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Absfmct-The problem of communication over a channel with un- 
known characteristics is addressed. The true channel is from a known 
set of channels, but the transmitter and receiver do not know which of 
these channels is actually in effect. The goal of a universal receiver is to 
provide nearly optimal demodulation regardless of the channel that is 
actually in effect. A parallel receiver implementation is proposed for a 
universal scheme to cope with such uncertainty. The parallel system 
consists of a finite number of receivers with the property that, for each 
channel in the set, the performance of at  least one of the receivers is 
within a specified performance range. Data verification, the process of 
selecting the receiver output sequences that are ‘‘good” for the channel 
that is in effect, is accomplished by an appropriate coding system. 
Sufficient conditions for the existence of such a universal receiver for a 
prescribed set of channels are established, procedures are outlined for 
the receiver design, and an example is given to illustrate the applicabil- 
ity of the theory. For M-ary signaling it is shown that, from an 
information-theoretic viewpoint, the data verification can be achieved at 
no extra cost by use of the intrinsic side information that is provided by 
an appropriate coding scheme that also provides error correction. For 
practical codes, there is a cost in code rate for data verification, but 
Reed-Solomon d e s  with bounded distance decoding work well in 
providing both data verification and error correction. 

Index T e m  -Universal communication receivers, error-control cod- 
ing, demodulation. 

I. INTRODUCTION 
HE GENERAL model for a communication system is T shown in Fig. 1. In the classical theory, the complete 

statistical characterization of the physical channel is assumed 
to be known to the system designer. For a given signaling 
scheme, it is possible to design a receiver that provides 
demodulation of the channel output in an optimal way, such 
as minimizing the probability of error. In terms of the 
operation of the system, the classical theory assumes that the 
characteristics of the physical channel are known to the 
transmitter and receiver, and that the receiver knows, or can 
easily learn, all of the parameters of the transmitted signal 
that it needs in order to demodulate the signal that is sent 
over the physical channel. 

In many practical applications, these assumptions are not 
valid. In fact, the statistical characterization of the physical 

Manuscript received September 15, 1989; revised September 20, 1990. 
This work was supported by the Army Research Office (DAAL-03-87-K- 
0097). This work was presented in part at the International Symposium 
on Information Theory, San Diego, CA, January 14-19, 1990; and in 
part at the 1990 Bilkent International Conference on New Trends in 
Communication, Control and Signal Processing, Bilkent University, 
Ankara, Turkey, July 2-5, 1990. 

The authors are with the Coordinated Science Laboratory, University 
of Illinois, 1101 W. Springfield Ave., Urbana, IL 61801. 

IEEE Log Number 9041019. 

channel often changes with time (although the changes may 
take place slowly), and the receiver may not know all of the 
parameters of the transmitted signal. As a result, the re- 
ceiver is faced with the task of demodulating the output of a 
physical channel with unknown characteristics when the in- 
put is a signal with unknown parameters. From the receiver’s 
point of view, it does not make much difference whether the 
uncertainty is in the transmitted signal or the physical chan- 
nel. As a result, we choose to group the transmitter and 
physical channel together, and we refer to the cascade of 
these two as the channel, as shown in Fig. 1. 

An appropriate model for communication in the presence 
of uncertainties of the type previously mentioned is as fol- 
lows. The channel over which the communication system 
must operate at a given time, referred to as the channel in 
effect, is from a known set of channels called the channel 
class. During the operation of the communication system, the 
encoder and receiver do not know which member of the 
channel class is the channel in effect. The encoder will 
therefore not be able to match the code to the channel, and 
it will not even be able to use the optimum rate for the 
channel in effect. 

The appropriate model then is the compound channel for 
which neither the source nor the destination know the statis- 
tical characterization of the channel. For most applications, 
however, the compound channel of interest is not the classi- 
cal discrete compound channel [7, p. 331. Although the input 
to the channel is an encoded discrete-time data sequence 
from a fixed alphabet, the output is typically a sequence of 
real numbers or vectors, or even a continuous-time wave- 
form. Furthermore, our interest lies primarily in the demod- 
ulation of the output of the channel, rather than in the 
encoding and decoding, as is the case for past research on 
compound channels. However, error-control coding does play 
an important role in our approach to dealing with uncer- 
tainty in the channel, as will be seen in what follows. 

In this paper, the term receiuer refers to the subsystem 
that performs the demodulation process; that is, it estimates 
the encoded data sequence based on the output of the 
channel. For our purposes in this paper, the decoding task is 
considered to be a separate operation to be performed on 
the receiver output, and this viewpoint is consistent with the 
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Fig. 2. Parallel receiver scheme. 

block codes that we employ. The goal of a universal receiver 
is to provide nearly optimal demodulation regardless of the 
channel that is actually in effect. This goal is considerably 
more ambitious than attempting to design a receiver whose 
performance is relatively constant over the channel class. 
This latter approach is usually based on the existence of a 
receiver that optimizes the worst-case performance over the 
channel class. However, for most channel classes of interest, 
such a minimax receiver performs much worse on' a given 
channel than the optimal receiver. The universal approach 
strives for optimal performance for each channel in the class. 
An adaptive receiver is an alternative to a universal receiver, 
provided that adaptive algorithms can be found that con- 
verge quickly enough to deal with the changes in the channel 
characteristics. The universal approach avoids the need for 
such algorithms. 

The particular realization of the universal receiver intro- 
duced in this paper is based on a parallel receiver configura- 
tion, as shown in Fig. 2. The proposed system consists of a 
finite number of receivers with the property that, for each 
channel in the channel class, the performance of at least one 
of the receivers deviates from the optimal performance for 
that channel by no more than some prescribed amount. The 
determination of the receivers that are good for the channel 
that is in effect is accomplished by means of the intrinsic side 
information generated by an appropriate coding scheme. For 
a given transmitted sequence, the input to the decoding 
system of Fig. 2 is a set of N sequences, one from each of 
the parallel receivers. By virtue of the parallel design, at 
least one of the receivers is good for the channel in effect. 
The decoding system should be such that it can exploit this 
fact, even though the identity of the good receiver is not 
known, and the other receivers may perform very poorly for 
the channel in effect. 

We refer to the single-input, N-output discrete channel 
formed by the transmitter, physical channel, and the bank of 
N parallel receivers as the N-channel. The receivers are 
required to be memoryless for our development, and so the 
N-channel is both discrete and memoryless. 

One possible implementation of a decoding system for our 
parallel receiver configuration is as follows. For each trans- 
mitted codeword, the received words at the output of the N 
parallel receivers are decoded separately. The goal is that 
the received word for a good receiver will, with high proba- 
bility, be correctly decoded, and the received word for a 
mismatched receiver will, with high probability, lead to de- 
coding failure. Thus, it is necessary to employ a code for 
which the decoding is much more likely to fail to decode 
than to decode into an incorrect codeword, even if the 
symbol error probability out of the receiver is very high. 
Reed-Solomon (RS) codes are therefore a natural choice, 
due to their maximal distance properties and their low 

probability of decoding error when bounded-distance decod- 
ing is used. 

The research problems that arise here can be summarized 
as follows: a) characterization of the channel classes for 
which it is possible to design a finite bank of receivers as 
previously described, and development of procedures to carry 
out such a design; b) design and performance analysis for 
suitable coding schemes; and c) design tradeoffs between the 
number of receivers in the bank and the specified degrada- 
tion from the optimal performance. The last problem is best 
addressed by working out an example with a specific channel 
class. This has been done for Rician fading channels, and the 
results will be given in a later paper. A general formulation 
which attempts to address the first problem is given in the 
next section, together with a general example that illustrates 
how the theory applies to the problem of M-ary signaling 
under unknown or time-varying conditions. In Sections I11 
and IV, we consider the performance of a coding system for 
the universal receiver. An information-theoretic character- 
ization is given for the resulting N-channel in Section 111. 
This is followed by results for practical codes in Section IV, 
in which bounds are developed for the probability of decod- 
ing failure and the probability of decoding error for the 
decoding system. It is demonstrated that Reed-Solomon 
codes with bounded distance decoding perform well for our 
application. Finally, Section V contains a discussion of the 
results of this paper as well as of some possibilities for future 
research. 

11. GENERAL FORMULATION 
In this section we consider what may be called the detec- 

tion aspect of designing the universal receiver. We are re- 
stricted to a class of available receivers in our design, and the 
goal is to select a finite number of these receivers with the 
property that, for each channel in the class, at least one of 
the receivers performs almost as well as the optimal receiver 
(within the class of available receivers) for that channel. Any 
such set of receivers is called a universal set of receivers, since 
it is proposed to place these receivers in parallel to imple- 
ment the universal receiver. 

Let C be the class of channels and R the class of available 
receivers. The performance functional f: C X R -+ [0, m) gives 
the value f ( x ,  y) of the performance measure when receiver 
y is used and channel x is in effect. Smaller values of f ( x ,  y) 
correspond to better performance, a convention that is 
adopted to conform to such common performance measures 
such as the probability of error or the mean-squared error. 
Define g: C -+ [O,w) by 

The number g(  x )  is thus the best performance possible using 
receivers from R when channel x is in effect. It is implicitly 
assumed in (1) that, for each x o  E C ,  there exists an optimal 
receiver yo E R such that g ( x o )  = f ( x o ,  yo). 

The allowable deviation from optimality is specified by 
means of a continuous function h: [O,w) -+ [0, w), which satis- 
fies h(s)  > s for all s E [O, w). Any such function will hence- 
forth be called a degradation function. Given a channel 
x EC, it is required to attain a performance of at most 
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h [ g ( x ) ]  by means of the universal set of receivers. As an 
example, consider the degradation function h defined by 

h(s)=max[s+cr,ps], s c [ O , m ) ,  

where a > 0 and p 2 1. For this example, the allowed degra- 
dation h[ g ( x ) ]  is such that the multiplicative degradation 
p g ( x )  dominates for large values of g(x) ,  so that, for chan- 
nels on which even the optimal receiver does not give good 
performance, it is required that the performance attained be 
within a fixed factor p of the optimal performance g ( x ) .  For 
good channels with a small value of g ( x ) ,  it is more reason- 
able to permit an additive degradation. In fact, if C is such 
that g can take on the value zero, it is necessary that a > 0 
to ensure that h [ g ( x ) l >  g ( x )  for all x E C. However, the 
function h previously given is a valid degradation function 
even if the multiplicative degradation is dispensed with (i.e., 
p is taken to be 1). In order to relate the previous discussion 
to a communications application, suppose that the perfor- 
mance of interest is the probability of error, and that error 
probabilities less than are not required at the demodu- 
lator output. A reasonable choice for the degradation func- 
tion for such a situation may be h ( s )  = maxis + 1OW6,3s1, 
s E [0, 11. If, for instance, the optimal error probability is 
lo-', the maximum allowable error probability is 1.1 X 
but if the optimal error probability is lo-', the maximum 
allowable error probability is 3 x lo-'. This type of specifica- 
tion is consistent with the goals in practical communication 
systems. 

