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ABSTRACT
The emerging millimeter-wave (mmWave) networking tech-

nology promises to unleash a new wave of multi-Gbps wire-

less applications. However, due to high directionality of the

mmWave radios, maintaining stable link connection remains

an open problem. Users’ slight orientation change, coupled

with motion and blockage, can easily disconnect the link. In

this paper, we propose miDroid, a robotic mmWave relay

that optimizes network coverage through wireless sensing

and autonomous motion/rotation planning. The robot relay

automatically constructs the geometry/reflectivity of the en-

vironment, by estimating the geometries of all signal paths. It

then navigates itself along an optimal moving trajectory, and

ensures continuous connectivity for the client despite en-

vironment/human dynamics. We have prototyped miDroid

on a programmable robot carrying a commodity 60 GHz

radio. Our field trials demonstrate that miDroid can achieve

nearly full coverage in dynamic environment, even with

constrained speed and mobility region.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mo-
bile computing design and evaluation methods; • Net-
works→ Mobile networks;
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1 INTRODUCTION
The past few years have witnessed major evolution of ultra-

high-speed millimeter-wave (mmWave) networks. While

originally designed for quasi-stationary use cases such as cel-

lular backhaul, datacenters andwireless display[7], mmWave
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networks are anticipated to become mainstream in 5G, and

enable more versatile applications, including WiFi-like ac-

cess, untethered virtual reality, mobile offloading, etc. [20].
However, the inherent shortcomings of mmWave links, i.e.,
limited coverage and stability, remain a major barrier in prac-

tice. Although a mmWave radio can use phased-array anten-

nas to generate highly-directional, electronically-steerable

beams, the joint coverage of all its beams can only form a lim-

ited Field of View (FoV) (typically below 170
◦
[26]) just like

camera lens. As a result, it is non-trivial to maintain stable

connectivity even at a room-level. Link outage occurs when

a user exits the access point’s FoV due to motion, hand/body

rotation, or blockage by other surrounding people.

To overcome the challenge, one natural method is to de-

ploy relays with complementary FoVs to approximate perva-

sive coverage [1, 26]. However, our field tests reveal that the

effectiveness of mmWave relaying highly depends on the en-

vironment and device locations, and a static relay still suffers

from many blind zones/angles (Sec. 7.2). Although deploying

multiple APs may help, it has been shown that even 3 APs

can only cover 90% of a simple 7 × 8m2
area without any hu-

man activities nearby[26]. Worse still, the blind zones/angles

vary dynamically as more people walk around, thus demand-

ing more APs to remove the blockage/shadowing effects. The

resulting backhaul or cabling cost thus becomes formidable,

even for simple multi-room office or home environment.

In this paper, we propose miDroid, which explores robotic

intelligence to realize continuous coverage for mobile

mmWave users. miDroid is inspired by the vision that robots

will eventually become part of the home and enterprise

environments to help automate our daily lives and improve

productivity. In fact, cleaning robots and telepresence robots

have already been widely adopted, promising a multi-billion

market [15]. miDroid piggybacks a mmWave radio on a

robot and transforms it into a mobile relay (Fig. 1). A naive

way of leveraging this robotic relay is to always navigate it

to “follow” the client. But this is infeasible in practice due

to the robot’s limited moving speed/agility and constrained
mobility region, and when multiple clients coexist. For in-

stance, one may want to set the robot’s mobility region as

a narrow strip beside the walls, so that the relay will not

interfere with human daily activities, as shown in Fig. 1. The

key insights behind miDroid are: (i) The mmWave channel

is intrinsically sparse [23, 27]. Coverage issue is often due

to specular reflections not being redirected to the proper
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Figure 1: Usage scenario of miDroid. Figure 2: miDroid system overview. Figure 3: Beam cross section.
angle. Even minor movement of the robot relay can save

the client out of the shadowed region. Therefore, it can

improve the coverage substantially even under speed/space

constraints. (ii) The client’s orientation may change rapidly,

and it is infeasible for the robot to keep itself within the

client’s FoV. However, if the mmWave robot can sense am-

bient reflectors (e.g., walls and furniture), it can judiciously

navigate itself to a position/angle that may lead to a diverse

set of reflection paths, thus probabilistically maximizing the

likelihood of covering the client at any time. These insights

set miDroid apart from the legacy WiFi or cellular relay

networks [2, 4, 12, 30] whose designs are oblivious of node

orientation and environmental structures.

Realizing the principle of autonomous mmWave relay-

ing requires a revisit of two classical problems in robotics:

environment mapping and path planning. Unlike the con-

ventional robotic navigation, however, the unique challenge

is that both problems need to be studied within the radio

“environment” from the mmWave radios’ eyes (comprised

of the invisible signal paths and beams), rather than the

physical environment. First of all, miDroid needs to predict

the best feasible relay position based on prior knowledge

of ambient reflectors, which in turn requires a reconstruc-

tion of the environment (e.g., reflectivity and geometrical

layout). At run time, the relay can keep tracking the client’s

position, and plan its moving trajectory to maximize the

likelihood of full coverage for the client. Reconstructing the

environment requires disentangling each reflection path and

characterizing each reflecting point. Conventional ways of

resolving signal paths [27], i.e., discriminating their angle-of-

arrival (AoA) and angle-of-departure (AoD), require phase-

coherence across packets, which is infeasible on commercial-

off-the-shelf (COTS) mmWave communication devices [19].

