
UCSB Spring 2024

ECE 146B Lab: Modulation, demodulation and synchronization in OFDM

Lab Objectives: To develop a hands-on understanding of basic OFDM transmission and reception,
including key concepts related to synchronization.

Laboratory Assignment

Consider a discrete time complex baseband model in which a sequence of samples {s[n]} sent by the
transmitter give rise to a received signal

y[n] = (s ∗ h)[n] +N [n] , n = 1, ...,M (1)

The non-trivial part of the channel impulse response is of length L (the length is the difference between
the earliest and latest nonzero entries in the impulse response, plus one), but we can model an additional
delay of n0 samples by inserting n0 zeros at the beginning of the impulse response. For example,
h[n] = [0, 0, 1, 0,−0.5] is a channel of length L = 3, but the two zeros at the beginning model a delay of
τ = 2 samples.

We will be considering an OFDM system with N subcarriers and a cyclic prefix of P . In this lab, you
will write code for general N and P , and demonstrate that the same code works for different values of
N and P . Specifically, you will consider two example settings in this lab: (1) N = 16, P = 4 (helpful
for debugging), (2) N = 256, P = 16 (to check that your program works for a larger set of subcarriers).

The receiver local oscillator (LO) is not a priori synchronized with the transmitter’s LO, and there may
be a Doppler shift due to relative motion between the transmitter and receiver. In discrete time, this
may be modeled as a phase offset of 2πδ/N per sample, where δ is the carrier offset normalized to the
subcarrier spacing of 1/N , as follows:

y[n] = ej2πδn/N (s ∗ h)[n] +N [n] , n = 1, ...,M (2)

1 Part 1: Timing and Frequency Synchronization

Step 1 (OFDM modulation and time domain statistics): Write code implementing the basic
OFDM modulator as follows.
1a) Generate N Gray coded QPSK symbols B = {B[k], k = 1, .., N}. Take the inverse FFT to obtain
time domain samples b = {b[n], n = 1, ..., N}.
Remark: Matlab’s ifft function implements:

b[n] =
1

N

N∑
k=1

B[k]ej2π(n−1)(k−1) (3)

but if we want to normalize the complex exponential basis functions to unit norm, we could multiply
this by

√
N .

1b) Append the last P time domain samples to the beginning, to get a length N + P sequence of time
domain samples s = {s[n], n = 1, ..., N + P}. That is, s[1] = b[N − P + 1], ..., s[P ] = b[N ], s[P + 1] =
b[1], ..., s[N + P ] = b[N ].
1c) Plot histograms of the real and imaginary parts of s. Do they look Gaussian?
1d) Compute the normalized correlation of the real and imaginary parts of s. Is it reasonable to model
them as uncorrelated?
1e) Compute the peak-to-average power ratio of s:

PAR =
maxn|s[n]|2

|s[n]|2
(4)

For BER simulations, you can use the function qpskmap developed in Software Lab 6.1 for this purpose. But for the
development on synchronization in the first few parts, we can simply generate random {±1± j} without keeping track of
the bit-to-symbol map.



Plot histograms of PAR(dB) = 10 log10(PAR) over multiple OFDM symbols generated as in 1(a)-(b)
for N = 16 (P = 4) and for N = 256 (P = 20). Comment on the dependence on N .

Step 2 (Modeling and estimating delay) Even if the channel is ideal, the receiver does not know
where the OFDM symbol starts. To model this, consider a channel

h = [zeros(τ, 1); 1], pure delay (5)

where τ ≥ 0 is an integer. Set the frequency offset δ = 0. Now, in (1), we obtain a signal y of length
N +P + τ , where the first τ entries are only noise. We would like to throw these entries away and then
strip away the cyclic prefix. We do this by looking for a match between two segments of P samples
spaced N samples apart, to estimate where the cyclic prefix is occurring. Compute the correlations
between such segments for different hypothesized values of τ :

R[k] =
k+P∑
n=k+1

y∗[n]y[n+N ] , k = 0, 1, ...,K (6)

K +N + P = length(y). We can now estimate the best integer delay as

τ̂ = arg max1≤k≤K |R[k]| (7)

