Handling blockage and mobility



Grand Challenges for mmWave Networking

» Shorter wavelengths, higher attenuation
* ~1000x higher attenuation than WiFi or LTE

» Use highly directional, electronically steerable
phased-arrays to overcome propagation loss

* Introduces new challenges: blockage, mobility

Phased-array
antenna




Grand Challenges for mmWave Networking

» Mobillity

» Blockage

Tx and Rx beams
must keep aligned

Needs environment
reflection to overcome
blockage



How severe is the blockage/mobility problem?

» Signal attenuation of a directional link

* The body absorbs majority of the energy from a directional transmitter
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How severe is the blockage/mobility problem?

» Throughput drop due to signal attenuation and blockage

* Experimental setup
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How severe is the blockage/mobility problem?

» Throughput drop due to signal attenuation and blockage

* Results
w35
% 24| Static  Mobile é- gl 0GRz o WiFimm ©
.8_ 2.0 | [ 100%le —— Median (5' 25t " _F}DE‘I'I LE]S "‘ Mletallm "l DPEH LDS _h
= 16 ~T— {0 Vibps for > 25%-ie} 5 2 1: . Blockagg, .
% 1.2 | : . Jinks at 60 GHz = 1.5 ¢
o '1 I - P R . S

E 0.8 | 17 Static Moblle g 05 I L.
Soe [ L] == gosly i i

0 2 3 4 5 10 11

60 GHz WlFl

Distance frDrn ﬂ«P (m



How severe is the blockage/mobility problem?

» Theoretical recovery time (from triggering to completion)

8 0.51 ms 1.27 ms
16 1.01 ms 2.53 ms
64 4.04 ms 304.04 ms
128 106.07 ms 706.07 ms * Hassanieh et. al.,
256 310.11 ms 1501.11 ms arxiv 1706.069335v1

» Non-trivial protocol level operations and decision making
* Beam searching overhead grows with the number of beams

* When to trigger the beam searching? (Tradeoff: overhead vs.
responsiveness)

* There is no guarantee that beam searching can result in a usable
pair of TX-RX beams



How severe is the blockage/mobility problem?

» Measurement of recovery time

* Qualcomm 802.11ad radios, 32 element phased-array, 128 beams

* Measure time to converge to A ————
best beam after blockage A - - :

* CDF over 50 trials

* Link outage effect is amplified &
at higher layer (TCP results ¢
later)

Y ~295 ms
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Design principles to handle mobility/blockage

» Fast beam realignment protocols

* Predictive and proactive beam switching
Example: BeamSpy (S. Sur et al., NSDI'17)

* Sensor assisted beam searching
Example: Pia (T. Wei et al., MobiCom’17)

» New network architectures

* Multi-node coordination
Example: Pia (T. Wei et al., MobiCom’17)

* Multi-band cooperation
Example: MUST (S. Sur et al., MobiCom’17)



BeamSpy: predictive link recovery under blockage

» Working conditions

* Quasi-stationary TX and RX

» Working principles

* Measure the channel of current TX/RX beams

* Predict the channel of other beams, without beam scanning
overhead!

* “BeamSpy.: Enabling Robust 60 GHz Links Under Blockage”,
Sanjib Sur, Xinyu Zhang, Parameswaran Ramanathan, Ranveer Chandra, USENIX NSDI’16



Key Insights: correlation between beams

» Blockage in a beam drops performance of other beams
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Key Insights: correlation between beams

» Why does correlation exist?

Signal arrival
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Sparse signal arrival paths are shared between beams,

thus blockage causes correlated RSS drop in all beams!



Modeling the correlation through a sparse channel model
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Modeling the correlation through a sparse channel model

Metallic
Reflector

Path Skeleton \/

ANTE

14



Modeling the correlation through a sparse channel model
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Modeling the correlation through a sparse channel model
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Modeling the correlation through a sparse channel model
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BeamSpy workflow

At deployment time
Tx N RXx Store one path

o : . 9 -> -> skeleton for
N ‘ . AR each Tx beam
1
Discrete coarse Model Sparse I Track Path
beam-steering Clusters _____.1 Skeleton
I
lllllllllllll j lllllllllllllllllllllllllllllrlllllllllllllllllllllllllllll
At run time \"4
TX Rx -5 RX
« ) —XO o
Beam is blocked Identify state of  Predict RSS of other