In miDroid, we propose a beam spatial correlation maxi-

mization method, which combines the autonomous motion

control and self-localization capability of the robot, with

simple RSS measurement from the mmWave radio, to extract

the path geometries. Then we build a geometrical model to

transform the path information into an environment outline.

Meanwhile, we leverage the diversity of phased-array beam

patterns, to enable a single relay to track the client’s position

even under blockage.

Second, the path planning for mmWave relay is intrinsi-

cally dynamic, and differs fundamentally from conventional

path planning algorithms in robotics and robot-driven omni-

directional radio networks (see [3, 30] and references therein).

Legacy path planning derives the shortest/optimal path to

one or more target positions. But the mmWave relay needs

to maintain high link performance for the client along the
path. This implies the relay needs to predict the client’s per-

formance along each point of the path, which is non-trivial

as the performance depends on the environment, as well as

the relative position/orientation between the relay, client

and AP. Moreover, even for an oracle with perfect prediction,

computing the optimal trajectory across the points entails ex-

ponential complexity. In miDroid, we introduce a statistical

method to predict the relay performance; We then simplify

the relay path planning as a tree searching problem, based

on an undiscovered locality property of the relay’s spatial

performance distribution.

miDroid, to our knowledge, represents the first system that

harnesses robotic intelligence to facilitate seamless mmWave

networking. Its contributions can be summarized as:

(i) We design novel algorithms that combine the mo-

tion/orientation control capability of the robot with the RSS

measurement capability of COTS mmWave radios, to ac-

curately recover the geometries of signal paths, and sub-

sequently create an outline of the environment from the

mmWave radios’ eyes.

(ii) We design an adaptive path planning algorithm that

navigates the robot relay in real-time, and statistically maxi-

mizes network performance under environment dynamics

and the client’s self-blockage.

(iii) We implement miDroid on a programmable robot,

integrated with COTS 802.11ad radios. Our experiments in

multi-room environments verify that miDroid can maintain

nearly full coverage for an office environment, even when

the robot is constrained to a small area and low speed. In com-

parison, existing solutions need around 4-5 APs to achieve

similar performance.

2 MIDROID OPERATIONS
miDroid’s operations follow two stages, as illustrated in

Fig. 2. When entering a new environment, miDroid needs

to initialize itself through an offline sensing stage. Here the
robotic relay roams around and locates the AP relative to

a prescribed starting point, by simply sampling the AP-to-

relay RSS. Then the relay, assisted by the AP, reconstructs the

environment, i.e., inferring location, shape and reflectivity

of major reflectors and obstacles. Both the AP location and

environment information is fed into a ray-tracing engine,

which models the signal’s propagation and interaction with

environment, thus enabling miDroid to predict the channel
quality of arbitrarily located AP-client or AP-relay-client links,
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Figure 4: BCS correlation. Figure 5: Effect of SMIC.
without requiring war-driving site-survey..
Afterwards, during the online relaying stage, the relay

keeps tracking the client, based on prior knowledge of the

environment, and the RSS of the relay-client link (for LOS

and/or NLOS signals). Further, the relay employs an adap-
tive path planning scheme to compute the optimal moving
trajectory, and roams itself accordingly.

Note that the signaling protocols for establishing two-hop

relay links have already been standardized in 802.11ad [7].

However, problems such as whether to use relay and when to

switch remain open. miDroid enables such decision making,

as it can predict the individual link qualities (AP-client vs.

AP-relay-client) and pro-actively switch to the relay mode

when needed.

3 THE OFFLINE SENSING STAGE
Modern consumer robots, equipped with optical rangers,

motion sensors, and SLAM algorithms, can already

achieve self-localization and floor map reconstruction

[28]. But they are unaware of mmWave signals’ propa-

gation/reflection/penetration in the environment, which

determines the relay performance. miDroid augments the

robot’s physical sensing with mmWave wireless sensing.

The core mechanism behind is called beam-cross-section

correlation maximization (BCS-CM). BCS-CM extracts spa-

tial information embedded from a series of AP beacons,

and then recovers the AoA/AoD of mmWave signal paths.

Such signal path geometry, combined with the robot’s view,

creates a radio environment map which is the key input into

miDroid’s path planning algorithm.

3.1 Path Geometry Estimation
To estimate the path AoA/AoD, one naive solution is to treat

the mmWave radios as directional laser scanners, and steer

over all angles to locate the reflecting point, just like optical

LIDAR. However, practical mmWave phased-array beam

patterns have imperfect directionality and limited spatial

resolution. The beamwidth can be very wide (more than

30
◦
for most beams even for a 32-element phased-array[26]),

and multiple strong side-lobes often coexist, which hampers

accurate path estimation [22, 26, 27]. BCS-CM solves the

issue by harnessing redundant spatial information embedded

in a series of beams, instead of relying on a single ideal

laser-like beam. It can recover the AoA/AoD of multiple co-

existing paths through a successive multi-path interference

cancellation (SMIC) scheme. We now proceed to the details.

Beam Cross Section. The 802.11ad standard mandates

that an AP (Tx) broadcasts a series of beacons in the begin-

ning of each beacon interval to facilitate network discovery.

The beacons are directional and bear unique beam patterns.

The Rx is typically tuned to quasi-omni mode when trying

to capture the beacons [26]. We define the beam cross sec-
tion (BCS) as the set of RSS measured at a certain angle for

all beacons. Fig. 3 illustrates the BCS of 3 beam patterns

cut at 90
◦
(relative to the antenna plane at 0

◦
), measured

on our 32-elment 802.11ad radio (Sec. 6). Formally, suppose

we discretize the 2D horizontal plane (perpendicular to the

phased-array panel) into multiple angles then a BCS at angle

i is denoted as Bi and defined as follows,

Bi = {RSS1,i , ..,RSS j,i , ..RSSN ,i } (1)

where RSS j,i is the signal strength of jth beacon at the ith
angle, and N is the number of beacons.

