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ECE 146B Lab: Digital beamforming in a mmWave MIMO uplink

Lab Objectives: The goal of this lab is to explore interference modeling and suppression for a mmWave
MIMO uplink in which the base station is capable of performing digital beamforming.

1 Millimeter wave background

Technically, millimeter wave (mmWave) refers to frequency bands from 30 to 300 GHz (wavelengths of
10 mm to 1 mm). Unlike the relatively crowded spectrum in today’s cellular and WiFi bands, there are
vast amounts of spectrum in these bands. Advances in radio frequency (RF) integrated circuits (ICs) are
making these bands accessible for commercial mass market applications. Emerging 5G cellular systems
aim to utilize spectrum at 28 GHz. There are very large amounts of unlicensed spectrum in the 60
GHz band (it used to be 7 GHz, but it has been recently increased to 14 GHz). Part of the 60 GHz
band suffers larger propagation loss due to oxygen absorption: about 16 dB/km on top of standard
propagation loss. Of course, over shorter ranges, such as 100m, this is not a dealbreaker. There is also
increasing interest in spectrum above 100 GHz.

There are two key features of mmWave worth noting:
• The tiny carrier wavelengths enable the realization of antenna arrays with a large number of elements
in compact form factors (e.g., comparable to those of WiFi access points and handhelds), which allows
us to form highly directive, electronically steerable, beams.
• The bandwidth produced by RF circuits tuned to a given carrier frequency f0 is proportional (e.g.,
up to 10% of f0), and therefore scales up as we increase the carrier frequency. Thus, at mmWave
frequencies, we are typically considering bandwidths of the order of GHz.

In this lab, we consider a picocellular base station with a large number of antennas, supporting a
large number of simultaneous users. This is called space-division multiple access (SDMA) or multiuser
MIMO (MU-MIMO), or more dramatically, massive MIMO. We assume that the base station employs
a DSP-centric architecture as shown in Figure 1.
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Figure 1: MIMO signal processing architecture. There is one “RF chain” per antenna, downconverting
the signal received at that antenna to I and Q components.

Signal processing architecture: For an N antenna receiver, we downconvert the RF signals at the outputs
of the antenna elements (using the same LO frequency and phase, and filters with identical responses, in
each such “RF chain”). The relationship between the complex envelopes corresponding to the different
antenna elements is discussed in the next section. Once the I and Q components for these complex
envelopes are obtained, they would typically be sampled and quantized using analog-to-digital converters
(ADCs), and then processed digitally. Such a DSP-centric signal processing architecture, depicted in
Figure 1, allows the implementation of sophisticated MIMO algorithms in today’s cellular and WiFi
systems. While the figure depicts a receiver architecture, an entirely analogous block diagram can



be drawn for a MIMO transmitter, simply by reversing the arrows and replacing downconverters by
upconverters.

While the DSP-centric architecture depicted in Figure 1 has been key to enabling the widespread
deployment of low-cost MIMO transceivers, it is challenging at mmWave. Scaling RF design for a
large number of elements on both receive and transmit is difficult, as is analog-to-digital conversion at
high symbol rates. In this lab, however, we ignore these issues, assuming that these bottlenecks will
eventually be overcome. We are motivated by recent research showing that, while such architectures
are challenging, there are certain regimes in which they are particularly attractive and on the cusp of
feasibility: for example, as we scale up the number of antennas, if the system load (ratio of number of
simultaneous users to number of antennas) is small, then we can get away with lower precision ADC
and more relaxed RF design specifications.

2 The linear array

Figure 2: A plane wave impinging on a linear array.

Consider a plane wave impinging on the uniformly spaced linear array shown in Figure 2. We see
that the wave sees slightly different path lengths, and hence different phase shifts, in reaching different
antenna elements. The path length difference between two successive elements is given by ` = d sin θ,
where d is the inter-element spacing, and θ the angle of arrival (AoA) relative to the broadside. The
corresponding phase shift across successive elements is given by Ω = 2π`/λ = 2πd sin θ/λ, where λ
denotes the wavelength. Another way to get the same result: the delay difference between successive
elements is τ = `/c, where c is the speed of wave propagation (equal to 3× 108 m/s in free space). For
carrier frequency fc, the corresponding phase shift is Ω = 2πfcτ = 2πfcd sin θ/c. The two expressions
are equivalent, since λ = c

fc
.