Path Skeleton beams from new state



Modeling the correlation through a sparse channel model

» How does the prediction work

Ty Rx CIR of CIR of CIR of
o« ) 3~0 =P K" beam — beam 1 |**| beamK
: § ¥ L%k

Currentbeamis  Measure CIR Identify state of path  Reconstruct K CIRs (Eq. 8);

affected by of current beam  skeleton (Eq. 7) pick the beam with highest RSS
blockage

» Look at current beams condition under blockage -
Identify the state of sparse cluster = Virtually reconstruct
performance of rest of the beams and pick the best one.
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BeamSpy performance

» Accuracy of best beam direction <100
prediction under blockage > 28
©
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BeamSpy performance

» Link performance gain under blockage

Throughput performance
close to oracle.
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Towards seamless coverage and mobility support

» BeamSpy works for quasi-stationary TX/RX

» Can we make mmWave networks as mobile and
ubiquitous as WiFi?

» Non-trivial! Even for room-level mobility/coverage

* Limited TX/RX coverage due to directionality and lack of multipath

* Blockage, mobility, and even minor orientation change can cause
beam misalignment



Pia: Pose information assisted 60 GHz networks

» Design principles

* Cooperation between APs to ensure coverage

* Leverage mobile client’s pose information (x,y,z coordinate
and elevation/azimuth angle) to select the best AP
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How does pose change affect link performance

» Vary relative angle between TX and RX

* Throughput almost constant with an 160 degree field-of-view (FoV)

* Throughput drops dramatically when out of FoV
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How does pose change affect link performance

» Vary relative angle between TX and RX

* For room level coverage, in/out of FoV matters more than distance
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Pia work flow

Client Backend Server
Motion Pose information
m sensor | (Location and orientation) | AP-POsé
- *» and Reflector
0 . . 60 GHz Sensing
W14 chipset | MCS,active beam, etc. I
AP AP
o ! Assignment Selection
= l
60 GHz AP Beam Interference

Assignment

Management

_ Sensing
Stage

A,

_ Running
Stage
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Pia: AP selection

» Proactive AP switching instead of reacting to link outage

* Predict pose: simple kinematic model

ﬁf(r + ]) - Pc(f} T ﬂ-ﬁc(tl
AP (¢ + 1) = AP.(1),

* Predict infout of FoV based on relative pose between client and AP

* Switching before outage Region of unreliable Unreliable  Switch
i i Region point

dicte atus
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Pia: AP selection

» How does a client know the APs’ pose?

* One-time initial training, to obtain APs’ global pose info
* Statistical estimation

® in-FoV
T~ ® out-FoV

T
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Pia: beam selection for spatial sharing

» Non-trivial due to imperfect directionality of phased-arrays

* Strongest beam is not necessarily the throughput-optimal one
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Pia: beam selection for spatial sharing

» Joint beam and AP selection problem.

* Beam strength map (BSM) as a basic data structure
* QObjective: maximize SIR AR1 ARZ AP J

=1

[on ]I B
max L z BSMI[A(i), i, B(i)] » g -15
N e ey - -20
AB N i=1 ijl INFpyax(J, 1) cof 95

H 308

A(i): AP assignment for client i; & ot 235
B(i): beam assignment for client i; o _40
INFmax(j,i): max interference from AP i to client j = _45
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* Computational cost too high. Client index

Approximate using signal to Example BSM between 3 APs and 3 clients.
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Pia: testbed verification

» Experimental setup

Client

Tango tablet

Phased array

(front) (back) 60 GHz
& wireless
it Er card

60 GHz net:
192.137.1.*

) Backhaul net:
192.100.1.*

Gateway:
AP

Gateway:
AP

60 GHz AP3
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Pia: performance overview

» Link stability

oo o
~ O 0O —

O
oM™

Availability (percent)

(a) Orao/e '

(a) Link availability: percentage
of time that throughput exceeds a
threshold (1.8 Gbps).

(b) Hazard times: number of occurrences
that link throughput drops below the
threshold in a 5-minute test.
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Pia: performance overview

» Spatial sharing
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» Why is 802.11ad interference mapping ineffective?

