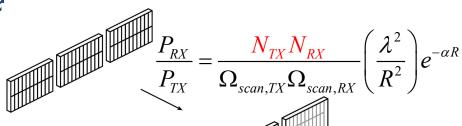

Massive Extended-Array Transceivers for Robust Scaling of All-Digital mmWave MIMO

Project Number 2148303

PI: Upamanyu Madhow, UCSB

Co-PI: Mark Rodwell, UCSB

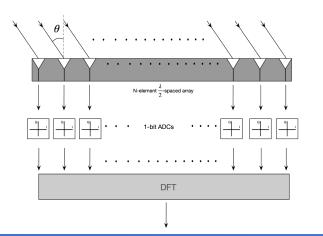
RINGS PI Meeting November 6-7, 2023

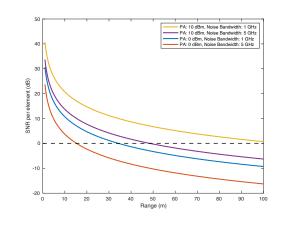


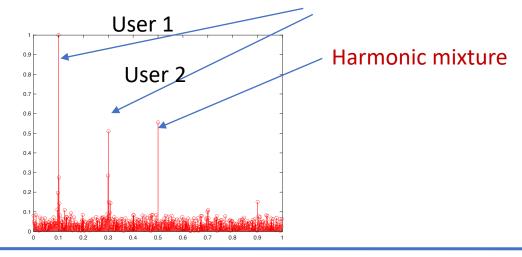
Objective(s)

- •Hardware/signal processing co-design for radical scaling
- All-digital mmWave MIMO
 - Spatial scaling: tiled architecture
 - Bandwidth scaling: reduce required dynamic range
 - Computational scaling: exploit channel sparsity
- Radically simplified beamforming
 - Switch-based phase control for large power efficiency gains
 - Innovative tiled architectures alleviating packaging difficulties
 - RF and hybrid beamforming

Canan Cebeci

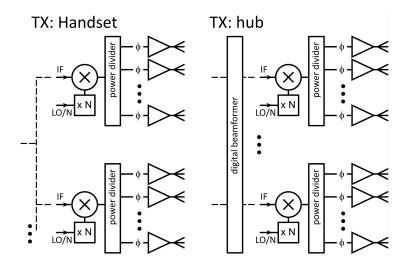

Cheol So




Key Accomplishments (1)

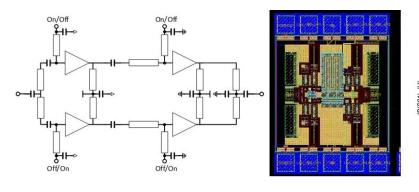
- •What might go wrong with low precision?
 - SNR too high (!), channel too sparse, not enough users → input to ADC not Gaussian, noise does not provide dithering
 - Novel Fourier analysis of mmWave MIMO with 1-bit ADC → prescriptions for design and choice of operating regime

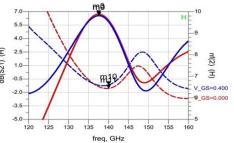
Fundamental frequencies



Key Accomplishments (2)

- •How to alleviate packaging difficulties while scaling?
 - RF beamformers with switched phase control → compact electronics
 - Tiling to create large arrays → enable RF or hybrid beamforming
 - CMOS electronics + dielectric lenses





Challenges

- •Semiconductor process for initial hardware design was discontinued!
 - Promising test structures in GF 45RFSOI: 6.5 dB gain, 6.5 dB noise figure, 10 mW DC power per element
 - Now upgrading and transitioning designs to GF 22FDX

Future Work

- •System regimes matched to hardware/signal processing constrained primitives
 - Tiling, precision-constrained beamspace, RF beamforming with switched phases
 - Operation at "low enough" SNR per antenna element
 - MU-MIMO, long-range backhaul, joint communication and sensing
- •Tapeout and fabrication of RF beamformers (in 22FDX) with switched phase control
 - New approaches to packaging bottleneck
 - Hardware/signal processing co-design: calibration, tiled processing architectures

Massive Extended-Array Transceivers for Robust Scaling of All-Digital mmWave MIMO

Pls: Upamanyu Madhow, Mark Rodwell (UCSB)

Objective

- Hardware/signal processing co-design for radical scaling beyond 100 GHz
 - Scale array size via tiling
 - Scale bandwidth by reducing dynamic range

Key Accomplishments

- •Fundamental limits due to reduced dynamic range
 - Constraints on system operating regime
- Power-efficient RF beamforming architectures
 - Switched phase control, novel packaging approach

Challenges

- Hardware is hard beyond the fundamental design challenges at mmWave
 - Availability/support of RF CMOS processes can be uncertain
 - Packaging outcomes can be uncertain, depending on vendor

Future Work

- System design matched to hardware/signal processing constraints
 - Tiling, dynamic range constraints
- Power-efficient RF beamformer hardware
 - Switched phase control + dielectric lenses