According to our convention, the situation depicted in Figure 2 corresponds to positive θ (clockwise
from broadside). Thus, θ takes values in [−π

2 ,
π
2 ], although we often restrict the field of view of the

array to a smaller range (more on this later). Numbering antenna elements from left to right in Figure
2, we see that, for positive θ, the first element sees the longest path length. Let us see what effect it
has on the received waveform, that we model as usual in complex baseband.

The narrowband assumption: What is the effect of the differences in delays seen by successive elements?
Suppose that the wave impinging on element 1 is represented as

up(t) = uc(t) cos 2πfct− us(t) sin 2πfct = Re
(
u(t)ej2πfct

)
where u(t) = uc(t) + jus(t) is the complex envelope, assumed to be of bandwidth W . Suppose that
the bandwidth W � fc: this is the so-called “narrowband assumption,” which typically holds in most
practical settings. For the scenario shown in the figure, the wave arrives τ = `/c time units earlier at
element 2. The wave impinging on element 2 can therefore be represented as

vp(t) = uc(t+ τ) cos 2πfc(t+ τ)− us(t+ τ) sin 2πfc(t+ τ) = Re
(
u(t+ τ)ejΩej2πfct

)
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where Ω = 2πfcτ . Thus, the complex envelope of the wave at element 2 is v(t) = u(t + τ)ejΩ. The
time shift τ has two effects on the complex envelope: a time shift in the baseband waveform u, along
with a phase rotation Ω due to the carrier. However, for most settings of interest, the time shift in the
baseband waveform can be ignored. To see why, suppose that the array parameters are such that Ω is of
the order of 2π or less, in which case τ is of the order of 1

fc
or less. Under the narrowband assumption,

the time shift τ produces little distortion in u. To see this, note that

u(t+ τ)↔ U(f)ej2πfτ

As f varies over a range W , the frequency-dependent phase change produced by the time shift varies
over a range 2πWτ ∼ 2πW/fc � 2π for W � fc. Thus, we can ignore the effect of the time shift on
the complex envelope, and model the complex envelope at element 2 as v(t) ≈ u(t)ejΩ. Similarly, for
element 3, the complex envelope is well approximated as u(t)ej2Ω.

Array response and spatial frequency: Under the narrowband assumption, if the complex envelope at
element 1 is u(t), then the complex envelopes at the various elements can be collected into a vector
u(t)a, where

a = (1, ejΩ, ej2Ω, ..., ej(N−1)Ω)T (1)

is the array response for a particular AoA. The linear progression in phase across antenna elements (i.e,
across space) is analogous to the linear progression of phase in time, ej2πf0t, for a complex exponential
at frequency f0. Thus, we call

Ω = Ω(θ) = 2πd sin θ/λ (2)

the spatial frequency corresponding to AoA θ.

We denote the array response (1) by a(θ), or a(Ω), where we economize on notation by using a(·) to
indicate dependence on either θ or Ω as convenient. We will see that it is more natural to work with
spatial frequency when characterizing how the spatial responses for different mobiles interact at the
base station.

Reciprocity: While Figure 2 depicts an antenna array receiving a wave, exactly the same reasoning
applies to an antenna array emitting a wave. In particular, the principle of reciprocity tells us that
the propagation channel from transmitter to receiver is the same as that from receiver to transmitter.
Thus, the array response of a linear array for angle of arrival θ is the same as the array response for
angle of departure θ.

