following existing 802.11, all nodes are synchronized in beacon intervals
- Beacon interval (BI) = BHI + DTI BHI: training, signaling; DTI: data transmission


1	← Beacon Interval (BI)							
1	Beacon Header Interval (BHI)			Data Transmission Interval (DTI)				
	BTI	A-BFT	ATI	CBAP or SP	CBAP or SP		CBAP or SP	Time

 Two modes of data transmission CBAP: contention-based access periods; SP: Service periods (TDMA)

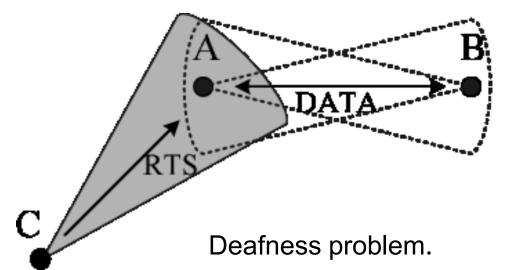
802.11ad MAC: SP Medium Access

> SP: TDMA for directional networking

- Can be scheduled between AP and STA, or between two STAs (P2P mode)
- Need to be coordinated by the AP
- Can be dynamically allocated based on polling mechanism:

Channel protection points indicated by frame duration fields.

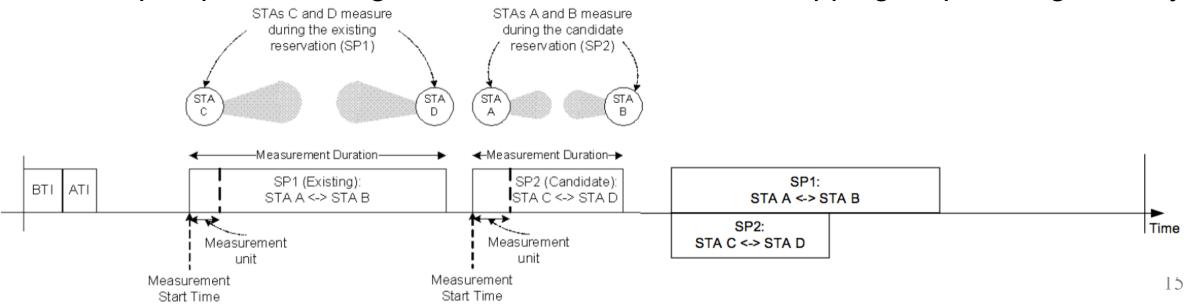
802.11ad MAC: CBAP Medium Access


CBAP: hybrid TDMA+CSMA/CA for directional networking

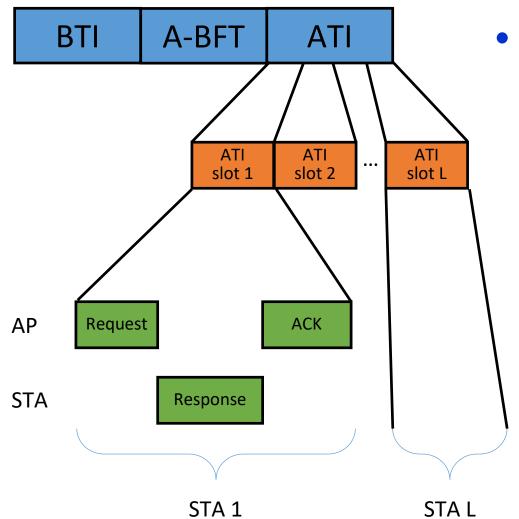
- Physical carrier sensing: energy or preamble detection
- Virtual carrier sensing: directional channel reservation
- Virtual carrier sensing
 - Before transmission, send a directional RTS
 - Nodes who overhear the directional RTS update the NAV (indicating busy time period)
 - Imperfect! Deafness and hidden terminal problem.
- Other operations, e.g., ACK, backoff, packet aggregation, are similar to 802.11ac

802.11ad MAC: CSMA Interference management

CSMA based


- Directional carrier sensing
- Open problems: hidden terminals & deafness
- Studied in ad-hoc directional MAC protocols (~2005), but more challenging due to higher directionality, more beams, and imperfect beam patterns