BCS Correlation Maximization (BCS-CM). Suppose
the AoD of a Tx-Rx signal path is the ith direction, then ide-

ally a quasi-omni Rx will measure the vector Bi during Tx’s

beacon sweeping. These ideal Bi values can be derived dur-

ing the phased-array’s factory calibration, or from a one-time

measurement of all its beam patterns (Sec. 6). In practice, BCS

deforms due to signal attenuation and multipath reflections,

represented by an unknown channel gain hi . The actual mea-

sured BCS for angle i should follow [19, 26]: BMi =hiBi + n
where n is the noise. Note that frequency selective fading

may vary hi across frequency bins in a wideband channel.

But to simplify exposition, we can consider a typical fre-

quency bin that represents the average across all bins.

To identify the direction i from the BMi measurements,

BCS-CM uses RSS trend in the BCS rather than absolute RSS

values. Intuitively, BCSs are distinguishable due to the beam

pattern heterogeneity across beacons. In Fig. 4, we compute

and plot κ(Bi ,Bj ), the correlation coefficient [14] of two BCS

vectors (Bi and Bj ) to measure their linear dependence, from

which we observe that the correlation between two BCSs of

different angles is much smaller than that of the same angle,

i.e., κ(Bi ,Bj )≪κ(Bi ,Bi ). The result implies that BCS corre-

lation is highly resilient to channel distortion. Therefore, we

can compute correlation between measured BMi and each of

the ideal Bi values, and pick the direction i∗ corresponding
to the maximum correlation as the AoD, i.e.,

i∗= argmaxi κ(BM ,Bi ) (2)

The AoA is derived using the same method, with a Tx-Rx

role reversion. We omit the details due to space constraint.

Successive multi-path interference cancellation
(SMIC). In practice, multiple paths may coexist between Tx

and Rx, and the measured BCS may contain one or more Bi
with diverse channel gains, expressed as:

BM =
∑

i ∈ΦhiBi + n (3)

In this case, directly applying BCS-CM will result in er-

roneous AoD estimation. We illustrate this point using an

example BCS measurement that comprises two paths: path

1 with AoD 105
◦
and channel gain 0.8, and path 2 with AoD

168
◦
and channel gain 0.3. Fig. 5 plots the correlation be-

tween measured BCS and possible Bi values. While BCS-CM

can accurately identify path 1 (correlation peak), it cannot
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Algorithm 1: Path Geometry Estimation

Input: all Bi for each ith direction, measured BM
Output: the set of AoD angles Φ
Initialization: Φ=�, BCS residue Br =BM
while Eq. (6) doest not hold do

/*paths remian to be detected*/

identify next path with angle i∗ using Eq. (2);

compute channel gain h∗i using Eq. (5);

update Br using Eq. (4);

Φ=Φ ∪ i∗;
end

find path 2 whose correlation is immersed in noise.

To recover weaker paths, BCS-CM employs a SMIC de-

sign, inspired by successive interference cancellation [25] in

communication theory. SMIC first detects the strongest path

through BCS-CM. It then subtracts that path’s BCS from the

measured BCS and reruns BCS-CM from the residue. The

process iterates until all the paths are identified. Algorithm 1

summarizes this procedure.

Realizing SMIC entails two challenges: (i) After detecting
a path with AoD along ith angle, how should SMIC obtain

the hi to be canceled? (ii) When to stop SMIC’s iterative

process, given that the number of paths is unknown? We

solve the problems by further exploiting the information

embedded in BCS correlation. First, suppose we just detected
a path with ith angle using Eq. (2), the problem is to estimate

its channel gain h
′

as accurately as possible, so we can get a

purified residue Br after canceling hiBi from BM , i.e.,
Br =B

M − h
′

Bi = (hi − h
′

)Bi +
∑

j ∈Φ&j,ihjBj + n (4)

From above, we can deduce that the absolute correlation

between Br and Bi will be minimized when h
′

=hi . Thus, we
can estimate channel gain h∗i as follows,

h∗i = argminh′ |κ(Br ,Bi )| (5)

where we limit h′
within (0, 1). After deciding on h∗i , we will

get an accurate residue Br and keep the iterative SMIC going.

Continuing with the example in Fig. 5, path 2’s correlation

peak appears after path 1 is canceled. Second, SMIC should

stop when no path exists in Br , when correlation approaches

noise floor κ(Br ,n). Formally, the stopping rule is:

max∀i |κ(Br ,Bi )|
mean(

∑
∀i |κ(Br ,Bi )|)

≤σ (6)

Here the smaller the threshold σ is, the more paths would

be detected, but possibly with false positives. In practice, we

find σ =2 suffices. This may miss some weaker paths, but

does not affect miDroid’s environment sensing, which needs

stronger paths to provide more reliable information.

3.2 Environment Reconstruction
Locating the AP. miDroid achieves fully automatic AP

location and orientation sensing, by exploiting mobility and
self-localization ability of the robot relay. Specifically, the ro-
bot needs to roam randomly around the AP, and select L
locations with highest link throughput (most likely due to

existence of a LoS paths). At each location l ∈ [1,L], the robot
derives the AoA of the strongest path, θl , using BCS-CM.