3 A Picocellular Uplink Model

Figure 3: A mmWave uplink picocell

Figure 3 depicts the system model. The base station has a linear array with N antenna elements,
with inter-element spacing of λ

2 . The sector width is 120 degrees: that is, the angles of arrival from the
mobiles lie in [−π

3 ,
π
3 ]. There are K mobiles that transmit simultaneously, each with a line of sight (LoS)

channel to the base station. Assuming Nyquist signaling, and making the unrealistic assumption that
the symbols for all mobiles line up at the base station, we can obtain a simple but useful discrete-time
symbol rate model at the base station. The N × 1 spatial signature of user k (1 ≤ k ≤ K) on the
antenna array is given by

uk = Ake
jφka(Ωk) (3)
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where Ak is the received amplitude; φk is the phase, assumed to be independent across users and uniform
over [0, 2π], and Ωk is the spatial frequency. The N × 1 (corresponding to the N antenna elements)
complex baseband received signal vector corresponding to the nth symbol is now given by

y[n] =
K∑
k=1

bk[n]uk + w[n] (4)

where bk[n] is the nth symbol transmitted by user k.

The noise, denoted by w[n], is CN(0, 2σ2I) (i.e., the real and imaginary components for each antenna
element are i.i.d. N(0, σ2) random variables). Note that the symbol sequences for different users are
independent. We also assume them to be zero mean and normalized (without loss of generality) to unit
average magnitude: E[|bk[n]|2] = 1 (symbol scaling can be absorbed into the amplitude parameters Ak
in (3)).

From the point of view of a given user, say user j, the other users are interference, and the model looks
like

r[n] = bj [n]uj + Ij [n] (5)

where uj is the “desired” signal vector and

Ij [n] =
∑
k 6=j

bk[n]uk + w[n] (6)

is the contribution of interference plus noise to the received vector (from the point of view of user j).

4 Linear receivers

We assume that the base station applies a different linear correlator for each user to the received vector
to produce its decision statistic:

Zj [n] = cHj r[n] (7)

From (4), the correlator output can be written as a sum of desired and undesired terms:

Zj [n] = bj [n]cHj uj +

∑
k 6=j

bk[n]cHj uk + cHj w[n]

 (8)

where the term in square brackets contains the undesired interference plus noise contributions to the
correlator output. Using (5) and (6), we may write this more compactly as

Zj [n] = bj [n]cHj uj + cHj Ij [n] (9)

For any such correlator, the output signal-to-interference-plus-noise ratio (SINR) is defined as the ratio
of the powers of the desired and undesired terms:

SINRj =
E[|bj [n]cHj uj |2]

E[|cHj Ij [n]|2]
(10)

For the model (4), assuming that the symbols are uncorrelated across users (and normalized to unit
energy), we obtain that

SINRj =
|cHj uj |2∑K

k=1,k 6=j |cHj uk|2 + 2σ2||cj ||2
(11)

We will consider two different linear correlators. The first is a spatial matched filter, which maximizes
the desired signal contribution without accounting for the interference. It is optimal for WGN, since it
maximizes the SNR, but incurs substantial degradation in performance in the presence of interference.
The second is the linear Minimum Mean Squared Error (MMSE) receiver, which maximizes the SINR.
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4.1 Spatial matched filter

If there were no interference, then we can maximize the received power for user j by employing a spatial
matched filter or spatial correlator. This amounts to setting cj = uj for user j. Setting the interference
terms to zero, we see that the SNR attained by the spatial matched filter is given by

SNRj =
||uj ||2

2σ2
=
A2
jN

2σ2
(12)

where we have plugged in (3) to obtain the second equality (with our definition of array response,
aHj aj = N .) That is, spatial matched filtering leads to an SNR enhancement of N , the so-called receive
beamforming gain: the signal amplitudes add up coherently across the N antennas, so that signal power
is enhanced by N2, while the noise variances add up across the antennas, so that noise power scales by
N .