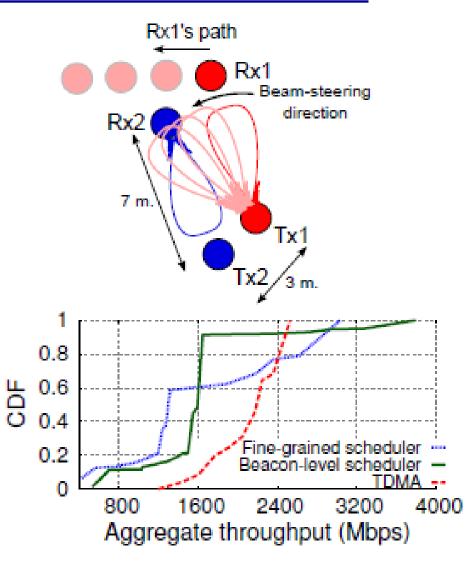
802.11ad MAC: TDMA interference management


TDMA based

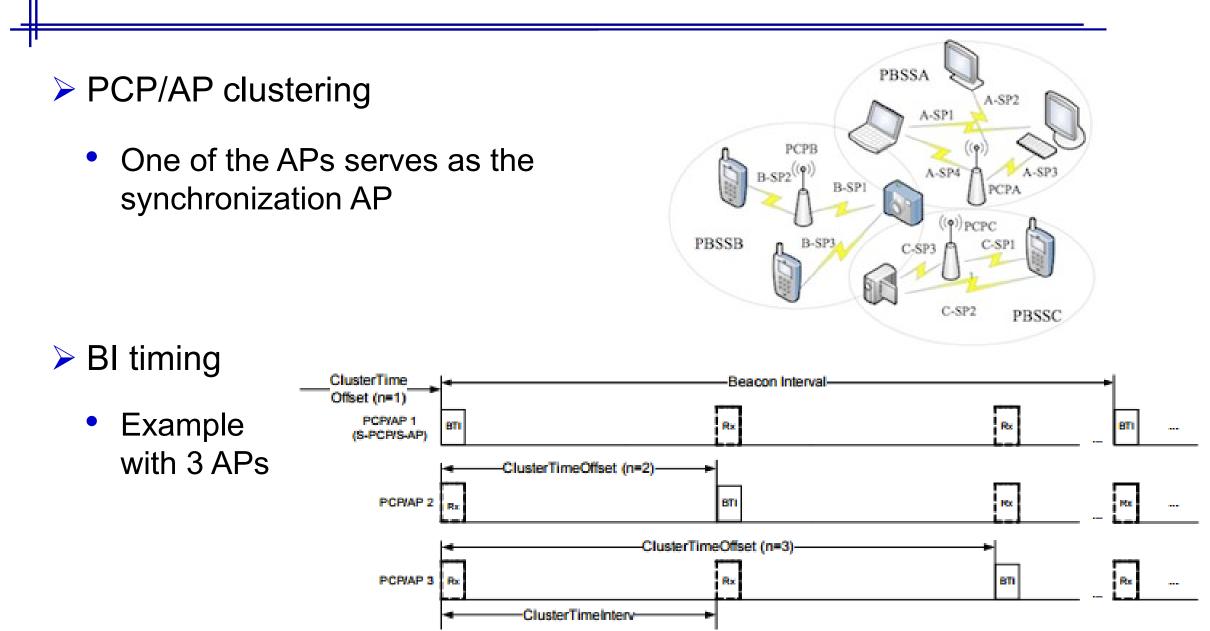
- Each STA periodically builds interference map
- Sending interference map to AP
- AP coordinates multiple links to avoid interference
- Open problem: huge overhead in interference mapping, esp. during mobility

802.11ad MAC: TDMA interference management

Scheduling TDMA slots: decision made in beacon header



- ATI: exchange resource information
 - L slots
 - Use a request-response protocol to exchange the resource request and allocation information, e.g., which STA should transmit at which SP


802.11ad MAC: TDMA interference management

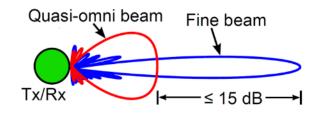
TDMA based

- An experiment involving 2 links
- Update interference map at either beacon intervals or packet level (fine-grained), or not at all (fixed TDMA)
- Interference mapping may be even worse due to huge overhead
- A tradeoff between responsiveness and overhead

802.11ad MAC: multiple AP/PCP networks coexist

802.11ad MAC: Beamforming protocol

Challenge:

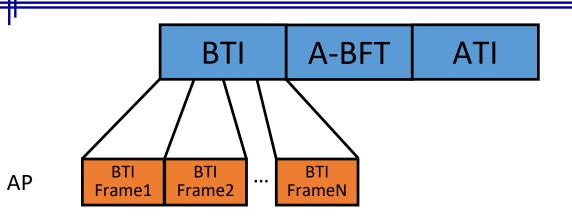

- A phased-array may have hundreds of beam directions to steer to
- The TX&RX must decide on the beam direction of each, to maximize "alignment", thus maximizing link SNR

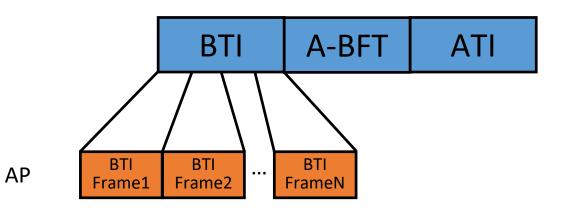
> 802.11ad beamforming

- Decision making in BHI (can be updated dynamically during DTI)
- Essentially a beam training (selection) process

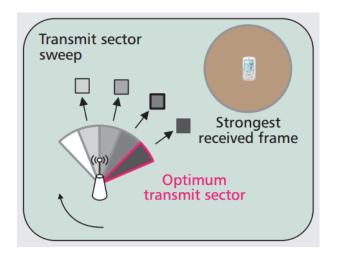
802.11ad MAC: Beamforming training

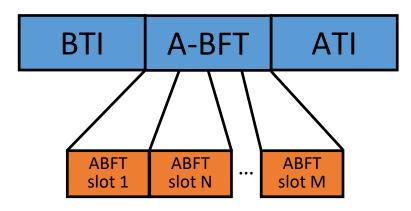
Basic beamforming training procedure



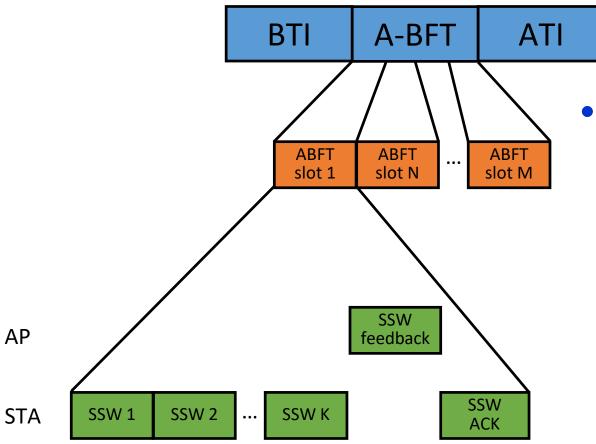

Sector level sweeping (SLS): quasi-omni beams

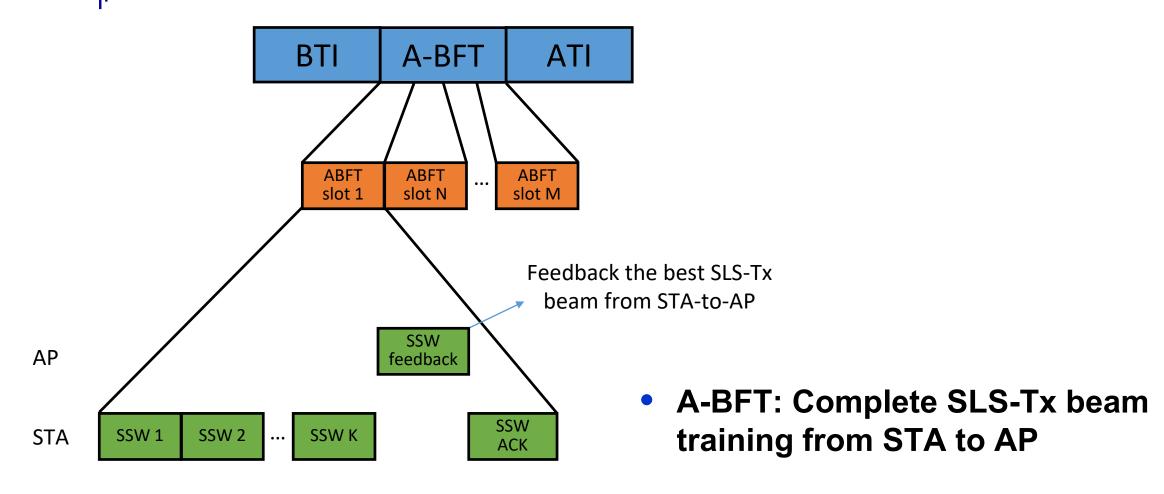
Multiple sector ID detection (MID): TX quasi-omni, RX directional, or vice versa