Meanwhile, the robot relay knows its own position xl . Given
xl and θl , miDroid runs a statistical method to estimate the

AP location, illustrated in Fig. 6: corresponding to each xl ,
the angle θl indicates the possible direction of the AP rela-

tive to the robot. In total there exist L(L − 1)/2 intersection

points among all L possible directions. We use the center

of all intersection points, xAP , as the final estimation. Simi-

larly, we derive AP orientation by examining all possible AP

orientation 0≤α ≤ 360. Specifically, since the radios’ beam

patterns are known a priori, we can predict a BCS received

at each relay position given xAP and an α . Then we try each

α and find the one with the prediction closest to the actual

BCS measured by the robot. To minimize errors, we use the

average orientation estimation over all L robot locations.

Locating reflectors and constructing environment
map.miDroid reconstructs an outline of the environment by

combining robotic motion and mmWave sensing. By sweep-

ing through the space, the robot first generates an environ-

ment floor map. Meanwhile, given the AoA and AoD of all

NLoS signal paths (obtained through BCS-CM), the robot

can locate the points that reflect (“bend”) the mmWave sig-

nal paths, using classical geometrical models [27]. miDroid

then corrects the location error by matching each reflecting

point to the closest point on the floor map. Furthermore, it

estimates the reflection loss of each point, by subtracting the

measured channel gain along the NLoS path from the ideal

Friis LoS path loss. Similarly, it can estimate the penetration

loss when the robot roams behind an obstacle. Following

these steps, miDroid creates a map of the environment from

the mmWave radios’ “eyes”. Note that for multi-room en-

vironment, to facilitate environment learning, the AP may

need to be temporarily moved to multiple locations (but no

backhaul is needed) so that its signals can hit all reflectors.

Using the learned information to drive ray-tracing.
The ultimate link quality between the AP, relay and client

depends on the radio beam patterns, signal propagation

loss, and environmental distortion (reflection and pene-

tration loss). We model such joint effects through a ray-

tracing approach, which uses environment information

(i.e., AP location, reflector layout/reflectivity, blockage lay-

out/penetration), and the measured beam patterns of each

mmWave radio, as input; and outputs the RSS accordingly.

Our ray-tracer follows the classical process in [27], whose

accuracy has been extensively validated.

4 CLIENT TRACKING
Client tracking is much like AP-localization. To track the
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client’s location, the relay first derives the measured BCS

between itself and the client. It then employs the ray-tracer

to compute the BCS of each possible candidate location, and

picks the one that best matches the measured BCS (i.e., with
the maximum correlation). Here the time consuming ray-

tracing process (i.e., predicted BCS between any pair of relay

and client) is done offline and cached as a look-up table.

Note that human dynamics can also be processed offline

by enumerating BCSs under all possible combinations of

path blockage and client orientation. So at run time, miDroid

only needs to run a simple correlation-match computation

to enable real-time client tracking. However, location am-
biguity may arise, i.e., more than one candidate locations

may have similar path geometries (e.g., when multiple paths

arrive in parallel at different locations). miDroid resolves the

ambiguity by exploiting the continuity of client’s movement.

Among all candidate locations that match the measured BCS,

it picks the one closest to the latest client location sample.

We emphasize that miDroid’s client tracking works regardless
of client orientation or blockage. This is because its BCS cor-
relation match takes into account all possible LoS and NLoS

paths between the relay and client. Even if certain paths

are blocked by other users or the client herself, other paths

may still survive and lead to the highest correlation between

measured and ray-tracing predicted BCS.

5 ADAPTIVE PATH PLANNING
To execute the path planning, we design a statistical perfor-

mance indicator called E-index, to quantitatively character-

ize how good a relay position & orientation is, based on the

learned environment information. For a given client posi-

tion, the relay’s E-index distribution over space is called a

roadmap. Then we model the relay path planning as a tree

searching problem on the roadmap. We further exploit a ‘lo-

cality’ property of relay performance to reduce the model

complexity, and design a practical adaptive path planning

scheme for mobile client (i.e., dynamic roadmaps). We now

describe each design component in detail.

5.1 E-index to Model Relay Performance
A good relay position should enhance the client’s re-

silience against rotation or blockage. Intuitively, a better

relay position should manifest two characteristics: (i) The
relay→client paths’ AoAs should be sparsely distributed

across all angles, and should be complementary to the

AP→client paths’, so that the likelihood of all paths being

simultaneously blocked is low. (ii) Both the AP→relay and

relay→client links should have strong RSS to ensure high

throughput across the two hops.

The E-index metric incorporates the two characteristics,

drawing on inspiration from the entropy concept in infor-

mation theory [13]. Consider an arbitrary relay location

and orientation which, together with the AP, creates P sig-

nal paths to a client, each path with RSS βp and AoA ϕp
(∀p ∈ [1, P]). We denote the corresponding spatial channel

profile as Ψ= {(β1,ϕ1), (β2,ϕ2), ..., (βP ,ϕP )}.
To examine the AoA’s spatial distribution, we split the

horizontal space into S angular zones,As ,∀s ∈ [1, S]. For each
zone, we define its zone RSS as the sum signal strength of all

paths falling in the zone, i.e.,
RSSs =

∑
∀p,ϕp ∈As βp (7)

Then we normalize the zone RSS by dividing each RSSs by
the total RSS, i.e., sumRSS ,

∑S
s=1 RSSs , as follows,

ˆRSSs =RSSs/sumRSS (8)

Treating ˆRSSs ,∀s ≤ S as a sequence of numbers that form

a probability density function, we characterize how evenly

the zone RSS are distributed across all angles, following the

entropy definition, i.e.,
eRSS =

∑S
s=1

ˆRSSs × log(1/ ˆRSSs ) (9)

Then the E-index η is defined as follows,

η= sumRSS × eRSS (10)

where eRSS reflects AoA sparsity to keep resilience to rota-

tion/blockage, and sumRSS reflects the need for strong RSS.