After doing this, we can strip away the cyclic prefix and get the following time domain received signal:

ŷ[n] = y[n+ τ̂ + P ], n = 1, ..., N (8)

The N -length received signal Y in the frequency domain is now given by

Y [k] = FFT (ŷ), k = 1, ..., N (9)

Remark: Matlab’s fft function implements

Y [k] =
N∑
n=1

ŷ[n]e−j2π(n−1)(k−1) , k = 1, ..., N (10)

You may multiply this by 1/
√
N if you want to normalize the complex exponential basis functions to

unit norm.
2a) Implement the preceding procedures for estimating τ̂ and computing Y = (Y [1], ..., Y [N)]T . Use
N = 16, P = 4 to evaluate your code in the following.
2b) For a noiseless system with τ = 3 check that you obtain τ̂ = 3. Does a scatterplot of {Y [k], k =
1, ..., N} correspond to a QPSK constellation.
2c) Now, suppose that τ = 3. Manually set τ̂ = 5 in (8) and display a scatterplot of {Y [k], k = 1, ..., N}.
What does it look like? Can you explain what you are seeing?

3) Step 3 (Estimating and undoing small frequency offsets) Assume that the normalized fre-
quency offset δ in (2) is in (−0.5, 0.5). Set N = 16, P = 4, since we are still in debug mode.
3a) Argue that

δ̂ = ∠R[τ̂ ] (11)

the angle of R[τ̂ ] provides an estimate for δ ∈ (−0.5, 0.5). Would this estimate work for larger values of
δ (e.g., δ = 5.25)?

3b) Consider a noiseless system with δ = 0.25. Compare the estimate δ̂ with the true value of δ.

3c) Undo the frequency offset using your estimate. That is, replace y[n] by y[n]e−j2πδn/N and then
strip away the cyclic prefix and compute the length N symbol Y as in (8)-9).

3c What frequency offset in parts per million (ppm) does δ = 0.25 correspond to for a carrier frequency
of 2.4 GHz, a bandwidth of 20 MHz and N = 16 subcarriers? How does your answer change for a carrier
of 28 GHz, a bandwidth of 100 MHz and N = 4096 subcarriers?

4) Step 4 (adding in a non-trivial channel) Now, consider a simple two-tap channel (together with
a delay τ)

h = [zeros(τ, 1); 1;−0.5], two− tap channel (12)
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We are now going to check that the methods of Step 2 and Step 3 still apply for getting coarse timing
synchronization and an estimate of normalized frequency offset in (−0.5.0.5). This is because the
periodicity in the transmitted stream induced by the cyclic prefix still persists when we pass it through
an LTI system.
4a) For a noiseless system, redo Step 2 (with zero frequency offset) and show that you can still get a
good estimate of τ .
4b For a system with normalized frequency offset δ = 0.25, redo Step 4 and show that you can still get
a good estimate of δ.
4c) Undo the frequency offset using your estimate. That is, replace y[n] by y[n]e−j2πδn/N and then
strip away the cyclic prefix and compute the length N symbol Y as in (8)-9).

Summary: At this point, your code operates should be able to estimate and correct for a bulk delay
τ and a small normalized frequency offset δ ∈ (−0.5, 0.5) for an OFDM symbol, ending up with a N × 1
frequency domain observation Y.

Now we need to estimate the channel: We have simply used the structure of the OFDM symbol
in Steps 2-4 above. That is, we can do coarse timing synchronization and carrier synchronization (if
the frequency offset is small enough) without needing a training sequence. We can do this even if in
the presence of a nontrivial channel. However, demodulating the transmitted symbols requires that we
obtain an estimate of frequency domain channel coefficients {H[k]} in a model of the form

Y [k] = H[k]B[k] + noise , k = 1, ..., N (13)

applied to the received vector obtained in (9). Once we obtain estimates {Ĥ[k]} of the frequency domain
channel, the symbols can be estimated by dividing by the channel estimated for each subcarrier (with
adjustments to protect against dividing by small values):

B̂[k] =
Y [k]

Ĥ[k]
, k = 1, ..., N (14)

In Part 2 of the lab, we provide some background on least squares channel estimation, and then ask
you to implement and test it.