We first give some sufficient conditions on the channel 
class and on the performance functional for the existence of 
a universal set of receivers. We include examples that show 
that it may not be possible to obtain a universal set of 
receivers if any one of the given conditions is violated. Next, 
we develop procedures to design such a set of receivers. 
Finally, it is shown that our results apply to M-ary signaling 
over a channel whose statistical characteristics are known to 
lie in an appropriately chosen class. 

A. Existence Results 

It is seen in this section that the existence of a universal 
set of receivers hinges on finding a topology on the channel 
class relative to which both compactness requirements on the 
channel class and continuity requirements on the perfor- 
mance functional are satisfied. 

Theorem 1: Let h be an arbitrary degradation function, 
and let C be a compact Hausdorff space (e.g., a compact 
metric space). Let the family of functions { f ( x ,  y ) ,  y E R} be 
equicontinuous on C. Then there exists an integer N and 
receivers y,,. - e ,  yN in R such that, given any x in C ,  

Proof: It is first shown that g is continuous on C. Let 
E > 0 be given. For any x o  E C, there is a neighborhood U 
such that for all x E U, 

If(x,Y)-f(x,,Y)l<;, forall Y E R ,  (3) 

using the equicontinuity of {f(x, y), y E R )  on C. We also 

note that 

SUP (f(x9Y)-f(xo,Y)l 
Y E R  

Y E R  
I SUP If(x,Y)-f(x, ,Y)(.  . 

Interchanging the roles of xo and x ,  

I g ( x )  - d x o )  I 5 SUP I f ( x ,  Y 1 - f ( x o ,  Y 1 I. 

lg ( x )  - g ( x o )  I I 6 /2 < E 9 

(4) 
Y S R  

For x E U, therefore, we have, using (3) and (41, that 

proving the continuity of g on C. 
Define, for each y E R ,  By  = { x  E C: f(x, y )  < h[g(x) l ) .  

By  is open for each y E R ,  by the continuity of f ,  g ,  and h. 
Also U, E R B  = C since for each xo E C,  there exists y o  E R 
such that f ( x o ,  yo) = g ( x , )  < h[g(xo)l ,  which implies that 
x o  E By". Thus, { B y ,  y E R }  is an open cover for the compact 
space C. Therefore, there exists a finite subcover, say 
By,; *, B y N .  Clearly, y , ;  e ,  yN satisfy (21, completing the 
proof. I7 

The compactness and equicontinuity conditions in Theo- 
rem 1 are both critical in guaranteeing the existence of a 
universal set of receivers for a given channel class, receiver 
class, and degradation function. This is demonstrated in the 
following by two examples for which it is not possible to find 
such a set of receivers. The compactness condition is violated 
in the first example, and the equicontinuity condition is 
violated in the second. 

Example 1 )  Violation of the Compactness Condition: Con- 
sider binary equiprobable on-off signaling over a discrete 
time memoryless channel with additive Gaussian noise. The 
performance of interest is the bit error probability at the 
receiver output. An unknown signal level m is sent when a 1 
is transmitted, and nothing is sent when a 0 is transmitted. In 
each case, the channel corrupts the transmitted signal by 
adding a noise sample drawn from a standard normal distri- 
bution. The noise samples are independent for different bits. 
The receiver must choose between the hypotheses 

H , :  Y = m + W  

H,:  Y =  W ,  

where m 2 0 is unknown and W is a standard normal ran- 
dom variable. The channel is identified with the signal level 
m, so that the channel class C is the nonnegative real line, 
the range of possible values of m. Note that this space is not 
compact in the standard topology of the real line. 

If m were known, the minimum probability of error re- 
ceiver would be given by 

and 

HI 

HO 
Y >< m / 2 .  

Since m E [0, m), the receiver class R is identified with the 
set of possible thresholds t .  Thus, R = [O,m), and we are said 
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to use the receiver t E R when we use the following decision 
rule: 

HI 
Y p t .  
HO 

If the receiver t is used when the channel m is in effect, the 
performance functional of interest is the error probability 
P(m,  t 1, which is given by 

P ( m , t )  = $ Q ( m  - t )  + $ Q ( t ) ,  ( 5 )  

where Q ( x )  is the complementary standard normal distribu- 
tion function defined by 

channel is determined by the pair of densities ( p , ,  po), which 
is denoted by p. The channel class C is therefore a subset of 
the Banach space B = L,(I)X Ll(I) .  The performance func- 
tional of interest is the probability of error P ( p , A )  that 
results if the receiver A is used when the channel p is in 
effect. It is given by 

where AC denotes the complement of A in I, and where the 
integrals are with respect to the Lebesgue measure p. Given 
p ,  the optimal, or minimum probability of error, receiver is 
given by A ={x  E I :  p , ( x ) >  po(x)} ,  and we denote the re- 
sulting optimal error probability by p * ( ~ ) .  

Consider the following sequence p ,  = ( p p ) ,  p g ) )  in B.  

0I"YX) = [ 2 ,  x €[2k/2",(2k +1)/2"), k = 0,l; * *,(2"-l  -l), 
- 1  \ I \ 0, otherwise, 

The minimum error probability P*(m)  for the channel m is 
given by P*(m)  = P(m,  m /2) = Q ( m  /2). 

It is easy to see that the equicontinuity requirements of 
Theorem 1 are satisfied here. For channels m l , m 2 E C ,  we 
have, using (5) and (61, that 

I p ( m l , t ) - P ( m 2 , t ) l  

This proves that the family of functions { P ( m ,  t ) ,  t E R )  is 
equicontinuous on C. However, since C is not compact, the 
existence of a universal set of receivers for an arbitrary 
degradation function is not guaranteed by Theorem 1. In- 
deed, for a degradation function of the form h(s)  = ps, for 
p > 1, it is not possible to have a set of receivers as described 
in Theorem 1. The proof is by contradiction. Assume that 
there are receivers t1; * ., tN such that, for any m 2 0, 

min P ( m , t i )  s p P * ( m ) .  
1 s r s N  

(7) 

It is known that Q ( x )  --f 0 as x 4 W. Letting m --t m in (7), we 
have 0 < min, s i  N t Q < t i )  I 0, which is a contradiction. This 
implies that for any finite set of receivers t , , .  a ,  tN, (7) is 
violated for sufficiently large m. It can be shown quite easily, 
however, that a universal set of receivers can be found if we 
allow an additive degradation from the optimal performance. 
But the point is, if the compactness requirement is removed 
from Theorem 1, other requirements must be imposed. 

Example 2) Violation of the Equicontinuity Condition: We 
again consider binary equiprobable signaling over a 
discrete-time memoryless channel. The channel output al- 
phabet is the interval I = [0, l], and the output Y is a random 
variable with density pi  if symbol i ( i  = 0, l )  is sent, which 
corresponds to the hypothesis Hi in the related hypothesis 
testing problem. The class of available receivers of the fol- 
lowing form: Decide on H, if Y E A,  and decide on Ho 
otherwise, where A is any measurable subset of I. Hence- 
forth, the receiver is identified with the corresponding subset 
A, so that the receiver class R is a subset of Z, where C is 
the a-algebra of Lebesgue-measurable subsets of I. The 

and 

pb")( x )  = 2 -  p p ) (  x ) ,  x E I. (9b) 

The optimal receiver A, corresponding to p ,  is given by 

(2"-' -1 )  
A, = U [2k/2",(2k +1)/2"), 

k = O  

and the corresponding probability of error is P * ( p , ) =  

Consider the weak topology on B .  The pair of densities 
p = ( p l , p o )  is said to converge weakly to q =(ql,qo) if, for 
any subset A of I, japl+jAql, and jApo- ' jAqo.  The 
channel class C is defined to be the weak closure of {p , )  in 
B. The sequence {p,}  converges weakly to U = ( u l ,  uo), where 
u1 and uo are uniform densities on I, given by u l ( x ) =  
uo(x)  = 1, x E I. Thus, C = {p,)U{u}. Since the sequences 
(pi'")) ( i  = 0,l)  are uniformly integrable and are bounded in 
Ll( I ) ,  we have, using Theorems IV.8.9 and V.6.1 in [31, that 
C is weakly compact in B.  The receiver class R is taken to 
be the set of optimal receivers for C. It is shown in Appendix 
A that the equicontinuity requirement is violated under the 
same topology for which the compactness condition that is 
required to apply Theorem 1 is satisfied. 

Consider, now, a degradation function of the form h(s )  = 
s + E ,  s 2 0, where E > 0. It is shown in Appendix A that, if 
E < 1/8, it is not possible to find a finite set of receivers 
D1;..,DN such that, for any p E C ,  min,.i,NP(p,Di)i 
P * ( p ) +  E. Thus, it is not possible to find a universal set of 
receivers for this example, either. 

We note as an aside that it is somewhat artificial to single 
out one of the two conditions as having been violated. It is 
always possible to find a topology in which at least one of the 
two conditions is satisfied. The conditions of Theorem 1 are 
not satisfied when there is no topology for which both 
conditions are satisfied. That this is indeed the case for the 
two examples above follows from the fact that the conclusion 
of Theorem 1 is shown not to hold for each example. For 
simplicity, we choose to consider topologies that seem to be 
natural for the examples, and show that one of the two 
conditions is violated, 

Theorem 1 imposes no requirement for a topology on the 
receiver class R. Often, however, such a topology is avail- 
able. The following result gives a sufficient condition for the 

P(P,, A,)  = 0. 
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existence of a finite set of receivers satisfying ( 2 )  for a given 
degradation function h when R iscompact and Hausdorff. 

Theorem 2: Let C and R be compact Hausdorff spaces. 
Let f: C X R + [0, m) be continuous in the product topology. 
Then there exist an integer N and receivers y,,. . ., yN in R 
such that (2) holds for any given x in C. 

Proof of *Theorem 2: The statement can be proved as a 
corollary of Theorem 1 by showing that the family (f(x,y), 
y E R} is equicontinuous on C under the given hypotheses. 
However, we give an easier proof based on establishing 
directly the continuity of g on C. It is assumed, for simplic- 
ity, that C and R are metric spaces with metrics d, and d,, 
respectively, so that it suffices to work with sequences. Virtu- 
ally the same proof works for arbitrary Hausdorff spaces, 
except that it is necessary to work with nets instead of 
sequences. 

