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Abstract- If direct-sequence spread-spectrum (DS/SS) modu- 
lation is employed, the receiver must acquire the chip timing for 
incoming messages before these messages can be demodulated. 
If the system or network employs DS/SS multiple access, also 
known as code-division multiple access (CDMA), the acquisition 
process is more difficult because multiple messages are transmit- 
ted simultaneously and in the same frequency band. The effect of 
multiple-access interference on the acquisition of DS/SS signals is 
studied. A passive matched filter approach is employed, and the 
acquisition window length, which is the length of the matched 
filter, determines the complexity of the acquisition scheme. The 
acquisition-based capacity of a DS/SS system is defined to be 
the maximum number of simultaneous transmissions permissi- 
ble while maintaining acceptable acquisition performance. The 
performance of the acquisition scheme is evaluated for large 
acquisition window length, and the asymptotic analysis yields the 
capacity as a function of the acquisition window length. If this 
length is linearly related to the processing gain, the acquisition- 
based capacity is smaller than that obtained by consideration of 
post-acquisition criteria only (e.g., bit-error probability for the 
demodulated signal). The results indicate the relative importance 
of the acquisition problem and suggest directions for further 
research. 

Index rem-Code-division multiple access (CDMA), Direct- 
sequence spread spectrum, Acquisition 

I. INTRODUCTION 

IRECT-SEQUENCE spread-spectrum (DS/SS) multiple D access, also known as code-division multiple access 
(CDMA), has attracted much recent interest for multiple- 
access communications in commercial applications such as 
digital cellular radio and personal communication networks. In 
a DS/SS scheme, each data signal to be transmitted is spread 
over a much larger bandwidth using an appropriately chosen 
sequence. The sequence for a particular transmitter is referred 
to as the spreading sequence or signature sequence for that 
transmitter. An appropriate selection of the set of signature 
sequences provides the cross correlation properties that enable 
several DS/SS transmissions to share the same channel [13]. 
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We are interested in characterizing the capacity of DS/SS 
communications, which is defined to be the maximum number 
of simultaneous transmissions that the system can support, 
expressed as a function of some measure of the complexity 
of the scheme. 

We focus our attention on the problem of acquiring a 
DS/SS signal in the presence of multiple-access interference. 
Our goal is to characterize the acquisition-based capacity, 
which is defined to be the maximum number of simultaneous 
transmissions supported by the DS/SS scheme while maintain- 
ing acceptable acquisition performance. A passive matched 
filter approach [5] is employed for acquisition. The length 
of the matched filter, referred to as the acquisition window 
length, determines the complexity of the acquisition scheme. 
The acquisition-based capacity is the maximum number of 
simultaneous transmissions as a function of the acquisition 
window length N ,  and our main result is that this capacity is 
of the order of N l l o g N .  

The usual approach [6] ,  [9]-[lO], [12] taken in the analysis 
of DS/SS schemes is to consider the bit error rate (BER) or the 
signal-to-noise ratio (SNR) as the measures of performance, 
and the bandwidth expansion NE (sometimes termed the 
processing gain) is employed as the measure of the complexity 
of the scheme. The capacity based on the BER or SNR criteria 
is known to have a linear dependence on NE (e.g., [lo], 
[ 121). This result assumes implicitly that the receiver has 
already acquired the desired signal, and is therefore able to 
despread it using the appropriate signature sequence. If the 
acquisition window length is a linear function of NE,  our 
result indicates that the acquisition-based capacity is lower 
than the one derived using BER or SNR criteria. Furthermore, 
numerical results indicate that our asymptotic formula signifi- 
cantly overestimates the acquisition-based capacity when N is 
relatively small. Thus, the acquisition problem may ultimately 
limit the capacity of DS/SS schemes. It is worth stressing 
that we assume that the only signals that are provided to 
the acquisition systems are the DS/SS signals themselves; no 
auxiliary timing signals are employed. In fact, one conclusion 
that can be drawn from our results is that, in order to achieve 
high capacity in a practical application, more d priori timing 
information than is assumed in this paper is needed. Such 
information could be provided by means of an interference- 
free side channel, for instance. 