2 Part 2: Least Squares Channel Estimation

For channels that vary slowly, we could send one OFDM symbol which is completely known, and use
the associated channel estimates for a large number of subsequent symbols. For channels that vary
fast, we often use comb-style pilots, in which a subset of subcarriers in each symbol is set aside as
pilot symbols. While we do not model channel time variations here, let us explore how to estimate the
channel coefficients {H[k]} when we know the symbols transmitted on a selected set of subcarriers.

When we need to learn N frequency domain channel coefficients {H[k]}, these depend on an L-length
time domain channel h = (h[0], ..., h[L − 1])T , where L ≤ P � N in typical designs. Thus, we have
fewer parameters to estimate if we work in the time domain. Let us assume that we know the symbols
sent on a subset T of subcarriers. In particular, let us assume that we know the symbols on subcarriers
spaced by S: B[k], k∈T = {∞,∞ + S,∞ + ∈S, ...} are known. The number of pilot, or training,
symbols T ≈ N/(1 + S). If T > L, the number of unknown taps, we hope to have enough equations to
solve for the time domain channel, and from there, compute the frequency domain coefficients {H[k]}
via the FFT.

In least squares estimation, we seek to find h so as to minimize the squared error:∑
k∈ T

|Y [k]−H[k]B[k]|2 (15)

where

H[k] =
L−1∑
l=0

h[l]e−j2πkl/N , k∈T

depends linearly on the L× 1 time domain channel h. The mathematical machinery to accomplish this
is similar to that used for MMSE interference suppression, and is easiest to use when the problem is set
up in matrix-vector format.
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We wish to set up a matrix-vector formulation to make it easy to set up and solve a least squares
problem. To this end, define YT as a T ×1 column vector containing Y [k], k∈T , BT as a T ×1 column
vector containing B[k], k∈T , and HT as a T ×1 column vector containing H[k], k∈T Define the T ×L
FFT matrix FT with entries exp (−j2πkl/N), k∈T , l = 0, 1, ..., L− 1, so that

HT = FTh (16)

We are trying to fit YT to BT �HT , where � denotes element-wise product. We can accomplish this
by element-wise product operation by multiplying HT by diag(BT ), a diagonal matrix with diagonal
entries drawn from BT . We therefore have that

BT �HT = BT � (FTh) = diag(BT )FTh = Ah (17)

where
A = diag(BT )FT (18)

The squared error (15) we wish to minimize can now be written compactly as

J(h) = ||Z−Ah||2 = (Z−Ah)H (Z−Ah) (19)

Step 5 (Derivation of least squares channel estimate)
5a) Show that the gradient of J(h) with respect to h∗ is given by

∇h∗J(h) = −AH (Z−Ah) (20)

5b) Conclude that the least squares channel estimate is given by

ĥ =
(
AHA

)−1
AHZ (21)

5c) Show that the minimum value of the squared error obtained by the solution in (21) is given by

J(ĥ) = ZHZ− ZHAĥ (22)

After we obtain this estimate, we can compute the frequency domain channel coefficients {Ĥ[k], k =

0, 1, ..., N − 1} by computing an N -point FFT on the L-dimensional estimate ĥ:

Ĥ = fft(h, N) (23)

We can now do frequency domain equalization as in (14) to obtain symbol estimates {B̂[k]}.
Step 6 (First pass implementation of least squares channel estimate)
6a) Starting from the end of Step 4(c), implement the least squares estimate (21) assuming that you
know the pilot symbols B[k] for B[k], k∈T = {∞,∞ + S,∞ + ∈S, ...}. Keep the value of S (and
all the other parameters) programmable. Run your code for debugging for N = 16, P = 4, S = 2,
h = (0; 0; 1,−0.5), and nominal channel length L = P = 4. You may try out your code first for δ = 0
and then for δ = 0.25.
6b) Comment on your results. From the coarse timing synchronization, you should have gotten τ̂ = 2,
and upon stripping away the cyclic prefix, the ideal value of the length 4 channel estimate would be
h = (1,−0.5, 0, 0)T . How does the estimated length 4 channel compare with this ideal? Display a

scatterplot of the estimated symbols {B̂[k]}. Does it look like a QPSK constellation?