Since g is the minimum of a family of continuous func- 
tions, it is automatically upper semicontinuous. It suffices, 
therefore, to show that g is lower semicontinuous on C. If g 
is not lower semicontinuous, then there exists a real number 
b such that the set B = { x  E C :  g ( x )  > b) is not open. Thus, 
there exists x o  E B such that, for each positive integer n, 
A,, = { x  E'C: d,(x, x,) < l /n}  has a nonempty intersection 
with B". Let x, E A,, n BC. Then 

b 2 g ( x , )  = min f(x,, y )  = f(x,, Y , ) ,  

where y, E R is any minimizing point. Since R is compact, 
( y,) has a convergent subsequence ( ynk 1, which converges 
to some y o €  R. We also have that x ,  -+ xo,  so that 
(x+,  y, 1 - ( x o ,  yo) in the product topology. By the continu- 
ity of therefore, we have 

Y E R  

b 2 f ( x n k , y n k )  +f(xo,~o) 2 g ( x o ) > b .  

This provides the required contradiction, proving the conti- 
nuity of g bn C. The rest of the proof is identical to the 
second half of the proof of Theorem 1. 0 

Theorems 1 and 2 are existence results. So far, no proce- 
dure has been given for actually determining the number N 
of receivers or the points y,; .-, y ,  that satisfy (2) for a 
given degradation function. We now consider some special 
situations for which such procedures can be developed. 

B. Design Procedures 

Two situations are considered here: a) the performance 
functional f satisfies the equicontinuity requirement of The- 
orem 1, and the channel class C is a compact subset of a 
finite-dimensional normed linear space (NLS), and b) the 
performance functional f is jointly continuous on C X R, 
and the receiver class R is a compact subset of a finite- 
dimensional NLS. In each case, the appropriate norm is 
denoted by I l * I I .  Note that the conditions in a) are stronger 
than the hypotheses of Theorem 1, and those in b) are 
stronger than the hypotheses of Theorem 2. This makes it 
possible to give constructive procedures for finding a finite 
number of receivers satisfying (21, as opposed to the results 
of the previous section, which guarantee only the existence 
of such a finite set of receivers. For a), the channel class C is 
partitioned into a finite number of sets with the property 
that for each set there is one receiver that provides the 
desired performance for all the channels in that set. The 

finite set of receivers obtained in this manner satisfies (2). 
For b), the receiver class is partitioned. For a given subset S 
of R, let C, be the set of channels in C for which some 
receiver in S is optimal, that is, 

The partition of R is such that for each set S in the 
partition, there is a receiver y, that provides the desired 
performance for all channels in C,. Since each channel has 
an associated optimal receiver, the finite set of receivers ys 
satisfies (2). The sets of the partition need not be disjoint for 
either a) or b). 

Consider the situation described in a). For x E C,  let 

R ,  = { y E R :  f ( x ,  y ) = g(x>) .  

R, is the set of receivers that are optimal for the channel x .  
Usually, the optimal receiver is unique and R, is a singleton 
set, but this might not be true, for instance, in a singular 
detection problem. Define, for x E C, 

m( x) = sup { r > 0: for all U E B( x ,  r ) , 

f ( u ,  Y )  I h[  g ( u ) ] ,  for all Y E R , } ,  

where B ( x ,  r )  is the ball of radius r centered at x .  Thus, if a 
channel U lies in a ball of radius r < m ( x )  around the 
channel x ,  then any receiver that is optimal for the channel x 
performs within the specified degradation for the channel U. 
Let 6, = inf, , ,m(x). The channel class c is compact in a 
finite-dimensional NLS and is therefore a bounded set. If 6, 
is positive, we can partition the channel class C and thereby 
obtain receivers y,; . ., y, that satisfy (2). The resulting 
procedure is discussed below, followed by a proposition that 
states that 6, is in fact positive under the given conditions. 

To illustrate the procedure, consider the following ohe- 
dimensional example. Let C be the finite closed interval 
[a ,b]  on the real line with the usual norm. Assume that 
m ( x )  can be computed for any x E C. Then y,,. * ., yN satis- 
fying (2) can be chosen by means of the following algorithm. 

1) Set x l = a ,  i = l .  
2) Choose y, E R,, (that is, choose a receiver that is 

optimal for x , ) .  
3) If x ,  + m(x , )  > b ,  stop. If not, set xi+, = x, + m(x,) ,  

increment i by one, and go to Step 2). (The chosen 
receiver yt prbvides the desired performance for all 
channels in the interval [ x , ,  x ,  + ').) 

This procedure terminates in at most 8, ' ( b  - a)  steps, 
because m(x , )  2 6, for all i. Thus, the number of receivers 
N I 1 + &'(b - a). It is easy to see how to modify the above 
algorithm for channel classes C of higher (but finite) dimen- 
sions. The termination of the algorithm depends crucially on 
the assumption that 6, is strictly positive. This assumption is 
satisfied under the hypotheses of a), and this is stated 
formally in the following. The proof is given in Appendix A. 

Proposition 1: If f satisfies the equicontinuity property 
and C is a compact subset of a NLS, then 

6 - i n fm(x)>O.  
, - X C C  

We now consider b), in which the hypotheses of Theorem 
2 hold, and the receiver class R is assumed to be a compact 
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subset of a NU. Define, for y E R, 

cy = { x E c: f ( x ,  y ) = g ( x)} . 
C y  is thus the set of channels for which receiver y is optimal. 
Let 

n(y)=sup{r>O:forall  u E B ( y , r ) ,  

f (x ,  y ) I h[ g (  XI],  for all x E C,), 

where B( y, r )  is the ball of radius r centered at y. Thus, if a 
receiver v lies in a ball of radius r <n(y)  around the 
receiver y, then the receiver y performs within the required 
degradation levels for all channels for which receiver U is 
optimal. The function n on R previously defined is thus 
analogous to the function m defined on C in case a). The 
class of receivers R is finite-dimensional and compact, and 
hence it is a bounded set. Let 6, = inf,,,n(y). If 6, is 
positive, the receiver class R can be partitioned to obtain 
yl; . ., yN satisfying (2). As before, the discussion of the 
procedure is given first, followed by a proposition that states 
that 6, is positive under the given conditions. 
As in a), consider a one-dimensional example. Let R be 

the finite closed interval [c ,  d ]  on the real line with the usual 
norm. Assume that n(y) can be computed for any y E R. 
Then y,; * a ,  yN satisfying (2) can be chosen by means of the 
following algorithm. 

1) Set y, = c,  i = 1. 
2) If yi + n(y,) > d, stop. If not, set y j+l  = yi + n(y,), in- 

crement i by one, and repeat Step 2). (The receiver yj  
provides the desired performance for all channels for 
which any receiver in the interval [yi, yi+,) is optimal.) 

This procedure terminates in at most 6, ' (d  - c )  steps, 
since n(y,)2SR for all i. Thus, the number of receivers 
N I 1 + 6, ' (d  - c). As before, the algorithm can be modified 
to handle higher dimensions. The termination of the algo- 
rithm depends on the fact that 6, is positive under the given 
conditions. As stated in the next proposition, this result does 
hold under the hypotheses of b). The proof is quite similar to 
that of Proposition 1, and is therefore omitted. 

Proposition 2: If f is jointly continuous on C x R, C is 
compact Hausdorff, and R is a compact subset of a NLS, 
then 6,=infY,,n(y)>O. 

The design procedures previously outlined in the two 
situations of interest involve computation of the functions m 
and n, respectively, which may not always be an easy task. 
For instance, the computation of the function n in case b) 
involves a fairly complicated optimization. For any y E R, 
define 

s y ( r ) =  m x  min {h[g(x)]-f(x,y)},  r > 0 .  
u E B ( y , r )  ~ C c v  

(10) 
Then the value of n(y) is given by the following constrained 
optimization problem. 

n( y ) = sup [ r : sy ( r ) 2 0). 

The complexity of this problem is determined by that of the 
unconstrained optimization (10) involved in computing the 
function sy(r). We have imposed no restrictions on the 
channel class C thus far, apart from the compactness hy- 
pothesis. Since the inner minimization in (10) is over a subset 

ISACTIONS ON INFORMATION THEORY, VOL. 37, NO. 2, MARCH 1991 

of C, however, the properties of C and the variations of the 
functions f and g over C are major factors in determining 
the overall complexity (and hence the feasibility) of the 
design procedure suggested here. A detailed examination of 
these issues in various specific instances is required to evalu- 
ate the utility of the approach proposed here. This paper, 
however, is concerned with the general principles of the 
universal approach, and does not consider applications that 
are specified in sufficient detail to explore these issues. 

C. Parallel Receivers for M-ary Signaling 

The purpose of this section is to provide an example of a 
channel class, receiver class, and performance functional that 
may be encountered in a communications application. Con- 
sider the problem of M-ary signaling over a channel whose 
statistical characteristics are known to lie in a given class. It 
is shown here that, for certain channel classes, it is possible 
to design a finite number of receivers such that, given any 
channel in the class, at least one of the receivers performs 
almost as well as the minimum probability of error receiver 
for that channel. 

The input alphabet is A, = {l; . -, M } .  The output alpha- 
bet A, can be continuous and is assumed to have a measure 
p on it. The output Y has density p,(y) with respect to p if 
symbol i is sent. Let a, be the prior probability that the 
input X is i. If the densities p ,  and the priors a, are known, 
then the minimum probability of error receiver can be de- 
signed by solving the corresponding multiple hypothesis test- 
ing problem, with the ith hypothesis given by H,: Y-p, ,  
i = l , * . . , M ,  where the prior probability of H, is a,. The 
decision space in this situation is the same as the input 
alphabet A,. 

Let A be the counting measure on A,. Then the 
input-output pair ( X , Y )  has joint density p(x,y) with re- 
spect to the product measure A X p on A, X A,, given by 
p(i, y) = a l p , (  y) for each i in A,. The minimum probability 
of error receiver corresponding to the joint density p is given 
by a function rp: A, + A, defined by 

with ties being resolved arbitrarily but deterministically. Thus, 
rP(y) = j corresponds to deciding that the hypothesis Hi is 
correct. 

Now, suppose that the joint density p is not known exactly, 
but it is known to lie in a parametric class P = (p': 8 E 01, 
where 0 is a subset of R". It is desired to specify conditions 
under which it is possible to obtain a finite set of receivers 
with the property that, given any p E P, at least one receiver 
in the set performs within a specified level of degradation 
from the minimum probability of error for joint density p. 

Any deterministic receiver for M-ary signaling is character- 
ized by a function r:  A , +  A,, and r(y) denotes the 
decision when the observed channel output is y. If this 
receiver is used and the joint density of ( X , Y )  is p ,  the 
performance functional of interest is the probability of error 

M 

Q ( P , ~ )  = 1 P ( ~ , Y ) P ( ~ Y )  
, = I  Ir+ i )  

M 

= 1 -  c 1 P(i,Y)P(dY). (11) 
i = l  ( r = i )  
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The probability of error is minimized by using the receiver 
r p ,  and the minimum probability of error is given by 
Q * ( p )  = Q ( p ,  r p ) .  