* Lack optimal mechanism to schedule concurrent transmissions

* Large overhead esp. in mobile scenarios



Pia: performance overview

» Resilience of AP selection under pose errors

~ClientToc. error [ ori. error

I

0.170.520.871.210.170.350.52
Client loc./ori. error (m/radian)

* Only need meter level location precision, and 10+ degrees of
orientation precision
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Prediction accuracy
o O O O
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MUST: WiFi assisted 60 GHz networks

» Design principle: WiFi as a backup to make 60 GHz network stable

* Leveraging commodity tri-band 802.11ac/ad radois
* Predict 60 GHz channel (under mobility) using WiFi CSI

* Under high risk of low-RSS, proactively switch to WiFi

» Why use WiFi CSI to estimate 60 GHz channel?
* Much less likely to be blocked

* MIMO array, instead of phased-array, can estimate channel
profile instantaneously (instead of trying all beam directions)

* “WiFi-Assisted 60 GHz Networks”,
Sanjib Sur, loannis Pefkianakis, Xinyu Zhang, Kyu-Han Kim, ACM MobiCom’17



MUST: alternative design choices

» Why not turn on both 60 GHz and 5 GHz radios?

* Performance is even worse due to TCP artifacts
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MUST: alternative design choices

» Why not react (switch to WiFi) after link outage occurs?

* Switching latency is long, and amplified at TCP level

* Non-trivial to determine “when” to switch; non-trivial protocol overhead
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MUST: predicting 60 GHz channel using WiFi CSI

> MUST work flow

Find best -“'“-_- -------- v 60 GHz CIR SUET:SIWSSCIR
802.11ad Scan/ beam "' . (Current beam) | s
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Yes Blockage Detection SNR
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MUST: predicting 60 GHz channel using WiFi CSI

» |ldentify the angular shift of the 60 GHz dominating path from the
successive time-domain spatial snapshots of the WiFi channel

(a) Att, i{b) Att, (30° azimuth shift)
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MUST: predicting 60 GHz channel using WiFi CSI

» Denote W1 as WiFi angular profile at t1, and similarly
W2. Then the device’s angular shift (equivalent to shift of
60 GHz dominating path)

{Ad, A0} = argmin  |[Wi(d,0) — Wa(d+ Ad, 0 + A8)|?

Mg AR

» Besides angular change, we need to estimate gain change

D™ (¢ + A, 0 + AB) = argmin||hx| — |RT||?

Iy

W = 3, 4Gi(6,6) - D' (6 + Ad, 6 + AB)

» Straightforward to predict the best beam based on channel prediction
(cf. BeamSpy)
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MUST: detecting risk of blockage

» Use SNR difference between WiFi and 60 GHz interface as hint to

detect potential blockage

* LOS: constant link budget difference of 27 dB
* Blocked: large variance of SNR difference
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MUST: efficient interface switching

» Implementation and architecture on a tri-band 802.11ad device

MUST Prediction Module

——» Optimized FST

T Best beam & l Data re-route control
PHY rate
Data
DDR Buffer Bonding Driver «—— Network Stack
60 GHz & WIFi Data l l Data
feedback . . — .

60 GHz Driver WiFi Driver Kernel
R R LTy i Fast DMA Engine [ = = = = = = = = = PCle
60 GHz/WiFi FW/HW HW/FW

1 A o P T L L L L L L i
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I Proactive Switch ==

0.2 =7 With SW Optimization ==
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Switching Latency (ms.)

* Optimized software: prioritize FST in kernel; remove unnecessary queuing

* Balanced core affinity: serve 60 GHz and WiFi at different cores, while
assigning both IRQ/packet processing of an interface in the same core. 4



MUST: performance overview

» Link level throughput
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Oracle 802.11ad MUST BBS-like™

* “Steering with Eyes Closed: mm-Wave Beam Steering without in-Band Measurement”,
San Thomas Nitsche, Adriana B. Flores, Edward W. Knightly, and Joerg Widmer, IEEE INFOCOM’16



MUST: performance overview

» TCP end to end latency

* Orders of magnitude
reduction
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MUST: performance overview

» Field trials with mobile users

1; 80211ad = IVIUST = BBS Ilke

1.6
1.4
1.2

1
0.8 | |
0.6 L

Throughput (Gbps)

1UAM  2U/1M  2U/2M  3U/IM  3U/3M
Field-trial Settings

* ~50% gain over 802.11ad and 45% over BBS.
* Higher gain with more mobility.
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