The system model, including the description of an ac- 
quisition scheme based on a threshold rule, is presented in 
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Section 11. The derivation of an asymptotic formula for the 
acquisition-based capacity and some numerical results illus- 
trating convergence issues are given in Section 111. In Section 
IV, we show that no asymptotic advantage in performance 
is obtained by considering a more complicated acquisition 
scheme that is based on locating the maximum of the sequence 
of matched filter outputs. Our conclusions are presented in 
Section V. 

11. SYSTEM MODEL 
The model for a DS/SS signal s ( t )  is the standard model 

used in the literature (see [6], [9]-[lo], [12]). The received 
signal for a typical transmission is 

s ( t )  = f i x ( t  - T P ) d ( t  - Tp) cos (w,t + &), 

where x(.) is the spreading waveform, d(.) is the data signal, 
U, is the carrier frequency, rP is the propagation delay, 4, is 
the uncertainty in the carrier phase, and P is the signal power. 
The spreading waveform x ( t )  is taken to be a doubly infinite 
sequence of rectangular pulses of duration T,. The amplitude 
of the nth pulse is denoted by x,, and x, is either f l  or -1. 
The sequence (2,) is the signature sequence. The data signal 
is a sequence of rectangular pulses of duration T,  where T is 
a multiple of T,. Thus, if T = NB T,, then there are NB 
signature pulses, or chips, in each data pulse. 

Acquisition [5] refers to the task of obtaining an estimate 
of the delay of a given transmission of interest, which will 
henceforth be referred to as the target transmission. In order 
to focus our attention on how the acquisition problem (as 
distinct from the problem of data transmission) limits the 
system capacity, we assume that there is no data modulation 
on the target transmission. Inclusion of data modulation would 
only decrease our estimates of the acquisition-based capacity. 
Furthermore, if a special preamble is used for the purpose 
of acquisition, there is no data modulation on this part of the 
transmission. The received signal due to the target transmission 
is thus given by 

To@) = & a,pT,(t - jTc - TT,) COS (U& + 4) ,  r j=-m ) 
where p~~ is a unit rectangular pulse of duration T,, ( U , )  is the 
signature sequence for the target transmission, and the power 
of the target transmission is normalized to one. For the model 
we have adopted, the delay r can be restricted to the range 
0 5 T 5 N - 1. The net received signal ~ ( t )  is given by 

T ( t )  = T O ( t )  + X ( t ) ,  

where X ( t )  is additive noise and interference. We consider 
only the effect of multiple-access interference in this paper, 
and we assume that this interference consists of J other DS/SS 
transmissions at the same carrier frequency. The jth interfering 
transmission is given by 

03 

T , ( t )  = Z f ) p ~ , ( t  - kT, - T,T,) 
k=-m 

* cos (w,t + (b + O , ) ,  1 5 j I J ,  

where Pj is the power relative to that of the target transmission 
and d j  is the phase relative to that of the target transmission. 
The sequence (2;)) results from a multiplication of the 
data and signature sequences of the interfering transmission. 
Our analysis considers random signature sequences (this is 
specified in more detail in the sequel), so that it suffices to 
consider ~j to lie in the range 0 5 ~j 5 1. The additive 
interference is thus given by 

J 

X ( t )  = j=1 CTj(t). 

It is assumed that the receiver can acquire the carrier 
frequency and the phase of the target transmission perfectly. 
This is a reasonable assumption for our purpose, which is to 
show that the acquisition problem seriously limits the capacity, 
even under such favorable conditions. We assume that the 
delay T for the target transmission is an integer, enabling us 
to consider the following discrete-time model. The receiver 
computes the statistics 

where the additive interference XI, is given by 

The acquisition problem consists of estimating T based on the 
sequence of statistics ( Z k ) .  