Consider the following conditions on the class P: (Cl) 0 is 
compact in Rk, and (C2) if (0,) E 0 converges to 0 E 0, then 
pen -+ p e  in L,(A X p). By Scheffe's theorem [ l ,  p. 2231, 
almost everywhere (a.e.) convergence of densities implies L 
convergence, so that (C2) is implied by the following condi- 
tions: (C3) if (0,) E 0 converges to 8 E 0, then pen p e  a.e. 
(A x y). Condition (C3) is often easier to check than the 
weaker condition ((2). For instance, if the various condi- 
tional densities are Gaussian, and if 8 parametrizes the prior 
probabilities of the different hypotheses, the means of the 
conditional densities, and the covariance of the conditional 
densities, then (C3) is satisfied. 

The set R of admissible receivers is taken to be the set of 
minimum probability of error receivers corresponding to the 
channels in the uncertainty class; that is, R = { r p :  p E P ) .  
The following theorem gives conditions under which a uni- 
versal set of receivers can be obtained. 

Theorem 3: Suppose (Cl), and either (C2) or (C3), are 
true. Let h be a degradation function. Then there is an 
integer N, and receivers rl ;  . ., r,  in R such that, for any 
P E P ,  

min Q ( p , r , )  ~ h [ Q * ( p ) l .  
1 l J l M  

Proof: P is a compact subset of Ll(A X p),  since it 
inherits the compactness of 0 via (C2) or (C3). We will now 
show the equicontinuity of the family of functions { Q ( p ,  r ) ,  
r E RI on P under the L ,  topology. Theorem 1 of the 
general formulation can then be applied to yield the desired 
result. For p,q E P, and for any r E R, we have, using (l l) ,  
that 

I Q (  p 9 r >  - Q ( q , r )  I 

M 

5 c j- I P ( i , Y ) - q ( i , Y ) l P ( d Y )  
i = l  AY 

= IIp - 4111 -+ 0 uniformly in r as p 3 q in L,(A X y), 

proving that { Q ( p ,  r ) ,  r E R )  is an equicontinuous family on 
P. Theorem 1 in Section 11-A now aqplies, completing the 
proof. Since P is a parametric class, the algorithm suggested 
for case a) in Section 11-B for partitioning the channel class 
can be used to obtain the finite set of receivers guaranteed 
by the theorem. 

111. AN INFORMATION-THEORETIC PERSPECTIVE 
FOR DEGRADED SUBCHANNELS 

One aspect of the performance of the universal receiver 
concerns the capacity and reliability function of the discrete 
memoryless channel (DMC) that is formed by cascading the 
transmitter, physical channel, and receiver. .As the physical 
channel changes, so does the DMC. The capacity specifies 
the maximum rate at which reliable communication can take 
place over the channel in effect when a particular receiver is 
employed, and the reliability function specifies the largest 
attainable error exponent. By use of the proper code for the 

I !  

Fig. 3. Discrete N-channel resulting from parallel configuration. 

DMC in effect, it is possible to transmit at any rate less than 
the capacity with an error Ijrobability that goes to zero 
exponentially as the code block length increases, and the 
exponential rate of convergence can be as close as desired to 
the reliability function for the DMC. There are several 
approaches one might take in the examination of this aspect 
of the universal receiver performance. The one followed 
here is to consider an idealized genie-based receiver that 
provides universal demodulation, and to compare the perfor- 
mance of the DMC corresponding to it with that of the 
DMC corresponding to the universal receiver. 

Assume that we have obtained a set of N receivers with 
the property that, for each channel in the class, at least one 
of the receivers perfbrms almost as wkll as the optimal 
receiver for that channel. It is known from the results of the 
previous section that, for many channel classes of interest, it 
is possible to find a finite set of receivers with this property. 
The two receivers to be compared are the universal receiver, 
which utilizes all N component receivers at ail times, and an 
idealized (and unrealizable) receiver in which a genie contin- 
ually chooses the best of the N component receivers for the 
channel in effect. Because the best of the N receivers is 
nearly as good as the optimal receiver for any channel in the 
class, the genie-based receiver can be designed to be as close 
to optimal as desired over the entire charinel class. 

A block diagram for the DMC with the universal receiver 
is shown in Fig. 3. As illustrated, this DMC actually consists 
of N DMC's in parallel, one for each of the N receivers that 
make up the universal receiver. This gives a single-input, 
N-output DMC that we refer to as the N-channel. Each of 
the N component channels is referred to as a subchannel. 
The subchannel that corresponds to the beSt of the N 
receivers for the channel in effect is referred to as the best 
subchannel. For the universal receiver, the input to the 
decoder consists of the N outputs of the discrete N-channel. 
For the genie-based receiver, only the best subchannel is 
used, and the output of this subchannel is the input to the 
decoder. 

For either the universal receiver or the genie-Based re- 
ceiver, there is the question of what code to use and how to 
decode it. It can be seen from classical compotind channel 
theory [7] that to attain the capacity of a DMC, it suffices for 
the encoder to know the capacity of the DMC and the input 
distribution that achieves the capacity of the DMC. The 
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minimum that the encoder must know for the genie-based 
receiver, therefore, is the capacity of the best subchannel 
and the input distribution that achieves capacity for the best 
subchannel. An important result of this section is that this is 
also the minimum infofmation required by the encoder if the 
universal receiver is used. The decoder does not need any 
information about the channel in either situation. 

It is easy to see how tHe capacity of the best subchannel 
can be achieved for the universal receiver. The encoder 
codes for the best subchannel and appends to the codeword 
some test symbols that enable the decoder to choose the best 
subchannel with a high probability of being correct. The 
decoder then focuses on the best subchannel alone. The 
number of test symbols required is asymptotically negligible 
for large code block lengths, and so this procedure does not 
affect the code rate. We also prove a more general result on 
error exponents for code rates below the capacity of the best 
subchannel. This result cannot be obtained by a simple test 
symbol approach previously described, since the use of test 
symbols affects the error exponent. Instead, the universal 
coding results of 121 are used. These results guarantee the 
existence of good codes that achieve the random coding 
error exponent [2] for any DMC when used in conjunction 
with a universal maximum mutual information decoding pro- 
cedure. The encoder is assumed to have some additional 
information, but as before, the required information is the 
same for the universal receiver and the genie-based receiver. 

Thus, the requirements for achieving good performance 
(in terms of either capacity or error exponent) on the chan- 
nel with the universal receiver are no more stringeht than 
the requirements on the channel with the genie-based re- 
ceiver. The difference is as follows. For the genie-based 
receiver, the decoder’s only input is the output of the best 
subchannel. For the universal receiver, the decoder does not 
know the identity of the best receiver (and hence of the best 
subchannel), and the other receivers may perform very poorly 
for the channel in effect. Our result states that, regardless of 
the possible confusion caused by the presence of the other 
subchannels, the capacity and the reliability function of the 
discrete channel with the universal receiver are the same as 
for the discrete channel with the genie-based receiver. This 
result defines another way in which the parallel configura- 
tion provides universal demodulation. 

At this point, it is necessary to introduce some additional 
terminology and notation, largely taken from [2]. A DMC is 
characterized by its transition probability matrix W ,  and the 
transition probability matrix is used to refer to the corre- 
sponding DMC. Given an input X to the DMC W ,  the 
conditional distribution of the output Y is given by 

P ( Y =  Y IX = x)  = W( ylx), 

which is the (x,y)th entry of the stochastic matrix W. The 
capacity of a DMC W is denoted by C(W).  If the encoder is 
constrained to use input distribution P, the random coding 
exponent function E,( R ,  P,  W 1 is a universally (with respect 
to W )  attainable error exponent at rate R [2, p. 1721. 
Optimizing this error exponent over P for a given W yields 
[21 the random coding exponent function E,(R, W )  = 
maXp E,(R, P, W ) .  Thus, for a given W and R,  if the encoder 
knows the input distribution P that achieves the maximum 
value of E,(R, P, W ) ,  then E,(R, W )  is an attainable error 
exponent at rate R for the DMC W. Let E(R,  W )  denote 
the reliability fhnction of W. It is known that E(R ,  W )  2 
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E,(R, W ) ,  with equality if and only if R 2 R,,(W), where 
R,,(W) is the critical rate for W. 

Define the following partial order <c on DMCS [6]: for 
DMCs I/ and W ,  we say V<,W if there is a stochastic 
matrix Q such that V = WQ. Thus V <, W if and only if W is 
a degraded version 12, p. 1151 of V. It follows that V <, W 
implies C ( V )  I C(W). 

Consider the N-channel illustrated in Fig. 3, and let W 
denote the M X M N  transition probability matrix for the 
N-channel. The transition probability p(Yl  = yl,. . * , YN = 
yNIX = x) is the entry of W in the row corresponding to 
input x E 11; . * ,  M} and the column corresponding to out- 
put vector (yl; . 0 ,  yN) E {l; . ., M } N .  The columns are in- 
dexed by v = f (  y,, * ,  yN), where f is a one-to-one mapping 
of {l; . ., M } N  onto {l; . ., M N } .  Let W,, i = 1;. a ,  N, denote 
the corresponding M X M transition probability matrix for 
the ith subchannel; that is, the (x,y)th entry of W, is the 
transition probability p,(ylx) = P ( x  = y J X  = x ) .  It is impor- 
tant to distinguish between W, the joint transition probabil- 
ity matrix for the N-channel, which has entries of the form 

and W,, the marginal transition probability matrix for the ith 
subchannel, which has entries of the form p,(y(x) for Y E  
{l; . . , M I .  

Because only degraded subchannels are considered in this 
section, there is a best subchannel (not necessarily unique) in 
the sense that all of the subchannels can be considered as 
degraded versions of one of the subchannels. To be more 
precise, for a given transition probability matrix W *  for a 
best subchannel, the transitiw probability matrix for each of 
the other subchannels is worse than W *  with respect to the 
partial order <,. The identity of the best subchannel is not 
known, nor are the trqnsition probabilities for the other 
subchannels. The class of joint transition probability matrices 
W for which these conditions hold and for which W* is a 
best subchannel is a compound N-channel. This compound 
N-channel, denoted by A,  is defined formally as follows. For 
any joint transition probability W, consider the correspond- 
ing marginal transition probabilities W,, i = 1,.  . *, N. The 
N-channel W is ih A if 

P(Y1 = y1, * ’, YN = Y N l X  = x )  for (yl, ’ ’ ’, )”) E (1, * * * 3 MIN,  

= W * ,  for some j ,  (12) 

(13) 

and 

for somt unknown stochastic matrices Q,. 
For our application, the lack of knowledge of the identity 

of the best subchannel is reflected in (12); the lack of 
knowledge of the transition probabilities for the other sub- 
channels is reflected in (13), in which the Q, are assumed 
unknown. Notice also that the constraihts on the compound 
channel A apply only to the marginal transition probabilities 
for the subchannels: the joint transition probabilities are 
otherwise unconstrained. This corresponds to the fact that 
the joint transition probabilities for the outputs of the sub- 
channels in the universal receiver are unknown. 