Beam Combining (BC): both TX and RX are directional

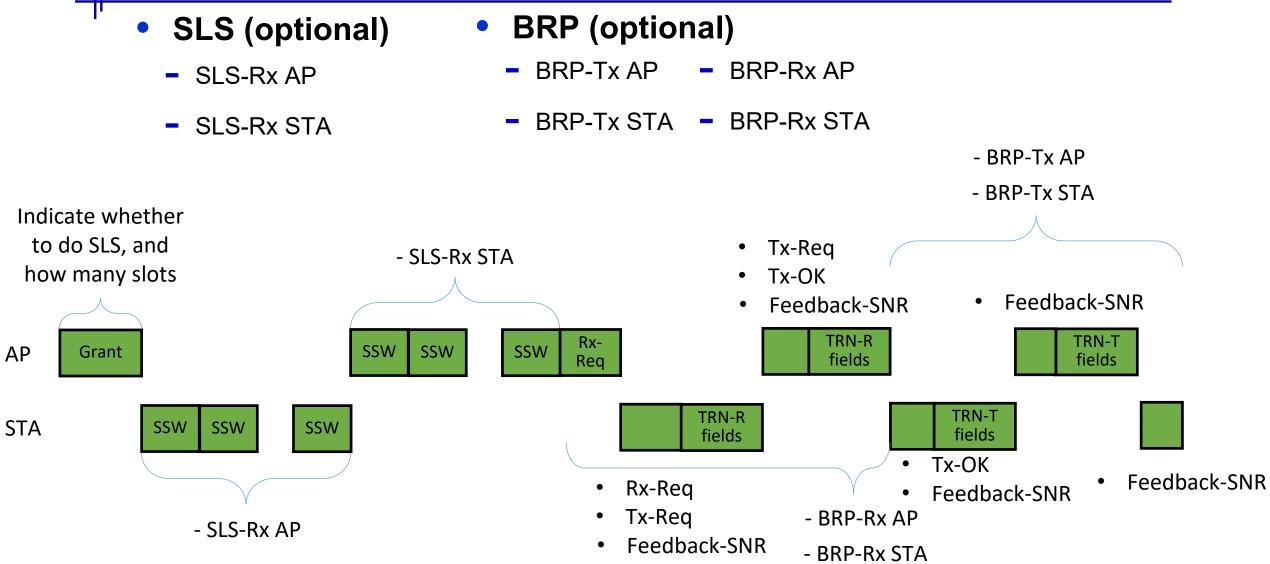


- Training during Beacon Transmission Interval
 - N frames
 - PCP/AP broadcasts beacon information in each frame
 - PCP/AP uses different beam patterns in different frames
 - The beam index in used is encoded in the beacon information
 - If a STA can decode a certain frame, record the beam index and the received SNR


• BTI: Complete SLS-Tx beam training from AP to STA


• Beamforming training during A-BFT

- M slots
- STA randomly picks one slot
- If 2 STAs choose the same slot, they will collide
- Collision is resolved by retry



Beamforming training in A-BFT

- Sector SWeep (SSW) frame, SSWfeedback frame, and SSW-ACK frame
- STA transmits each SSW using a different beam pattern
- The index of beam pattern is encoded into the SSW
- AP records the beam index and SNR of decodable SSW

Scheduling beamforming training in DTI

802.11ad MAC: Fast Session Transfer (FST)

- Seamless switching between 60 GHz 802.11ad and 2.4/5 GHz 802.11n/ac
- These three bands share the same MAC address, so channel switching is transparent to higher layers
- A request/response protocol is needed between the FST initiator and responder (w/ overhead!)