We consider acquisition using a discrete-time filter matched 
to a section CLN+~, u - N + ~ ,  . . . , a0 of the signature sequence 
of the target transmission. The filter coefficients are given by 
hi = a-i for a = O , 1 , .  ' .  , N - 1. The acquisition window 
length N is a measure of the complexity of the acquisition 
scheme. If the input to the filter is a sequence (?&), the output 
(y,) is given by 

N-1 

y, = hiu,-i. 
i = O  

Thus, if the input sequence is a time-shifted version of the 
target signature sequence, given by U k  = a k - r ,  then the 
filter output at time T is N .  

For a signature sequence with good autocorrelation proper- 
ties, the output of the matched filter at other times is small. In 
addition, if the set of signature sequences used by the various 
transmissions on the network have good cross correlation 
properties, the contribution of an interfering transmission to 
the output of the matched filter is small. Thus, acquisition in 
the presence of interference and noise may be achieved by 
detecting when the matched filter output crosses a threshold. 
Specifically, we consider a threshold rule described in the 
following. Let (W,) be the net output of the matched filter 
(due to both the target transmission and the interference). The 
delay estimate .i is given by 

where 01 E (0, I) is a threshold. 
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An alternative scheme is to consider the maximum of the 
matched filter output over a given time interval as a means 
of estimating the delay. Such a scheme performs better than 
the threshold rule (2), but is more complicated to implement. 
Further, it is shown in Section IV that there is no asymptotic 
advantage in performance to be gained by using a maximum- 
based scheme. In view of this result, we restrict attention in this 
section to an acquisition scheme that employs the threshold 
rule (2). 

For the purpose of the analysis, we make some further 
assumptions. The true delay r of the target transmission is 
modeled as a random variable that takes on each integer value 
in the interval [0, N - 11 with probability 1/N. Actually, our 
results hold under the weaker assumption that 7 is of the order 
of N .  The signature sequences for all the transmissions are 
modeled as random, and the signature sequences for each 
of the transmissions heard by the receiver are assumed to 
be independent. For any given signature sequence (xn), the 
elements x, are assumed to be independent and identically 
distributed, taking the values +l and -1 with equal probabil- 
ity. For the purpose of this paper, any such random variable is 
called a symmetric Bernoulli random variable, and the sum of 
J independent symmetric Bernoulli random variables is called 
a symmetric binomial random variable with parameter J .  

We consider a one-shot acquisition problem in which the 
acquisition algorithm ignores the output of the matched filter 
subsequent to the first threshold crossing. The performance 
criterion considered is the probability of acquisition failure, 
which is said to occur if the first threshold crossing occurs at 
an incorrect delay, or if no threshold crossing occurs. A false 
alarm is said to occur if the threshold is exceeded before the 
correct instant (i.e., if W,/N > a for some n < T) ,  and 
a miss is said to occur if the threshold is not exceeded at the 
correct time (i.e., if W,/N < a). Acquisition failure occurs 
in the event of either a false alarm or a miss. The outputs of 
the matched filter after time 7 do not affect the probability 
of acquisition failure in our model, since the acquisition 
algorithm considers these outputs only in the event of a miss, in 
which case acquisition failure has already occurred. Threshold 
crossings beyond time r are therefore not included in the 
definition of false alarm. This is in contrast to acquisition 
algorithms with mechanisms for recovering from failure [7], 
[ll], for which erroneous threshold crossings subsequent to a 
miss affect the recovery time from an acquisition failure, and 
hence must be accounted for. 