Consider the genie-based receiver. If the encoder knows 
the input distribution P** that achieves the capacity of the 
best subchannel as well as the value C(W*) of the capacity, 
then it follows from results in [7] that the tapacity of the best 
subchannel can be achieved. The first part of the following 
proposition states that if the encoder for the N-channel 
corresponding to the universal receiver has the same infor- 
mation, then the capacity of the N-channel equals C(W*) .  

W, = W*Q,, i = 1; 1 * f N, 
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The proof follows from classical compound channel theory 
[7] and is outlined in Appendix B. Suppose now, that for a 
given rate R,  the encoder for the genie-based receiver knows 
the input distribution P*(R) that maximizes the random 
coding exponent function E,(R, P, W * )  for the best subchan- 
nel. Results in universal coding [2, p. 1721 imply that the 
Er(R, W * )  is an attainable error exponent at rate R for the 
genie-based receiver. Note that Er(R,  W * )  = E(R,  W * )  for 
R 2 R,,(W*), so that the reliability function of W *  is attain- 
able for rates higher than the critical rate. The second part 
of the following proposition states that if the encoder for the 
N-channel has the same information, then E,(R, W * )  is an 
attainable error exponent for the N-channel. The proof is 
given in Appendix B, and is a simple consequence of results 
in [2]. 

Proposition 3: 

1) If the encoder knows P** and C(W*), then C(A)= 
C(W*). 

2) For a given rate R,  if the encoder knows P*(R), then 
E ( R , A ) 2  E,(R,W*). If R r  R,,(W*), then E ( R , A ) =  
E(R,  W*).  

From a practical point of view, the important feature of 
Proposition 3 is that it implies the performance of the 
universal receiver is just as good as that of the genie-based 
receiver in the following sense. If an appropriate code of rate 
less than the capacity of the best subchannel is used, arbi- 
trarily small error probabilities can be achieved with either 
the universal receiver or the genie-based receiver, and the 
random coding error exponent for the best subchannel is an 
attainable error exponent for each of these receivers. Fur- 
thermore, the encoder for the system with the universal 
receiver does not need any additional information beyond 
that required by the encoder for the system with the genie- 
based receiver. It is worth noting that for most situations of 
practical interest, the best subchannel is symmetric (in the 
broad sense defined by Gallager [4, p. 94]), so that P**,  as 
well as P*(R) for any given R,  is the uniform distribution. 
The encoder needs no further information about the N-  
channel in such a case. 

Proposition 3 implies that, from an information-theoretic 
point of view, there is no penalty in terms of either the rate 
or the error exponent for not knowing the identity of the 
best subchannel. However, these results require the transi- 
tion probability matrix for the N-channel to remain un- 
changed for arbitrarily long time periods, corresponding to 
large block lengths for the codes. For time-varying channels, 
the codeword lengths must be finite and small enough that 
the channel conditions do not change appreciably over the 
duration of a codeword. For practical codes, therefore, there 
may be a penalty for not knowing which subchannel is the 
best, as we shall see from the example given in the next 
section. 

IV. PERFORMANCE OF PARALLEL RECEIVERS 
WITH CODING-AN EXAMPLE 

In this section we consider the performance of practical 
coding schemes for a given parallel configuration of re- 
ceivers. In order to analyze the performance of the coding 
scheme for a given channel in effect, consider as in the 
previous section the corresponding N-channel (see Fig. 3). 
We restrict attention to a simple example in which each 
subchannel is an M-ary symmetric channel (MSC), which is 

characterized completely by its crossover probability. Let 
denote the smallest of these crossover probabilities; that is, 

is the crossover probability for the best subchannel. For a 
given channel class, z1 will in general range over a set of 
possible values. It is assumed, therefore, that the crossover 
probability cl  for the best subchannel is known to lie in a 
range [ E , , , ~ , E , , , ~ ] .  The goal of this section is to design a 
coding scheme that will give good performance over the 
entire range of possible values of cl. 

In the following, bounds on the performance of a given 
coding scheme are obtained. These bounds depend only on 
the crossover probability e l  for the best subchannel, and the 
number N of subchannels. No assumptions are made about 
the joint transition probabilities for the N-channel. In partic- 
ular, the identity of the best subchannel and the values of the 
crossover probabilities for the other subchannels are not 
known. In evaluating the performance of a coding scheme, 
therefore, we derive worst-case results over all possible N- 
channels for which the subchannels are MSC's, and the best 
subchannel has crossover probability el. 

In the analysis, notation is also nee'ded for the crossover 
probabilities for the other subchannels. Number the sub- 
channels from 1 through N, and let ei denote the crossover 
probability for the ith subchannel. According to this conven- 
tion, the first subchannel is the best, in the sense that 

The receiver does not know which subchannel is the best, 
and the identity of the best subchannel may change as the 
channel in effect changes. The convention (14) is established 
merely for notational convenience in the analysis. For the 
purpose of the analysis, therefore, if the identity of the best 
subchannel changes, an appropriate renumbering of the sub- 
channels (in which the first subchannel is the best) is implicit 
in our formulation. The N-channel considered here is a 
special case of the N-channel W of the previous section: the 
best subchannel W *  = W, is an MSC with crossover probabil- 
ity el, and the stochastic matrices Qi correspond to MSCs 
with (unknown) crossover probabilities qi given by 

, 

E l  - E 1  
qi = (1 - M - 1 )  

(1  - M - 1 )  - E l  * 

After deriving the performance bounds, we give numerical 
results for the performance of coding schemes based on 
extended Reed-Solomon codes, followed by a procedure for 
designing such coding schemes to attain specified levels of 
performance. For extended Reed-Solomon codes, the per- 
formance bounds turn out to be monotone in el. Thus, in 
order to design the code for in the range of interest, it is 
enough to design the code for 

The coding scheme used for the N-channel is shown in 
Fig. 4. The same codeword is sent over all the subchannels, 
and the corresponding outputs are decoded separately in the 
usual manner. Each decoder produces one of three possible 
outcomes: a) correct decoding, in which the number of 
symbol errors is within the error-correcting capability of the 
code, b) decoding error, in which the number of symbol 
errors is beyond the error-correcting capability of the code, 
and the decoder decodes into a wrong codeword, or 
c) decoding failure, in which the number of symbol errors is 

= E,,,=. 
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Fig. 4. Model for analysis of performance with coding. 

This bound is substituted for P,(u) in the expression derived 
later in order to get our numerical results for schemes using 
extended Reed-Solomon codes. 

Simple union bounds are first developed for QF and QE. 
The bound on QF is sufficiently tight for the applications 
that arise in this paper, and we proceed no further in this 
case. The bound on Q E ,  however, is quite loose, so a better 
bound is developed. 

The performance of the decoder at the output of a given 
subchannel depends only on the symbol error probability for 
that subchannel. Let PDF(€) be the probability that a de- 
coder at the outmt of an MSC with crossover probability E 

does not decode correctly. Clearly PDF(€) is an upper bound 

Because the decoder is far likely to report a decoding 
failure than decode into a wrong codeword, this upper bound 
is very tight. The expression for PDF(E) is 

beyond the error-correcting capability of the code, but the for the probability of decoding failure for that decoder. decoder realizes this and reports a failure to decode instead 
of decoding into a wrong codeword. 

The results of the individual decodings are processed using 
the following output selection algorithm. All outputs that fail 
to decode are ignored. If two or more of the outputs that are 
decoded fail to match, or if all outputs fail to decode, a 
failure is declared for the decoding system. If all outputs that 
decode are in agreement, then the resulting decoded word is 
assumed to be correct, and a successful decoding is declared 
for the decoding system. Note that if all the decoded outputs 
match, but are wrong, the result is a decoding error for the 
decoding system. 

The performance measures of interest are the probability 
of decoding failure QF and the probability of decoding error 
Q E  for the decoding system. It is clear that the performance 
of the decoding system will depend on the joint transition 
probabilities for the N-channel. In what follows, we develop 
bounds on the performance that depend on the numbers cl 
and N only. 

A word on the choice of the code is in order at this point. 
Several of the receivers may be badly matched to a given 
channel, which translates to several of the discrete subchan- 
nels having high symbol error probabilities. The code should 
be such that, with high probability, such bad outputs fail to 
decode rather than lead to a decoding error. Reed-Solomon 
codes are particularly good in this context, especially if the 
full error-correcting capability of the code is not utilized. 
Thus, bounded distance decoding rather than maximum like- 
lihood decoding is used in this application. 

An (n, k )  code with minimum distance d is used, and the 
decoders in the decoding system attempt to correct up to t 
errors, where 2t + 1 I d .  Let PE(u) denote the conditional 
probability of decoding error for a particular decoder given 
that there are U errors in the decoder input. Note that a 
decoding error can occur only if the number of errors ex- 
ceeds ( d - t ) ,  since the received word must be within a 
Hamming distance of t from a wrong codeword in order to 
produce a decoding error. Thus, by decreasing t (i.e., decod- 
ing below the full error-correcting capability of the code), the 
probability of decoding error for the decoders can be re- 
duced. For a maximum distance separable code, such as a 
Reed-Solomon code, the minimum distance is d = n - k + 1, 
and upper bounds on P E h )  have been developed in [5] .  The 
expression for P&), one such bound, is 

whereas the probability of decoding error for a decoder at 
the output of an MSC with crossover probability E is given by 

PDE(E)= P E ( i ) ( y ) E j ( l - c ) ( n - ’ ) .  
j = d - t  

These are used to get bounds on QF and QE as follows. 
Note that if the received word for the best subchannel is 

decoded correctly, a decoding failure for the decoding sys- 
tem can occur if there is an incorrect decoding for one of the 
other subchannels. This observation is used to obtain the 
following bound on QF. We have 

QF I Pr [ does not decode correctly 

decoder for best subchannel decodes 
+ Pr correctly and one of the other 

decoders decodes incorrectly 

1 decoder for best subchannel 

1, [ 
The first term P D F ( ~ l ) r  and the second term is bounded 
above by the probability that one of the other decoders 
decodes incorrectly, which in turn is bounded by E:, PDE(ei) 
using a union bound. We thus have 

N 

QF I P D F ( E I )  + C PDE(E;)- 
i = 2  

This yields the upper bound 

Q F I P D F ( E I ) + ( N - ~ )  max PDE(EZ)~ (16) 

in which the worse subchannels are taken to be as bad as 
possible while satisfying the constraint (14). For Q E ,  we have 

Q E  I Pr [at least one decoder decodes incorrectly], 

so that, using a union bound:, we get Q E  I 1: IPDE(~i). This 
yields the worst-case bound 

e,  s.52 s 1 

(y) (M-l ) ’ ,  u 2 d - t .  
j = min(0.d - U )  
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The bound (16) for QF is tight in the sense that there are 
joint transition probabilities for the N-channel that satisfy 
the given constraints, and for which the bound (16) is close 
to the actual value of QF. As an example, consider an 
N-channel for which, whenever there is an error at the 
output of the best subchannel, there is an error at the output 
of all the other subchannels. In this case, the best subchan- 
ne1 produces, with probability one, the fewest errors in a 
given transmitted codeword, and is a very good 
bound for the probability that none of the decoders decodes 
correctly. The latter is, in turn, a good upper bound for the 
probability that all the decoders fail to decode (which leads 
to decoding failure for the decoding system), since for each 
decoder, the probability of decoding failure is much larger 
than that of decoding error. If the output of the best sub- 
channel decodes correctly, decoding failure for the decoding 
system can still result from a decoding error at one of the 
decoders. The second term in (16) is an upper bound for the 
probability of this event, and it is typically much smaller than 

As a result, the first term in (16) is usually the 
dominant one. Thus, for the N-channel in the example 
above, the bound (16) is a good approximation for the actual 
value of QF. On the other hand, the upper bound (17) for 
the probability of decoding error for the decoding system is 
not very good, being governed by the probability of decoding 
error for the worst subchannel. In deriving the upper bound, 
we have ignored the possibility that even if the output of a 
bad subchannel decodes incorrectly, a correct decoding at 
the output of a good subchannel will result in decoding 
failure rather than decoding error for the decoding system. It 
is desirable, therefore, to develop a bound that exploits the 
presence of the good subchannels, and this is done in the 
following. 