Beyond 802.11ad: 802.11ay

Next-generation mmWave network standard; full draft expected to be released in 2017

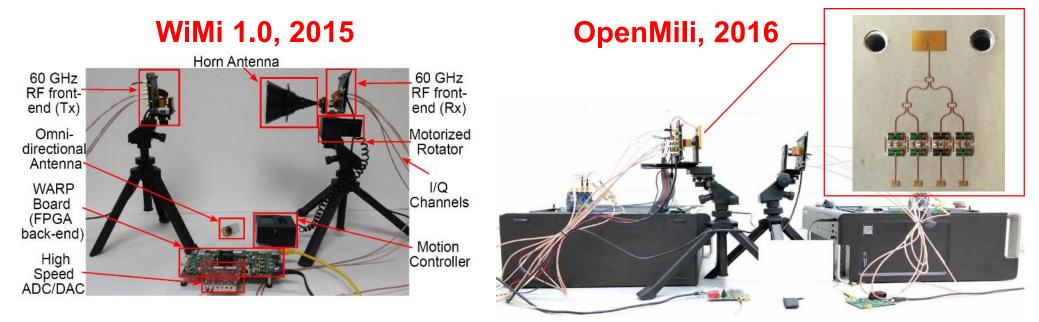
Core techniques

- Bandwidth aggregation: up to 4x channel bandwidth over 802.11ad
- mmWave MIMO and MU-MIMO: up to 4 streams

Performance

 Bit-rate: up to 44 Gbps with bandwidth aggregation, and 176 Gbps with MIMO

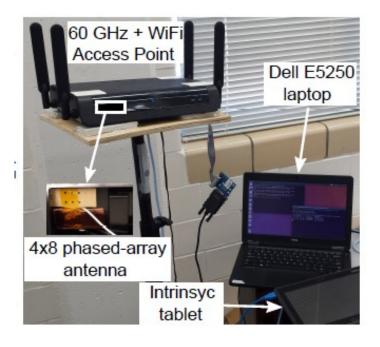
Beyond 802.11ad: 802.11ay


Targeting demanding use cases

- Wireless VR
- Inter-rack connectivity for wireless data centers
- Video/mass-data distribution in: trains, airplanes, classrooms...

Experimental research in mmWave networking: beyond the standards

Key challenge is a programmable platform with phased-array


Some existing platforms: open-source software-radios

* "60 GHz Indoor Networking through Flexible Beams: A Link-Level Profiling ", Sanjib Sur, Vignesh Venkateswaran, Xinyu Zhang, Parameswaran Ramanathan, ACM SIGMETRICS'15
* "OpenMili: A 60 GHz Software Radio Platform With a Reconfigurable Phased-Array Antenna ", Jialiang Zhang, Xinyu Zhang, Pushkar Kulkarni, Parameswaran Ramanathan, ACM MobiCom'16

Experimental research in mmWave networking: beyond the standards

Some existing platforms: proprietary 802.11ad radios

* "*WiFi-Assisted 60 GHz Networks*", Sanjib Sur, Ioannis Pefkianakis, Xinyu Zhang, Kyu-Han Kim, ACM MobiCom'17

* "Object Recognition and Navigation Using a Single Networking Device", Yanzi Zhu, Yuanshun Yao, Ben Y. Zhao and Haitao Zheng, ACM MobiSys'17

References

* "*IEEE 802.11ad: directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi*", Thomas Nitsche ; Carlos Cordeiro ; Adriana B. Flores ; Edward W. Knightly ; Eldad Perahia ; Joerg C. Widmer, IEEE Comm Magazine, 2014

* "WiGig and IEEE 802.11ad For Multi-Gigabyte-Per-Second WPAN and WLAN", Sai Shankar N., Debashis Dash, Hassan El Madi, Guru Gopalakrishnan, arXiv:1211.7356

* "*Millimeter Wave Wireless Communications*", Theodore S. Rappaport, Robert W. Heath, Jr., Robert C. Daniels, James N. Murdock, Prentice Hall, 2015

* "60 GHz Indoor Networking through Flexible Beams: A Link-Level Profiling", Sanjib Sur, Vignesh Venkateswaran, Xinyu Zhang, Parameswaran Ramanathan, ACM SIGMETRICS'15

* "Demystifying 60GHz Outdoor Picocells", Yibo Zhu, Zengbin Zhang, Zhinus Marzi, Chris Nelson, Upamanyu Madhow, Ben Y. Zhao, and Haitao Zheng, ACM MobiCom'14

* "WiFi-Assisted 60 GHz Networks",

Sanjib Sur, Ioannis Pefkianakis, Xinyu Zhang, Kyu-Han Kim, ACM MobiCom'17