When we do have interference, the SINR expression (11) for the matched filter receiver is given by

SINRj(MF ) =
A2
jN

2∑K
k=1,k 6=j A

2
k|aHj ak|2 + 2σ2N

(13)

With our definition of array response, aHj aj = N . Note that the strength of the interference terms

depends on terms like aHj ak = aH(Ωj)a(Ωk) (k 6= j), the correlation between the array responses at
different spatial frequencies. We will explore the properties of such correlations, and how they depend
on the number of antenna elements, later. But it is clear from (13) that, since such correlations are
typically nonzero, the interference at the output of the spatial matched filter will lead to a performance
floor.

4.2 MMSE Beamformer

The linear MMSE detector for user j e cj minimizes the mean squared error (MSE)

MSEj = E
[
|cHr[n]− bj [n]|2

]
(14)

The solution to this is given by
cj = R−1pj (15)

where
R = E[r[n]rH [n]] , pj = E[b∗j [n]r[n]] (16)

The corresponding MMSE is given by

MMSEj = E[|bj [n]|2]− pHj R
−1pj = 1− pHj R

−1pj (17)

assuming that the symbols are normalized to unit energy.

Adaptive implementation via least squares:. In a least squares implementation, we replace the
statistical averages in (14)-(16) by empirical averages, assuming that we know Nt training symbols for
the user. Thus, we seek to minimize (we use the same notation as for the statistical averages above for
simplicity)

MSEj =
1

Nt

Nt∑
n=1

|cHr[n]− bj [n]|2 (18)

ĉj = R̂−1p̂j (19)

where

R̂ =
1

Nt

Nt∑
n=1

r[n]rH [n] , p̂j =
1

Nt

Nt∑
n=1

b∗j [n]r[n] (20)

Remarks:
(1) The computation of R̂ and R̂−1 is common for all users, and does not require known training
symbols.
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(2) The computation of p̂j requires a training sequence for user j, and must be done separately for each
user.

Analytical insights into the MMSE beamformer: For our model (4), since the symbol sequences
are normalized to unit energy and are uncorrelated, we obtain that

R =
K∑
k=1

uku
H
k + 2σ2I =

K∑
k=1

A2
kaka

H
k + 2σ2I (21)

pj = uj = Aje
jφjaj (22)

so that the MMSE decision statistic for user j can be written as

ZMMSE
j [n] = uHj R

−1r[n] = Aje
−jφjaHj R

−1r[n] (23)

It can be shown that the MMSE beamformer for user j is equivalent to (a scalar multiple of) a whitened
matched filter:

cj ∼ R−1
Ij

uj =

 K∑
k=1,k 6=j

uku
H
k + 2σ2I

−1

uj (24)

where the matrix being inverted above is the covariance of the interference plus noise seen by user j. It
is this inversion that attenuates strong interference.

The SINR for the MMSE correlator is given by

SINRj(MMSE) =
|cHj uj |2∑K

k=1,k 6=j |cHj uk|2 + 2σ2||cj ||2
. =
|cHj uj |2

cHj RIjcj
=

1

MMSEj
− 1 (25)

It can be shown that this simplifies to the SINR of a whitened matched filter:

SINRj(MMSE) = uHj R
−1
Ij

uj = uHj

 K∑
k=1,k 6=j

A2
kaka

H
k + 2σ2I

−1

uj (26)

5 Lab Assignment

0) Suppose each mobile has a M -element antenna array. If Pelement is the transmit power from a single
antenna element, then the net transmit power is MPelement (that is, we get a power pooling gain). In
addition, if the mobile transmitter can form a beam towards the base station, then there is a beam-
forming gain of M . Thus, transmit beamforming leads to a net gain of M2 compared to the power of
an individual element. Based on this discussion, compute the power per transmit element (in dBm)
required to attain an SNR of 15 dB after receive beamforming at an N -element base station, under the
following assumptions:
• Carrier frequency 140 GHz
• Bandwidth 5 GHz (so QPSK yields 10 Gbps per user, not accounting for excess bandwidth!)
• Range 100m
• Receiver noise figure 8 dB
• M = 8, N = 128

1) Consider an N -element linear array with inter-element spacing of λ
2 , and a field of view θ∈ [−π

3 ,
π
3 ].