It is not possible for the decoding system to decode 
incorrectly if there is a correct decoding for the best sub- 
channel. A decoding error for the decoding system may 
result only if either a) the decoder for the best subchannel 
decodes incorrectly, or b) the decoder for the best subchan- 
ne1 fails to decode, and some other decoder decodes incor- 
rectly. For each of the decoders in the decoding system, if a 
correct decoding is not possible, decoding failure is much 
more likely than decoding error. Thus, the probability of the 
event described in b) is bounded quite tightly by the proba- 
bility that the decoder for the best subchannel does not 
decode correctly and some other decoder decodes incor- 
rectly. It is clear from the foregoing that the probability of 
decoding error for the decoding system satisfies 

QE I Pr [decoder for best subchannel decodes incorrectly] 

decoder for best subchannel does not 1 + Pr decode correctly and one of the other . 

The first term equals PDE(e1).  Application of a union bound 
to the second term gives 

QE 5 ~ ‘ D E ( € I )  

[ decoders decodes incorrectly 

decoder for ith subchannel (18) 

decoder for best subchannel 

Some additional notation is required to make this bound 
1 + 

Pr does not decode correctly and 
i = 2  / [  decodes incorrectly 

more explicit. Let 4 be the number of code symbols in error 
at the output of the ith subchannel. The ith subchannel is 
memoryless and has crossover probability ei, and a codeword 
comprises n symbols. Thus, Q is a binomial random variable 
with parameters n and ei .  The distribution of the random 
vector U = (Ul,. . * , U,) depends on the joint transition prob- 
abilities for the N-channel. 

Define the indicator function I,(u) by 

0, U l t ,  
1, u 2 t + l .  I , ( U )  = ( 

The conditional probability corresponding to a typical term 
in the summation in (18) is 

! I  decoder for best subchannel does not 

subchannel decodes incorrectly 
Pr decode correctly and decoder for ith U = U 

= I r ( U I ) P E ( U i ) *  

[ 
Removing the conditioning, we have that the ith term in the 
summation in (18) equals 

E { 4 ( U l ) P E ( Q ) }  5 W , ( U I ) ) (  m p m ) ) .  (19) 

But E{Zf(Ul)} = PDF(e1), the probability that the output of 
the first subchannel does not decode correctly. Thus, each 
term in the summation in (18) is bounded by (19), so that 

The foregoing analysis gives bounds on the performance of 
the decoding system shown in Fig. 4. By an appropriate 
choice of the receivers in the parallel configuration, it is 
ensured that at least one of the receivers performs well for 
any channel in the channel class. However, it is not possible 
to differentiate between the good receivers and the bad for a 
given channel. The effect of this lack of side information on 
the performance of the coding scheme for the universal 
receiver is evaluated by means of a comparison with the 
performance of the same code for the genie-based receiver 
described in Section 111. For the genie-based receiver, the 
performance is given by that of the decoder at the output of 
the best subchannel; that is, the probability of decoding 
failure is given by P D F ( ~ l ) ,  and the probability of decoding 
error by PDE(el) .  Thus, the bound (16) for QF is compared 
with and the union bound (17) and the bound (20) 
on QE are compared with PDE(e1).  

For the remainder of this section, we restrict ourselves to 
extended Reed-Solomon codes with block length n = M. 
The minimum distance d ,of the code is related to the 
number k of information symbols by d = n  - k + l .  The 
decoders in the decoding system attempt to correct up to t 
errors. Given the alphabet size M ,  therefore, the coding 
schemes considered henceforth are completely specified by 
the values of k and t .  The maximum error-correcting capa- 
bility of the code is e = [ (d  - 1)/21, and t may be chosen to 
be strictly less than e so that the outputs of bad subchannels 
are less likely to decode into a wrong codeword. In the 
numerical results, the upper bound P&) given by (15) is 
substituted for P&> in the expression of interest, leading to 
upper bounds for these expressions. The bound P,(u) is 
nondecreasing in U, so that the minimum probability of 
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TABLE I-A 
DECODING ERROR AND DECODING FAILURE PROBABILITIES FOR M = 32 WITH A (32,16) EXTENDED REED-SOLOMON 

CODE, = 0.1 

Decoding Error Probabilities Decoding Failure Probabilities 
Bound (20) Union Bound Bound (16) 

N t 'DE( '1)  on QE (17) on QE PDF(€,) on QF 

2 2 7.00E-26 4.16E-19 6.57E-19 0.633 0.633 
4 2.52E-19 9.70E-15 4.59E-14 0.211 0.211 
6 1.93E-13 4.01E-11 1 .llE-09 3.58E-02 3.58E-02 
8 4.07E-08 8.18E-08 1.25E-05 3.30E-03 3.3 1 E-03 

5 2 7.00E-26 1.66E-18 2.638-18 0.633 0.633 
4 2.52E-19 3.88E-14 1.83E- 13 0.211 0.21 1 
6 1.93E-13 1.60E-10 4.45E-09 3.58E-02 3.58E-02 
8 4.07E-08 2.05E-07 4.99E-05 3.30E-03 3.35E-03 

10 2 7.00E-26 3.74E-18 5.91E-18 0.633 0.633 
4 2.52E-19 8.73E-14 4.13E-13 0.211 0.211 
6 1.93E-13 3.59E-10 1.00E-08 3.58E-02 3.58E-02 
8 4.07E-08 4.10E-07 1.12E-04 3.30E-03 3.41E-03 

TABLE I-B 
DECODING ERROR AND DECODING FAILURE PROBABILITIES FOR M = 32 WITH A (32,16) EXTENDED REED-SOLOMON 

CODE, E,  = 0.01 

N t  

2 2  
4 
6 
8 

5 2  
4 
6 
8 

10 2 
4 
6 
8 

Decoding Error Probabilities Decoding Failure Probabilities 

PDE(E 1) 

3.16E-40 
1.33E-31 
1.18E-23 
2.81E-16 
3.16E-40 
1.33E-31 
1.18E-23 
2.81E-16 
3.16E-40 
1.33E-31 
1.18E-23 
2.81E-16 

Bound (20) 
on QE 

2.62E-21 
7.37E-19 
3.01E-17 
5.65E-16 
1.05E-20 
2.95E-18 
1.20E- 16 
1.42E-15 
2.36E-20 
6.64E-18 
2.71E-16 
2.84E-15 

Union bound 
(17)on QE 

6.57E-19 
4.59E-14 
1.11E-09 
1.25E-05 
2.63E-18 
1.83E- 13 
4.45E-09 
4.98E-05 
5.91E-18 
4.13E-13 
1.00E-08 
1.12E-04 

PDF(E1)  

3.99E-03 
1.61E-05 
2.70E-08 
2.28E-11 
3.99E-03 
1.61E-05 
2.70E-08 
2.28E-11 
3.99E-03 
1.61E-05 
2.70E-08 
2.28E-11 

Bound (16) 
on Q, 

3.99E-03 
1.61E-05 
2.81E-08 
1.25E-05 
3.99E-03 
1.61E-05 
3.15E-08 
4.98E-05 
3.99E-03 
1.61E-05 
3.7 1 E-08 
1.12E-04 

decoding error for the decoder for a bad subchannel is 

Also, we have 

The numerical results presented in Table I-A and Table 
I-B are for M = 32 and a (32,161 extended Reed-Solomon 
code, so n = 32, k = 16, d = 17, and e = 8. The values of E , ,  

N, and t are varied. It is found that the bound (20) for QE is 
always better than the union bound (17), but the difference is 
more significant for small values of el. Both these bounds 
are significantly larger than P D E ( ~ l ) ,  the probability of de- 
coding error for the genie-based receiver, but the probability 
of decoding error of the decoding system for the universal 
receiver is still low enough for a practical system design. The 
probability of decoding failure for the decoding system, on 
the other hand, is almost equal to PDF(~l), the probability of 
decoding failure for the genie-based receiver, as long as we 
decode below the maximum error-correcting capability of the 
code. 

Next, the problem of designing a suitable coding scheme 
for attaining specified levels of performance is considered. 
We restrict attention to the coding schemes based on ex- 
tended Reed-Solomon codes described above, for which the 

design consists simply of specifying values for k and t. 
Suppose that pf and pe  are the desired probability of 
decoding failure and decoding error, respectively, to be at- 
tained over a given class of channels. For the N-channels 
corresponding to these channels, the crossover probability E 

for the best subchannel is assumed to lie in a range 
[ E , ~ , E , , ] .  Given emin, E,,, N ,  and n, we are required to 
find k and t such that the information rate k / n  is maxi- 
mized subject to the constraints QF I pr and QE I pe for all 
possible channels in effect. This is equivalent to minimizing 
the minimum distance d subject to the same constraints, 
since n = M and d = n - k t 1. 

The following is a design procedure that minimizes d 
under the given constraints. The design is based on the 
bound (16) on QF and the bound (20) on QE. For economy 
of notation, let QF denote the bound in (16) and QE the 
bound in (20). It is easy to see that each of these bounds is 
increasing in E,, so it suffices for the design to consider 
E ,  = E,,. This is the value of used in the following. Thus, 
a worst-case approach is used for the problem of code 
design. 