Computing the spatial distribution of E-index. Note
that the E-index η depends on the positions of the client and

relay, and also the surrounding environment. To formalize

the relationship, we first discretize the space intoM ×N cells,

as shown in Fig. 7. We define C0, C1 as the set of cells that

relays or clients can move freely, respectively. Note that C0

can be any constrained region defined by end-users (e.g.,
limited to within 0.5m against walls as in our experiments in

Sec. 7.2), so that the relay will not interfere with human daily

activities. Given any pair of relay and client, located in cell

(i, j) and (u,v) respectively, we can derive the signal path

geometries and RSS for the client following Sec 3. We then

compute the E-index for the pair, η(i, j,u,v), using Eq. (10).
For a given client position (u,v), we denote the spatial dis-
tribution of E-index across all possible relay positions (i, j)
as a roadmap.
Determining the optimal relay position. For a client

position c(u,v) ∈C1, the optimal relay position r (i∗, j∗) can
be derived as

(i∗, j∗)= argmax

∀r (i, j)∈C0

η(i, j,u,v) (11)

Fig. 8 plots the roadmaps as a client moves across 10 loca-

tions in an example scenario. The optimal relay positions

within each roadmap are highlighted. We can observe the

unique challenges in navigating the robotic mmWave relay.

In particular, the legacy path planning algorithms (e.g.,A∗
,D∗

,

etc. [3]) navigate a robot along the shortest feasible path. But
they cannot guarantee network performance points along

the path, which is critical for mmWave connectivity. More-

over, the roadmap keeps changing after each movement of

the client, which renders legacy path planning infeasible.

5.2 Tree Model over Dynamic Roadmap
To handle dynamic roadmaps and ensure intermediate re-

lay performance, we build a tree searching model, as illus-

trated in Fig. 9. The root is the initial relay position; the

children nodes are its reachable neighboring cells, and the
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Figure 8: Relay locality: bright(red) color represents high E-index
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Figure 9: Tree model

Algorithm 2: Adaptive Path Planning Algorithm

Input: current client location c0 and velocity v0
Output: movement command to the robot

while True do
Predict K client locaions {c1, ...cK } using Eq. (12);

Derive roadmaps { f (1), ... f (K)};
Derive λ(k), µ(k) of each f (k)’s good relay zone;

if Eq. (13) holds then
/*the optimal relay is nearby*/

Search K depth over the tree model;

Derive the optimal K-step relay path, p∗;
Command the relay move one step along p∗;

end
else

/*the optimal relay is far away*/

Compute the optimal relay with max. E-index;

Derive the optimal path using Dijkstra algo.;

Command the relay moving along the path;

end
update c0 and v0 at the new relay position;

end

edge weight is the E-index of the corresponding child. In

this way, we essentially model roadmap dynamics (i.e., vary-
ing E-index) through different E-index weight at different

tree depth. For instance, if the relay plans to move from

the root r (i1, j1) to r (i3, j3) at depth-1, the edge weight is

η(i3, j3,u1,v1) given the current client location c(u1,v1). Sup-
pose the client also moves to a new location c(u2,v2) as the
relay moves to r (i3, j3), then the edge weights to depth-2

nodes will be the E-index when the relay moves to r (i3, j3)’s
neighbors, e.g., η(i6, j6,u2,v2), if the relay plans to move to

r (i6, j6) for the next step.
From an oracle’s perspective, the optimal relay path can

be derived using a brute-force tree searching, assuming the

client’s trajectory is known a priori. However, two challenges
arise in practice: (i) Predicting client movement is a non-

trivial and error-prone task. (ii) The search complexity is

O(Pd ), where P is the cardinality of children (i.e., 4 if we limit

the robot to straight-line movement), and d is tree depths

(hundreds to thousands scale). Clearly, the computational

cost and resulting delay is unaffordable.

5.3 Adaptive Tree Searching
miDroid curtails the path planning complexity through an

adaptive tree searching (ATS) algorithm, which harnesses a

“locality” property of E-index. As illustrated in Fig. 8, posi-

tions with high E-index tend to form a cluster (henceforth

referred to as good-zone). Relay performance is consistently

high inside the zone. More importantly, the good-zonemoves

forward gradually along with client movement, until an

abrupt environmental change (e.g., the client passes a ma-

jor obstacle, such as a large TV screen, shown in subplot

7). Afterwards, a new good-zone forms and the phenome-

non repeats (i.e., subplot 7, 8, 9 and 10). In fact, the locality

property roots in the spatial channel sparsity inherent to

mmWave channels. Specifically, for a given client position, a

few major signal paths dominate the performance, whereas

the path strengths and incident angles gradually evolve with

user mobility, unless sudden environmental change blocks

the paths and/or creates new ones. We can also observe that

a good-zone commonly includes many cells, which hints that

miDroid robot may find near-optimal location to move to

even if it is constrained to a certain mobility region.
The locality of E-index implies that short-depth tree search-

ing suffices, based on short-term prediction of user movement.
Accordingly, ATS operates as follows (Algorithm. 2). (i) It
estimatesK time slots of client user’s future movement using

first-order prediction, i.e., For each kth slot, the predicted

client location is:

ck =c0 +v0 ∗Tk ∀1≤k ≤K (12)

where c0 andv0 are the client’s current location and velocity,

and Tk is the time from now to k . Here we set Tk =k ∗ BI ,
where BI is the beacon interval (typically below 100 ms) dur-

ing which client localization executes. (ii) For each slot, ATS

computes the relay’s good-zones, and checks whether the

zones experience sudden shift. We detect a shift by exam-

ining how far the good-zones of consecutive roadmaps are

separated from each other. Specifically, for two consecutive

roadmaps denoted with f (k) and f (k + 1), ATS derives the
good-zone centers (λ(k) and λ(k + 1)) and radius (µ(k) and
µ(k + 1)), using the classical clustering algorithm [6]. It then

examines whether the L-1 distance of the centers is larger

than the average radius, i.e.,

|λ(k + 1) − λ(k)| ≤
µ(k + 1) + µ(k)

2

, ∀k <K (13)

If Eq. (13) holds, the relay will search the tree for K steps,

and derive an optimal moving trajectory. To minimize the

effect of wrong prediction, the relay moves only one step

along the trajectory, then it repeats the K-step-prediction &
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Figure 13: Environment
learned by miDroid.

one-step-movement procedure. If Eq. (13) does not hold, then

zone shift happens. The relay will be aware that the optimal

relay position is far away. Then it computes the optimal

relay with the maximum E-index according to Eq. (11), and

moves towards it along a path computed from the Dijkstra

algorithm. Though Dijkstra algorithm cannot guarantee path

optimality, in this case the priority is to reach the new good-

zone as soon as possible. Also, note that user movement

prediction at sub-second level is of high reliability [26]. Our

evaluation result (Sec. 7) will further show that 3 look-ahead

steps (K =3) already lead to high relay performance.

6 IMPLEMENTATION
Hardware components. Our miDroid system prototype

consists of an AP, relay and client, as depicted in Fig. 10.

The AP is a small PC mounted on top of a tripod of 1.8m-

height, and the relay and client are Intel NUC mini-PCs

(around 4 inches on all dimensions), mounted on Create

2 programmable robots [8]. These devices are all equipped

with the Qualcomm 60 GHz network interface card [18], com-

prised of QCA6310 RF front-end, QCA6320 MAC/baseband,

and a 32-element phased array (supporting 36 beams). The

NUC controls the robot through maneuvering commands

(e.g., translation/rotation directions, speed and duration). The
commands for the relay robot follow miDroid’s path plan-

ning algorithm, whereas the client robot is programmed to

move freely like a vanilla user. miDroid can either use the

decode-and-forward [18] or amplify-and-forward relaying

[1], both already demonstrated in practical mmWave system

design[1, 21]. In this work, we emulate the amplify-and-

forward mode by ignoring the time-division-multiple-access

overhead across the two hops.

Real-time implementation of miDroid modules.We

implement miDroid’s major design components (i.e., envi-
ronment reconstruction, client tracking, path planning al-

gorithms, and also the ray-tracer) in Matlab, which run on

the relay’s NUC. To facilitate real-time path planning, we
offload the computation of offline sensing (Sec.3) and E-index

computation (Sec. 5.1) on a PC server, and feed the results

to the AP and relay in the form of static data structures

and lookup tables. For instance, after environment learning,

miDroid computes the E-indexη(i, j,u,v) for all pairs of relay
r (i, j) and client c(u,v) offline, which avoids the notoriously

time-consuming ray-tracing. we emphasize that this offline

processing only needs to be done once for each environment.

Our experiments reveal that, the offline processing takes less

than one hour when running on an ordinary laptop PC, for

a sophisticated multi-cubicle office environment (Fig. 24).

Then at running stage, only efficient table-look-up and ba-

sic arithmetic operations are needed. The overall latency is

less than 10ms for miDroid making each movement decision

in our current implementation, and can be further reduced

if miDroid is incorporated and runs inside low-layer NIC

driver module. A similar offline caching mechanism is im-

plemented for client localization (see Sec. 4). Recall that the

client localization is based on the beacon RSS measurements

at 802.11ad’s BI intervals (100 ms), which is fast enough for

real-time decision making.

7 EXPERIMENTAL EVALUATION
7.1 Micro Benchmarks

7.1.1 Environment Learning.
Signal path estimation.We first verify the effectiveness

of BCS-CM and SMIC in isolating multiple NLoS/LoS signal

paths and estimating their geometries. We set up 100 Tx-Rx

pairs randomly located in a typical office (i.e., 8× 10m2
office

with multiple cells, separated by concrete walls in Fig.13) and

get the ground-truth from measurements using a software

radio with a 3
◦
horn antenna. Fig. 11 plots the CDF of AoA

estimation error (we omit AoD as the results are similar).

We have two major observations: (i) miDroid extracts up

to 4 paths before its SMIC iteration terminates. This echoes

previous measurement insights that only 3∼5 major paths

exist in typical indoor environment due to channel sparsity

[23, 27]. (ii) miDroid can accurately estimate signal paths,

with a small mean error 1.64◦ across all paths. A further

examination reveals that the error tends to be higher for

weaker paths due to residual inter-path interference. How-

ever, even for the 4th paths immersed under the previous

three, the average error is only 7.31◦.
AP localization. To verify miDroid’s AP localization

method, we place the AP to 10 random locations with arbi-

trary orientations. Fig. 12 shows the mean error and std. As

the robot roams to more points to collect more AoA/AoD

samples, the AP sensing errors keep decreasing. Even with

5 sampling points, miDroid can already estimate the AP’s

location (orientation) with a small mean error of 5 cm (1
◦
).