(a) What is the range of spatial frequencies Ω as θ varies?
(b) For two different spatial frequencies Ω1 and Ω2, define the normalized correlation

ρ =
|aH(Ω1)a(Ω2)|
||a(Ω1)||||a(Ω2)||

=
|aH(Ω1)a(Ω2)|

N
(27)

noting that ||a(Ω1)||2 = ||a(Ω2)||2 = N . Show that ρ simplifies to a function of ∆Ω = Ω1 − Ω2 alone,
given by

ρ(∆Ω) =

∣∣∣∣ sin (N∆Ω/2)

N sin (∆Ω/2)

∣∣∣∣ (28)
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When beamforming towards a desired signal from direction Ω1, if we normalize the desired signal
amplitude to one, then ρ(∆Ω) is the relative amplitude of an interfering signal from direction Ω2.
(c) For the model (4), show that the SINR at the output of the spatial matched filter for user j, given
by (13), can be rewritten as

SINRj(MF ) =
1∑K

k=1,k 6=j
A2

k

A2
j
ρ2(Ωj − Ωk) + 1

SNRj

(29)

Thus, ρ2(Ωj − Ωk) and the relative received powers
A2

k

A2
j

determine the impact of interferer k on the

performance for user j.

2) Let us now examine how ρ varies with N , the number of antennas.
(a) Plot ρ(∆Ω) over the range of ∆Ω when the spatial frequencies vary as in (a), for N = 16 and
N = 256.
Comment on the impact of N on the shape of the function.
(b) Redo the plot in dB. That is, plot 20 log10 ρ(∆Ω).

3) Now, consider the analogous function in terms of AoA θ. Reusing notation, define

ρ(θ1, θ2) =
|aH(θ1)a(θ2)|
||a(θ1)||||a(θ2)||

=
|aH(θ1)a(θ2)|

N
(30)

This can be obtained by plugging in the expression for spatial frequency in terms of AoA into (28). We
call this a normalized beam pattern, obtained as a function of θ2 when beamforming in direction θ1.
(a) For a small difference ∆θ = θ2− θ1, how does ∆Ω depend on ∆θ as a function of the beam direction
θ1? Do you see why trying to form a beam towards θ1 = π

2 is a bad idea?
Remark: The preceding consideration motivates us to restrict the field of view to smaller than [−π

2 ,
π
2 ].

Another reason is that individual antenna elements are not truly omnidirectional, providing gain over
a limited angular spread. The choice of field of view to [−π

3 ,
π
3 ] for our system is sensible for antenna

arrays composed of typical patch elements.
(a) For N = 16 and N = 256, plot ρ(θ1, θ2) as a function of θ2 (in degrees) for θ1 = 0 degrees
(beamforming towards a user at broadside) and θ1 = 60 degrees (beamforming towards a user at the
edge of the field of view).
(b) Redo a dB plot 20 log10 ρ(θ1, θ2).
(c) Comment on any qualitative differences you see between the beam pattern for θ1 = 0 degrees and
θ1 = 60 degrees, and how it is predicted by 3(a). Which one is sharper around its peak?

Now, let us take the first step in setting up a simulation model for the system (4). There are K users,
assumed to be uniformly distributed over an area defined by minimum and maximum ranges, Rmin and
Rmax, respectively, from the base station, and the field of view [−π

3 ,
π
3 ]. The link budget is such that

the SNR of a “cell edge” user at maximum distance Rmax is set to some desired value, which we denote
by SNRedge. Power control is not employed, with users transmitting at the same power. Thus, for free
space propagation with received power scaling as 1/R2, the ratio of received powers for two users at
distance R1 and R2 from the base station is given by

A2
1

A2
2

=
R2

2

R2
1

Define the load factor β = K
N as the ratio of number of users to number of base station antennas.

The inputs to our system simulation are the parameters N , β, Rmin, Rmax and SNRedge (and of course,
the signaling constellation employed). Write your programs for general values of these parameters, but
perform evaluations for N = 128, Rmin = 5m, Rmax = 100m, and β = 1

4 .