The probability of decoding failure for the decoding sys- 
tem is given by 

QF = Q F (  €1;  d ,  t )  = t ) + ( N  - ~ ) P D E ( ~ ;  d7 t )  (21) 
where the dependence on E , ,  d,  and t has been made 
explicit. The first term on the extreme right-hand side is 
usually the dominant one, hence the second term is ignored 
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TABLE 11-A 
CODE DESIGN FOR M = 32 USING EXTENDED REED-SOLOMON CODES WITH BLOCKLENGTH n = 32 

Required Performance: pf = 1.OE-3, pe = 1.OE-13 
E l  = 0.1 

Code Parameters Performance Attained 

N k* t* % Loss in Rate QF Q E  

1 12 9 0 8.1E-4 3.6E-14 
2 11 9 8.3 8.1E-4 2.9E-14 
5 11 9 8.3 8.1E-4 5.9E-14 

10 10 9 16.7 8.1E-4 8.5E-15 
~~~~ ~~ 

Required Performance: p f  = 1.OE-6, p,, = 1.OE-16 

1 6 13 0 8.1E-7 1.2E-17 
2 6 13 0 8.1E-7 2.3E-17 
5 6 13 0 8.1E-7 5.9E-17 

10 5 13 16.7 8.1E-7 3.5E-18 

TABLE 11-B 
CODE DESIGN FOR M = 32 USING EXTENDED REED-SOLOMON CODES WITH BLOCKLENGTH n = 32 

Required Performance: p f  = 1.OE-6, p ,  = 1.OE-16 
E l  = 0.01 

Code Parameters Performance Attained 

N k' t' % Loss in Rate QF QE 

1 19 5 0 7.2E-7 5.4E-18 
2 16 5 15.8 7.2E-7 5.8E- 18 
5 16 5 15.8 7.2E-7 2.3E-17 

10 16 5 15.8 7.2E-7 5.2E-17 

Required Performance: pr = 1.OE-10, pe = 1.OE-20 

1 14 8 0 2.3E-11 1.4E-22 
2 12 8 14.3 3.6E-11 3.1E-22 
5 12 8 14.3 7.7E-11 1.2E-21 

10 11  8 21.4 2.7E-11 8.9E-23 

in making a preliminary choice of t that is likely to satisfy 
the constraint on QF, as follows: 

t*=min{t: PDF(e1;t) <pf}. 

Given that t = t * ,  minimizing d subject to the constraint on 
QE yields 

d*=min{d: d 2 2 t * + 1  and Q E ( E l ; d , t * )  s p , } .  (22) 

Finally, it is checked whether the constraint on QF is satis- 
fied when the second term on the extreme right-hand side of 
(21) is taken into account; that is, whether 

QF( € 1 ;  d * ,  t * )  = PDF( €1; t * )  ( N  - ~)PDE( 1;  d * ,  t * )  I pf. 

If the condition is satisfied, the design is complete. It not, we 
have to increase either t* or d* (or both) so that the 
performance criteria are met while minimizing the value of 
d*. The value of t* affects the decoding algorithm but does 
not affect the code rate; it is, moreover, an important inter- 
mediate variable in determining d*, as is seen from (22). The 
number of information symbols is given by k* = n - d* + 1. 
Numerical examples of designs obtained are given in Tables 
11-A and 11-B. 

It is of interest to compare the design above to a coding 
scheme (based on an appropriate extended Reed-Solomon 
code) that attains the same performance levels for the 
genie-based receiver. The probability of decoding failure, 
PDF(el ) ,  and the probability of decoding error, PDE(e,), for 
the genie-based receiver are both irlcreasing in el, so that, as 
before, it suffices to consider cl  = emax in designing for e l  in 
the given range. Using this value of el, the design is simply 

given by 
t * = min {t : pDF( el; t ) I pf} 

and 
d* = min { d: d 2 t* + 1 and PDE( e,; d, t * )  I pe}  . 

In most of the numerical examples in Tables 11-A And 11-B, 
the value of t* obtained is the same that was given previ- 
ously, but the value of d* is in general smaller. This means 
that transmission at a higher rate is possible if the identity of 
the best subchannel is unknqwn, since the outputs of the bad 
subchannels can then be ignored. This corresponds to the 
results for N = 1 in Tables 11-A and 11-B, which display the 
loss in rate, as the number of subchannels increases, in order 
to maintain the same performance levels. 

The foregoing results show that the universal receiver of 
Section I1 does achieve universal demodulation, and that it is 
possible to design a practical coding scheme that exploits the 
presence of the good receiver in the parallel configuration, 
despite the fact that the identity of the good receiver is not 
known. Unlike the information-theoretic results of the previ- 
ous section, however, the presence of receivers that may 
perform very poorly for the channel in effect results in 
transmission at a lower rate in order to achieve the same 
performance as the genie-based receiver. 

V. CONCLUSION 
We have introduced a universal approach to dealing with 

uncertainty in the knowledge of channel characteristics. We 
have given conditions and procedures for finding a finite set 
of receivers which, when placed in a parallel configuration, 
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provide universal demodulation. It is established that the 
resulting universal receiver does provide universal demodula- 
tion by comparing its performance with that of an idealized 
and unrealizable genie-based receiver. 

Some topics for further investigation are listed in the 
following. 

1) The detection aspect of the design has been stated in a 
rather abstract setting in this paper. In our following work, 
we intend to consider specific channel classes and carry out a 
universal design for specific degradation functions. This will 
enable us to explore the trade-offs between the number of 
receivers and the allowable deviation from optimality. 

2) The results of this paper are for memoryless channels 
and symbol-by-symbol demodulation, and the performance 
functional is typically the symbol error probability. It would 
be interesting to apply the universal approach to channels 
with memory, such as channels with intersymbol interfer- 
ence. The performance functional for such an application 
must reflect the accuracy with which a sequence of symbols is 
reproduced at the receiver. 

3) In the coding aspect of our design, we have considered 
codes with nonbinary alphabets. Due to the widespread use 
of binary signaling, it is also of interest to design schemes 
using binary codes. Our results here indicate that concate- 
nated codes with a binary inner code and a Reed-Solomon 
outer code might perform well, but there may be other good 
choices. 

4) In a specific application, some additional information 
about the joint transition probabilities for the N-channel 
may be available. It may be possible to exploit this informa- 
tion to obtain tighter bounds on the performance of the 
coding system of Section IV, as well as to design a better 
coding system that takes advantage of the additional infor- 
mation. In particular, side information concerning the iden- 

,tity of the good receiver could be used to improve the 
performance of the decoding system. It is especially impor- 
tant to enhance the performance of binary coding systems 
using such information, because the common binary codes 
do not have the good distance properties of Reed-Solomon 
codes. 

5 )  The concept that is applied to communication systems 
in this paper may be applicable to other systems as well, but 
several of the issues that arise differ considerably from the 
communications application. In a radar-type application, for 
instance, there is no single technique to identify the best 
subsystem. Trying to make the probability of a miss smaller 
using a parallel configuration can lead to a high probability 
of false alarm. However, there are certain applications for 
which the latter is not a big drawback (e.g., if false alarms 
can be rejected by other means). 

APPENDIX A 
In this Appendix, we supply some details for Example 2 

and give the proof of Proposition 1. 
Details of Example 2: To see that the equicontinuity re- 

quirement is violated under the weak topology on C, note 
that although p ,  converges weakly to U ,  

lim I P ( u , A , )  - P ( ~ , , A , )  I = 1/2. 

Thus, the family of functions { P ( p , A ) ,  A E R }  is not 
equicontinuous on C. 

n 

Next, it is shown that for the degradation function consid- 
ered, it is not possible to obtain a universal set of receivers. 
In particular, we show that, if E < 1/8, then for any finite set 
of receivers D , ;  -, D,, there is an integer M such that, for 
all n > M, 

(A.l)  

To this end, consider any given receiver A. Using (8) and (9) 
from Section 11-A, it is easy to show that 

P ( ~ , , A )  = p( A ,  n A ~ )  + p ( ~ ;  n A ) .  (A.2) 

Suppose that, for some n, P(pn ,  A) < E .  From (A.2), we have 
p(A', n A) < E. Since p(A:) = 1/2, this implies that 

min P (  p , ,  0,) > P*( p , )  + E = E .  
1 s r s N  

p( A', n A') > 1/2- E.  (-4.3) 

For any m > n,  we have 

p ( ~ ;  n A') = p ( ~ ;  n A; n A') + p( A ,  n A', n A') 

- < p( A; n A;)  + p( A ,  n A') .  (A.4) 

Since p(AL n A',) = 1/4, we have using (A.3) and (A.4) that, 
for E < 1/8, 

p( A, n A') 2 (112- E )  - 1/4 = 114- E > E. 

This implies, using (A.l), that P(p, ,  A) > E .  Thus, a receiver 
that provides the desired performance for one of the p ,  does 
not do so for {p, ,  m > n}. These considerations imply (A.l), 
which in turn implies that a universal set of receivers cannot 
be obtained for the given degradation function. 

Proof of Proposition I :  The proof is by contradiction. 
Assume that inf, m ( x )  = 0. Then there is a sequence ( x k )  
in C such that, for each k, 

Without loss of generality, assume that ( x k )  converges to 
xO E C (passing to a convergent subsequence if necessary, 
using the compactness of C). By (AS), for each k, we have 
u k  E C and y k  E RXk satisfying 

and 

f ( U k , Y k )  > h [ g ( u k ) ] .  (A.7) 
We see from (A.6) that the sequence ( U , )  also converges to 
xo .  Also, we have 

f ( u k  9 y k )  = [ f ( u k  7 y k )  - f( x O  9 Y k ) ]  

+ [ f ( x O ?  y k )  - f ( x k  7 y k ) ]  + f ( x k  7 y k ) .  

The first two terms go to zero as k + m  because of the 
equicontinuity of the family { f ( x ,  y ) ,  y E R}  on C. The third 
term equals g ( x k ) ,  since y k  E Rxk.  We note that g is contin- 
uous under the given hypotheses (see the proof of Theorem 
1). Also, the degradation function h is continuous by defini- 
tion. Hence, letting k + m  on both sides of (A.7) yields 

d x o )  2 h [ g ( x , ) I .  
This contradicts the fact that h ( s )  > s for all s E [O,m), and 