Converging to this small error takes only around 1 minute.

Reflector reconstruction. We let miDroid relay scan

the environment following Sec. 3, and depict the estimated

reflecting points along with the robot-generated floor map

in Fig. 13. We note that: (i) The positions of reflecting points
closely match the ground truth. The mean error is only 0.17m

over all estimated points. (ii) The estimated reflection loss
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(represented with different colors) well matches the material

properties reported in [27].

7.1.2 Client tracking.
Accuracy of client tracking. We now let a client user

move continuously along a randomly-generated trajectory,

and the relay navigates itself according to the path planning

algorithm (Sec. 5). We repeat the experiment across 10 tra-

jectories, and pick 10 equally-spaced positions along each

trajectory to verify the client tracking accuracy. From the

results in Fig. 14, we observe that: (i) The location ambi-

guity significantly undermines localization accuracy. While

70% points have an error less than 0.5m, there exist points

with up to 3m error. (ii) Fortunately, miDroid’s ambiguity-

removing mechanism effectively removes outliers and brings

the average error down to 0.23m.

Robustness to client rotation and blockage.Using the
same setup as above, we let the client rotate in steps of 30

◦

at each location. The box plot in Fig. 15 shows the client

tracking error, at 10%, 25%, 50%, and 90%. We see that the 90-

th errors are below 0.62m and median below 0.4m, regardless

of the client’s position and orientation. We further select 10

client locations that have 4 paths between the relay, and

intentionally block 1 to 3 paths. Fig.16 plots the localization

errors. Though the average location error keeps increasing,

it remains less than 0.5m even when 3 paths are blocked. The

experiments validate that miDroid’s client tracking ability
is resilient to user rotation dynamics, and does not require
the existence of a LoS path as in traditional phased-array
localization schemes [29].

7.1.3 Path planning.
How well does E-index model spatial performance?

Recall that E-index is a probabilistic metric, intended to re-

flect potential link performance. We now evaluate it against

the ground-truth link bitrate. Specifically, we select 100 relay-

client pairs with random locations. For each pair, we first

rotate the client to 20 random directions, and then block the

client 20 times with different path combinations. For each

run, we measure the link RSS and map it to 802.11ad bitrate

as in [7]. Then we compute the average bitrate over all rota-

tion and blockage settings for each client, and plot it against

the client’s E-index. The results (Fig. 17) show that: (i) The
RSS fluctuates even for a fixed E-index, which roots from

the probabilistic entropy-like definition of E-index. (ii) A
clear positive logarithmic-correlation holds between E-index

and RSS, as expected from the log term in Eq. (9). Therefore,

E-index can indeed quantitatively represent relay performance.
Relay path optimality.We run miDroid’s path planning

algorithm over the aforementioned 10 client trajectories. For

each trajectory, we examine the relay performance by com-

paring the mean E-index (i.e., over all points along the tra-
jectory) under different look-ahead depths. Fig. 18 shows

that: (i) E-index increases from 3.4 to 5.6 when look-ahead

depth K increases from 1 to 6, because look-ahead offers

more information especially about the abrupt environmental

changes, so that miDroid can prepare in advance to avoid

link outage. (ii) More importantly, the gain quickly saturates

as look-ahead depth increases to 3. The finding further cor-

roborates the locality effect of relay performance (Sec. 5):

the optimal relay position (corresponding to the next client

position) is often close by. So, even with a small look-ahead

depth, miDroid can achieve high performance while avoiding
the exponential computational complexity, which paves the
way for real-time relay path planning.

Impact of moving speed. We repeat the above 10-

trajectory experiment, but vary the robot’s speed from 0.1

to 1 (relative to the client’s speed 0.8m/s). For comparison,

we also compute the performance of Oracle(E-index) and

Oracle(throughput), which assumes an infinite-speed relay

that can immediately move to the position with the maxi-

mum E-index and throughput, respectively. Fig. 19 shows

that: although a faster relay may reach the optimal position

sooner, the benefit converges at a speed of 0.6 owing to the

locality property. Therefore, the robot relay does not need to
follow the client’s speed. It can keep near/in the optimal relay
zone even when it moves much more slowly.
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Figure 24: Multi-AP unable
to eliminate blind angles.

7.2 System Level Evaluation
Now we evaluate miDroid’s performance end to end.

Link availability.We now conduct a system-level eval-

uation of miDroid in the typical indoor scenario of Fig. 13,

with one user holding the client device, while up to 5 other

people walking around causing dynamic blockage. We com-

pare miDroid with two baselines: AP-only, and fixed-relay

(placed opposite to the AP to provide the most complemen-

tary coverage). We first evaluate link availability over 10

random client trajectories. Link availability is defined as the

percentage of time when throughput exceeding a threshold

T (here defined as half of the maximum throughput of our

802.11ad radios). The results (Fig. 20) show that miDroid

achieves 87.2% availability on average across all the setup,

in comparison to 52.8% and 75.5% for AP-only and fixed-

relay, respectively. In particular, miDroid’s link availability is

around 95.4% when no other people exist, achieving a nearly

seamless coverage for the client. We emphasize that the key

merit of miDroid lies in the ability of eliminating worst case
performance (link outages and disconnections), which is the

bottleneck to user QoS. Such cases mostly happen when the

client moves into a blind spot for the AP or fixed-relay. By

investigating the trace corresponding to Fig. 20, we find the

results that validate our intuition: for the 3 client positions

with lowest performance, miDroid can increase link avail-

ability from 35% to 95% with the client alone, and to 88%

even with two other active people.