4) Write a program for generating a random draw of user locations {(Rk, θk), k = 1, ...,K} for Rmin =
5m, Rmax = 100m, θk ∈ [−π

3 ,
π
3 ].

(a) Show that the cumulative distribution function (CDF) of the range R for a typical user is given by

P [R ≤ r] = FR(r) =


0, r < Rmin
r2−R2

min

R2
max−R2

min
, Rmin ≤ r ≤ Rmax

1, r ≥ Rmax
(31)
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(b) A random variable R with desired CDF FR(r) from a uniform random variable U ∼ Unif [0, 1] by
applying the function R = F−1

R (U). (This is an standard result that is very useful for simulations, and
I encourage you to look up its derivation if you do not know it already.). For our specific scenario, show
that you can generate R from U ∼ Unif [0, 1] as follows:

R =
√

(1− U)R2
min + UR2

max

(d) Now, do random draws of range and angle (you need two uniform random variables for each user),
and plot the user locations (in polar coordinates: meters and degrees) for a random draw for N = 128,
β = 1

4 .
Remark: If two randomly drawn angles of arrivals are “too close” (e.g., within 2 degrees), you might
want to throw away the samples and draw again. In practice, this means that the base station would
schedule users who are “too close” in different time slots.

5) Setting σ2 = 1 for convenience, and for a specified value of SNRedge (dB), augment your program by
assigning amplitudes {Ak, k = 1, ...,K} to the users. The amplitude Aedge for a user at the edge Rmax

satisfies SNRedge =
NA2

edge

2σ2 . Thus, the amplitude for any user at range R is given by A = Aedge
Rmax
R .

Plot, analytically or by simulations, a histogram of relative powers
A2

k

A2
edge

(in dB) for Rmin = 5m,

Rmax = 100m.

6) For a given draw of user locations and amplitudes, compute the SINR obtained by spatial matched
filtering for the nearest and furthest users using the analytical formula (13), setting SNRedge to 15 dB.

7) Repeat 6) when you use the (analytically computed) MMSE receiver for each of these two users, and
compare the SINR performance with that for spatial matched filter.

8) Plot the normalized beam pattern in dB of the MMSE correlator for the furthest user; i.e., compute

G(θ)(dB) = 20 log1 0

(
|cHa(θ)|

||c||||a(theta)||

)
and plot against θ∈ (−π/3, π/3). Mark the locations of the nearest and furthest users in your plot. You
should see a strong gain towards the furthest user and a null towards the nearest user.
Remark: The MMSE receiver for any given user should steer nulls towards all the other users, so you
should see nulls towards all users other than the furthest one.

9) For QPSK with Gray coding, if we model the noise plus interference at the output of a correlator as

complex Gaussian, then the BER can be approximated by Q
(√

SINR
)

. For the analytically computed

MMSE receivers in 7), estimate the BER for the nearest and further users.

10) Verify the BER estimates in 8) for the furthest user by simulating the performance of the analytically
computed MMSE receiver by generating random symbols for the model (4). Make sure you simulate
over enough symbols to obtain an accurate estimate.

11) Now, do an adaptive implementation of the MMSE correlator for the furthest user, assuming that
you have a training sequence of 2000 randomly drawn QPSK symbols for that user. Compute the SINR
for the correlator you obtain using (25).

12) For the MMSE correlator obtained in 10), compare the BER estimate using Q
(√

SINR
)

against

simulations. How does this BER performance compare against the BER performance of the analytically
computed MMSE receiver in 9)?

13) optional Estimate analytically or by simulation the BER of a windowed beamspace MMSE receiver
(to be discussed in lecture) for the furthest user.

6 Lab Report

• Discuss the results you obtain, answer any specific questions that are asked, and print out the
most useful plots to support your answers.

• Append your programs to the report. Make sure you comment them in enough detail so they are
easy to understand.
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• Write a paragraph about any questions or confusions that you may have experienced with this
lab.
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