proves that 6, > 0. 
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APPENDIX B 
We prove Proposition 3 in Section I11 here. Before doing 

so, it is necessary to develop some additional notation and 
terminology not introduced in the main text for the sake of 
clarity of presentation. As before, the reader is referred to 
[2] for details. For distributions P,  and P,, let D(PlJlP2) be 
the divergence of P ,  relative to P,. If the input X of a DMC 
W is distributed according to a probability vector P (consid- 
ered to be a row vector), the output Y is distributed accord- 
ing to the probability vector PW. The mutual information 
Z(X;Y)  between X and Y is denoted by Z(P, W )  in this case. 

I (  P ,  W )  = c P( x )  D( W( * Ix ) IIPW( a ) ) .  

X 

Given another DMC V ,  the conditional divergence 
D(V((W1P) is given by 

D(VIIWIP) = ~P(x)D(V(.lx)lIW(.Ix)). 
X 

For a DMC W with input distribution P ,  the sphere 
packing exponent function ESP( R ,  P ,  W )  for constant compo- 
sition codes of rate R is given by 

ESP( R ,  P ,  W )  = min D( VIIWIP). 
V: I ( P , V ) I  R 

Maximizing over P, we get the sphere packing exponent 
function E,,(R,W). For the same situation as before, the 
random coding exponent functions E J R ,  P ,  W )  and 
E,(R,W) have been defined in Section 111. From [21, 

E , ( R , P , W )  = min { E , , ( R ’ , P , W ) + R ‘ -  R } ,  
R T R  

which yields E,(R, W )  = min,,,{E,,(R’, W>+ RI- R )  on 
maximizing over P .  The reliability function E ( R , W )  is up- 
perbounded by Esp(R, W )  and lowerbounded by E,(R, W ) .  
The critical rate R,, = R,,(W) for the DMC W is the 
smallest R at which the convex curve E,(R,W) meets its 
supporting line of slope - 1. For rates above the critical rate, 
the sphere packing exponent function and the random cod- 
ing exponent function are equal, and are therefore equal to 
the reliability function of the channel. 

Recall that the compound channel A of interest has a 
single M-ary input X and an M-ary N-vector Y = ( Y , , .  . . , Y,) 
as output. Assume, without loss of generality, that Wl = W*, 
that is, the first subchannel is the best. This assumption is 
made only for notational convenience, and does not imply 
any knowledge of the identity of the best subchannel. Then, 
for any W E A, the transition probability matrix w. for the 
ith subchannel is given by 

Wi = WIQi, i = 2; 7 N, 
where the Qi are unknown stochastic matrices that depend 
on W. 

We show first that 

min I ( P ,  W )  = I ( P ,  W,) .  (B.1) 
W E A  

If the encoder knows P**,  the input distribution that maxi- 
mizes the right-hand side above, and the value of the result- 
ing maximum, it is easy to show, considering the proof of 
Theorem 4.3.1 and 4.4.1 in [7], that 

C( A )  = max min I( P, W )  = max I( P ,  W , )  
P W E A  P 

= I (  P** ,  W,) = C( W,) 

This will prove the first part of the proposition. The only 
information required by the encoder here is the input distri- 
bution achieving the capacity of the best subchannel, and the 
value of that capacity. 

To show (B.l), note that, for any W E A ,  we have by 
definition that 

Z ( P , W ) = Z ( X ; Y , ; . . , Y , ) ,  

where Y = (Y,;  . . ,Y,) is the output of the DMC W when 
the input X has distribution P .  Also, we have 

Now, 
Z(P,W,) = Z ( X ; Y , ) .  

I (  X ;  Y 1 ;  . . , Y,) = I (  X ;  Y l )  + I (  X ;  Y2,.  . . ,Y,lY,). (B.2) 
*, Y N )  2 Z(X; Y , ) ,  which implies 

(B.3) 

This proves that I (  X; Y, ,  
that 

I (  P ,  W )  2 I (  P ,  W,) , for all W E A .  

Now, define a DMC W as 

w( Y 1,’ * . Y N I ~ )  = W1( Y 1Ix)Q( ~ 2 , .  * * 9 Y N I Y  1) 7 (B.4) 
where Q is an arbitrary stochastic matrix. Clearly, W E A. 
Also, for this DMC, X + Y l  + ( Y 2 ; . . , Y N )  is a Markov 
chain, so that Z(X;Y,; . . ,Y,lY,)= 0, which implies, using 
(B.21, that I ( X ;  Y 1 ; .  -, Y,) = I ( X ;  Yl). In other words, there 
is a W E A such that Z(P, W )  = I @ ,  W,). This, together with 
(B.3), implies (B.l), completing the proof of the first part of 
the proposition. 

To prove the second part of the proposition, consider the 
sphere packing exponent function ESP( R ,  P ,  W )  for any W E 
A. It is first shown that 

E s p ( R , P , W )  2 E s p ( R , P , W i ) -  (B-5) 

ESP( R ,  P 9 W ) = ESP( R 7 P 9 W1). (B.6) 

Next, it is proved that, for W as in (B.41, 

It follows from (B.5) and (B.6) that 

min E, , (R ,P ,W)  = E, , (R ,P ,W, ) .  (B.7) 
W E A  

The following equality holds for any DMC W [2] 

R ‘ r R  
E , ( R , P , W ) =  min [ E , ( R ’ , P , W ) + R ’ -  R I ,  (B.8) 

which implies, using (B.7), that 

min E , ( R , P , W ) =  E , ( R , P , W , ) .  (B.9) 
W E A  

The universal coding results in [2, p. 161-1731 show that, 
using codes of constant composition P with maximum mu- 
tual information decoding, it is possible to achieve error 
exponents of E,(R, P ,  W )  for any DMC W. Note that neither 
the codewords nor the decoder depend on W here. For the 
compound channel A, it is easy to see that, using codes 
based on the previous constant composition codes, it is 
possible to achieve an error exponent of 

E , ( R , A ) = m a x  min E , ( R , P , F ) ,  
P W E A  

which equals E,(R, W,), maximizing both sides of (B.9) over 
P. The only information required by the encoder here is the 
input distribution P*(R)  that achieves this maximum. This 
supplies a lower bound to the reliability function E( R ,  A) of 
the compound channel A. It is also shown in [2, p. 1731 that 
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the reliability function is overbounded by the sphere packing 
exponent function for the compound channel A, given by 

E, , (R ,A)=max  min E , , ( R , P , W ) ,  
P W E A  

which equals E J R ,  W,),  maximizing both sides of (B.7) over 
P.  Thus, the reliability function E ( R , A )  is bounded as 
follows: 

Er( R ,  w1) I E( R ,  A )  I ESP( R 9 W l ) .  

For R L Rcr( Wl) ,  we have 

E,,(R,WI) = E,(R,WI) = E ( R , W l ) ,  

which implies that E ( R ,  A) = E ( R ,  W,)  for such rates. Thus, 
the proof of the second half of the proposition will be 
complete once we have proven (B.5) and (B.6). 

To this end, consider any W E A. Let V be another single 
input, N-output DMC such that Z(P, V )  I R.  If VI is the 
transition probability of the first subchannel of V ,  we know 
that Z(P, VI) I Z(P, V )  I R (arguing as earlier, when (B.3) 
was proved). Also, 

D(VIIWIP) 2 D( V,llW,lP). (B.lO) 

To see this, consider 

D(VIIWIP) = C P ( X )  c V(Y,,-.,Y,lX) 
X Y l , .  . ’ 9 Y N  

v( Y 1 2 ’  . . , YNb) 
W( Yl,’. *,Y,lX) 

. log 

= E m )  c V(Y1 ,-, YNIX) 
X Y l , ’  ’ ’ )  Y N  

V,(Y,lX)V’(Y2/ * *?YNlX,Yl) 

Wl(Y,lX)W’( Y2 ,-, Y,lX,Y1) 

+ C P < X > C V d Y , l X )  

. c Y‘( Y2,’ * ?  YNlX, Y1) 

Y‘( Y2r.-,YNlX,Y1) 

Wf(Y2,...,YNIX,Y1) ’ 

X Y l  

Y Z , ” ’ , Y N  

log 

where Y‘, W’ denote the conditional probability distributions 
of (Y2,.-.,YN), given (X,Yl), for the DMCs V and W ,  
respectively. Hence, 

D(VIIWIP) = D( VIIIWIIP) + D(Y‘llW’lPV,), ( B . l l )  
which yields (B.10), since the second term on the right hand 
side is nonnegative. Thus, 

We will show that the extreme right-hand side equals 
E , , ( R , P , W , )  = min D(VllW,IP),  

( V :  I ( P , V ) s R )  

thus proving (B.5). To show this, it suffices to prove that 
( V :  Z ( P , V )  5 R )  = {V,: Z ( P , V )  I R ) .  

Since Z(P,V) 2 Z(P, V,), it is clear that the right-hand side is 
contained in the left-hand side. To show the reverse contain- 
ment, let V be an M X M transition probability matrix such 
that Z(P, V )  I R .  Define V by 

V (  ~ 1 , ’  . ’, Y,Ix) = V(  y,lX)Q( ~ 2 , .  . ‘ 9  Y N I Y  I ) ,  (B.12) 
where Q is an arbitrary stochastic matrix. Then Z(P ,V)=  
Z(P, V )  5 R,  and the transition probability matrix VI of the 
DMC V is V ,  showing the reverse containment. This com- 
pletes the proof of (B.5). 

To show (B.6), let W be as in (B.4). Let V be such that 
Z ( P , V ) s  R ,  and let V be as in (B.12), where the stochastic 
matrices Q are the same for both V and W. Then 

=Q( Y~,...,YNIYI), 
V’(Y,,.-,Y,lX,Yl) =W’(Y,,...>Y,lX?Yl) 

which yields D(Y‘llW’lPVl) = 0. Thus, from (B.111, we have 
D(VIIWIP)= D(VIIWIIP). Also, we have 

Z ( P , V ) = Z ( P , V ) = R ,  
so that 

ESP( R ,  P ,  W )  S D( VIIWIP) = D( VIIWiIP). 
Minimizing the extreme right-hand side over (V: I (P ,V) I  
R), we have E,(R, P , W ) s  E,(R,P, W , )  for W as in (B.4). 
This proves (B.6), and completes the proof of the second half 

Before concluding this Appendix, we point out that the 
worst-case (in terms of both capacity and error exponents) 
W E  A is as in (B.4), which corresponds to the outputs 
(Y2; . ., Y,) of the worse subchannels being a physically 
degraded version of the output Y, of the best subchannel. In 
this case, it is not possible for the performance of the 
universal receiver to be better than that of the best subchan- 
nel. What these results show is that the performance of the 
universal receiver is no worse than that of the best subchan- 
nel, despite the fact that the identity of the best subchannel 
is not known. 

of the proposition. 0 

REFERENCES 

[l] P. Billingsley, Convergence of Probability Measures. New York: 
Wiley, 1968. 

[2] I. Csiszar and J. Korner, Information Theory: Coding Theorems 
for Discrete Memoryless Systems. New York: Academic Press, 
1981. 

[3] N. Dunford and J. T. Schwartz, Linear Operators, Part I :  
General Theory. New York: Wiley, 1957. 

[4] R. G. Ggllager, Information Theory and Reliable Communica- 
tion. New York: Wiley, 1968. 

[5 ]  R.  J. McEliece and L. Swanson, “On the decoder error probabil- 
ity for Reed-Solomon codes,” IEEE Trans. Inform. Theory, vol. 
IT-32, no. 5, pp. 701-703, Sept. 1986. 

[6] C. E. Shannon, “ A  note on the partial ordering for communica- 
tion cbannels,” Inform. Contr., vol. 1, pp. 399-397, 1958. 

[7] J. Wolfowitz, Coding Theorems of Information Theory. New 
York: Springer-Verlag, 1975. 