A potential complication: The preceding approach should work in the debug setting considered
in 6(a)-(b), but there could be difficulties when the channel is more challenging, even without noise.
Specifically, if the initial estimate τ̂ used to strip away the cyclic prefix is different from the actual delay
τ , the channel coefficients in the frequency domain model (13) correspond to a cyclic shift (modulo N) of
the L-length channel h. This cyclic shift would typically be small, since we expect the error ∆τ = τ̂ − τ
to be small, but it would mean that the model (23) would no longer work. In order to address this,
we can hypothesize different values of the offset ∆τ when trying to fit the model. Specifically, a cyclic
shift of ∆τ corresponds to a phase offset of e−j2πk∆τ/N in the kth subcarrier. We can now augment the
procedure in Step 6 to account for different possible values of ∆τ , and choose the best, as follows.
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For a hypothesized ∆τ , the channel coefficients in the frequency domain corresponding to h are given
by

H[k] = fft(h, N)� v(∆τ) (24)

where v(∆τ)[k] = e−j2πk∆τ/N , 0 ≤ k ≤ N − 1 is the vector of phase shifts corresponding to ∆τ . The
formulation of least squares channel estimation can be applied to estimate h for every hypothesized ∆τ
by modifying FT , and hence A.

Step 7 (Final implementation of least squares channel estimate, accounting for possible
cyclic shift)
7a) Implement least squares channel estimation for a set of hypothesized values of ∆τ (e.g, −2 ≤ ∆τ ≤
2) and pick the one that gives the smallest squared error.
7b) Run your code in debug mode in the setting of Steps 6(a)-(b), and report on the channel esti-
mate and demodulated constellation that you obtain. You will probably find that your algorithm picks
∆τ = 0 as the best setting.
7c) Now, run your code forN = 256, P = 16, S = 8 and channel h = (0, 0, 0, 0, 2,−0.5j, 0.8j, 0, 0,−1,−j)T .
What is the value of τ̂ that you obtain from coarse synchronization, and how does it compare with the
actual delay τ = 4? What is the value of ∆τ that your algorithm gives? Do you get a QPSK-like
scatterplot after frequency domain equalization (14)?

3 Part 3: Putting it all together

We now introduce noise and multiple OFDM symbols.

Step 8 (adding noise)
8a) Going back to (2), modify your code to add i.i.d. CN(0, 2σ2) noise samples N [n] in the time
domain, choosing σ2 as a function of a specified Eb/N0. Use an analytical estimate of Eb accounting
for the cyclic prefix, the scaling you have adopted in the IFFT at the transmitter, and the channel, but
also check it against simulation, where Eb is computed by taking the energy of the noiseless received
signal and dividing it by the number of bits in the payload. For this computation, you may assume that
the pilot symbols are also part of the payload.
8b) For a large Eb/N0 of 20 dB, run your code for coarse synchronization, offset correction, channel
estimation and demodulation, and check via a scatterplot that the equalized symbols in the two system
settings we have considered look like a QPSK constellation.

Step 9 (BER simulations)
Now, think of the first symbol as a synchronization symbol, and concatenate 10 OFDM symbols car-
rying Gray coded QPSK payload on all subcarriers. Use the second system setting (larger N , more
complicated channel). Allow the Eb/N0(sync) for the first synchronization symbol to be different from
Eb/N0(payload) values for the payload symbols. Estimate the BER obtained by the system (using mul-
tiple runs), and plot it (on a log scale) against Eb/N0(payload) (dB) (over a range 5-20 dB, say). Plot
three curves: (1) ideal QPSK, (2) Your system with Eb/N0(sync) of 30 dB, which should yield near-
noiseless performance (3) Your system with Eb/N0(sync) of 12 dB. Comment on the relation between
the curves.

Lab Report: Your lab report should document the results of the preceding steps in order. Describe
the reasoning you used and the difficulties you encountered.
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