We also repeat the link availability test in a larger and

more complicated 14×16m2
lab space (Fig. 22), with 4 half-

open cells and 6 arrays of workbenches that can easily block

the mmWave links. We can observe from the results in Fig. 21

that even in a challenging environment, miDroid demonstrates
superior performance. It improves link availability by more
than 2×, compared with the other two solutions.

Performance comparison with multiple fixed APs.
We compare miDroid against a multi-AP solution. In partic-

ular, we increasingly deploy from 1 AP to 5 APs in the lab

space, which are placed with complementary FoVs (Fig. 22).

Measurement results (Fig. 23) show that: miDroid’s link avail-

ability and throughput is comparable to 5-AP. Even when

the robot moves in a highly constrained region (within 0.5m

against walls), miDroid’s performance (labeled “limited”) is

still better than 4-AP, and close to 5-AP.

We also showcase an extreme example in Fig. 24, where 10

APs are deployed, and a client is located near the corner of a

workbench. The polar graphs show the circular throughput

for multi-AP (blue curve) and miDroid (orange curve), re-

spectively. We can observe that even 10 APs cannot provide

a stable link due to the existence of blind angles, whereas

miDroid achieves a near-omnidirectional coverage.

Discussion on system extension.Note that miDroid re-

lay does not stay close with a client, but elaborately navigates

itself to relaying positions that can best harness reflection

paths to maximize the E-index for the client. Such methodol-

ogy enables a natural extension to support multiple clients,

by setting other optimization objectives, e.g., maximizing

the sum of all users’ E-index, or maximizing the minimum

E-index across all users. How to choose an appropriate ob-

jective and balance trade-off between throughput and fair-

ness shall be an interesting problem. In addition, the current

miDroid involves only one AP associated with the robotic

relay, and we focus on solving challenges of client tracking

and relay path planning. For an extended scenario involving

multiple APs and even multiple relays, new challenges will

arise including AP switching and movement coordination

among relays. We leave such exploration for future work.

8 RELATEDWORK
Mobile relaying for mmWave networks. Lack of cov-

erage and stability is a major issue for mmWave networks.

Substantial research [5, 19, 22–24, 32, 33] focused on effi-

cient beam steering methods to rapidly recover from mo-

bility/blockage disruptions. Yet even perfect beam steering

cannot overcome the blind zones due to limited FoV [26].

Recently, mobile relay/robotics systems [2, 4, 12, 30]

started gaining traction due to wide availability of drones and

robots. However, these systems operate with low-frequency

omni-directional radios, and hence they do not bear the

challenges unique to mmWave networks. The benefits of

mmWave relaying have been verified theoretically [9, 10],

and through preliminarymeasurements [21]. StaticmmWave

relays or APs have been exploited [1, 26] to overcome the

limited FoV. We have provided experimental evidence to

show the limitations of such systems, and the advantages of

an autonomous mobile relay.

Path planning, as one fundamental problem in robotics,

has been extensively investigated [3, 30]. The classical A∗

algorithm and its adaptations including D∗
and D∗

-lite navi-

gate a robot to static/mobile destination while avoiding ob-

stacles. Whereas miDroid shares similar spirit, the objective

of robotic mmWave relay differs in that the planned path

needs to guarantee the overall statistical link performance

comprised of all signal propagation paths, instead of sim-

ply being the optimal geometrical path towards a number

of points of interest. Moreover, mmWave’s strong depen-
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dence on environment and thus the dynamic roadmap make

previous path planning mechanisms infeasible. Essentially,
miDroid solves a set of unique problems in the intersection
between mmWave networking and robotics.

Environment learning and localization. To sense sur-
rounding reflectors, existing systems either move a pair of

mmWave Tx/Rx radios following a deliberately designed

trajectory to scan a specific reflector [34, 35], or place ra-

dios at specific site-survey points [27]. In particular, E-Mi

[27] uses a multi-path resolution framework to estimate the

AoA/AoD of signal paths. But it relies on both RSS and phase

measurements on a custom-built software radio, due to lack

of coherent phase information on COTS devices. In addition,

it entails non-trivial human intervention to execute the site

measurement. In contrast, miDroid integrate a robot’s own

sensing capabilities with mmWave sensing mechanisms, and

uses RSS measurement alone on low-profile COTS devices

to realize autonomous environment mapping.

Recent work also proposed device tracking methods to

speed up mmWave beam alignment [11, 16]. miDroid’s

AP/client location sensing module differs in that it leverages

precise motion control and diverse beam patterns (i.e., BCS)
of the robotic mmWave relay. miDroid accurately senses both

location and orientation using COTS mmWave radios which

can only measure RSS. It does not need phase measurement,

and works even when the LoS path is blocked. In addition,

mmWave localization also differs from many counterparts

operating at low-frequency (see [17, 29, 31] and references

therein), due to new radio characteristics.

9 CONCLUSION
This paper envisions the proliferation of consumer-grade

robots, and proposes a robotic mmWave system, miDroid,

to achieve seamless mmWave coverage. Through miDroid,

we have demonstrated the feasibility of leveraging the au-

tonomous motion of a robot to reverse engineer the geomet-

rical properties of wireless channel. We have also explored

new robotic path planning solutions that navigate the robot

within radio environment, instead of physical environment

alone, to facilitate network performance. We believe miDroid

hints on a new direction that embraces robotic intelligence

into wireless network design and operations.
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