The target transmission contributes a value N to the matched 
filter output W, at time 7. At other times n < 7 ,  its 
contribution to the matched filter output W, is asymptotically 
negligible for the large values of N and J of interest. Hence, 
we simplify our analysis by setting these contributions to 
zero. This eliminates the need to consider the dependence 
between the target signature sequence and the matched filter 
coefficients. Let (Y,) be the matched filter output due to the 
interference alone. We are assuming, then, that 

w, = Y,, 12 < 7 ;  w, = Y, + N .  (3) 

With the above simplification, the probability of false alarm 

PFA is given by 

PFA = P[U;S;{Y,/N > a}] , 

PM = P[Y,/N < -(I - a)]. 

(4) 
and the probability of miss PM is given by 

(5) 

The probability of acquisition failure PF is the probability of 
the union of the events considered in (4) and (5). For our 
purpose, it suffices to bound it above and below as follows: 

While the approximation (3) does not affect our asymptotic 
results, it is worth pointing out that a better approximation 
for finite N and J may be to model the contribution of the 
target transmission at times n < 7 as resulting from another 
independent interfering transmission. 

An evaluation of capacity consists of finding the maximum 
permissible number of interfering signals J as a function of 
the acquisition window length N ,  subject to the constraint that 
the probability of acquisition failure tends to zero as N -+ 00. 

111. ANALYSIS 

We concentrate on the false alarm probability PFA, since it 
turns out that this is the quantity that determines the capacity. 
More precisely, the miss probability tends to zero for the 
maximum value of J such that the probability of false alarm 
tends to zero. Hence, using (6), the probability of acquisition 
failure also tends to zero for such J .  We consider first a 
synchronous multiple-access system, in which the J interfering 
signals have the same power as the target transmission, and are 
both phase- and chip-synchronous with respect to the target 
transmission. That is, 

P J = 1 , 8 , = 0 , a n d r j = 0 ,  f o r 1 l j l J .  

For these assumptions, the matched filter input at time k due 
to the interference is given by (see (1)) 

J 

x, = Ex;). (7) 
,=1 

We henceforth consider the matched filter input and output due 
to the interference alone, since we are ignoring the contribution 
of the target transmission at times n < T (see (3)). We see 
from (7) that the input is a sequence of independent and iden- 
tically distributed symmetric binomial random variables with 
parameter J .  The matched filter coefficients themselves are 
independent and identically distributed symmetric Bernoulli 
random variables, and are independent of the input sequence. 

1 here), the 
probability of false alarm is given by 

Conditioned on the delay r (assume T 2 

P F A ( 7 )  = P[U;=A{Yn/N > a } ] .  

Although the matched filter input is a sequence of independent 
random variables, the matched filter output is not, so that 
the above expression is not easy to evaluate exactly. Instead, 
we develop upper and lower bounds on PFA to obtain our 
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asymptotic result, which is that the capacity is given by 

Using a union bound and the first two terms of the inclusion- 
exclusion principle, we can obtain upper and lower bounds on 
the false alarm probability as follows: 

$ a’ (Nl logN) .  

P F A ( ~ )  5 7P[Yo/N > 4, (8) 

n=O m=n+I 

where we have used the fact that the Y, are identically 
distributed. 

We now proceed with the asymptotic evaluation of the upper 
bound (8). The matched filter output at a given time (say zero) 
is given by 

N-1 J 

YO = hix(j!, 
i=O j=1 

which is the sum of N J  independent and identically dis- 
tributed symmetric Bernoulli random variables. By the central 
limit theorem, (NJ)-l/’  YO tends in distribution to a standard 
Gaussian random variable as the product N J gets large. Thus, 
the upper bound (8) is asymptotically evaluated as 

TP[(NJ)-~”Yo > CU(N/J )~ / ’ ]  M rQ [a(N/J)”’], (10) 

where Q(.)  is the complementary standard Gaussian distribu- 
tion function defined as 

Q(.) = lJ; (2r)-1/2exp (-22/2)dx. 

The random variable r is uniformly distributed on the set of 
integers 0 through N - 1. By averaging over r in (lo), we 
obtain 

PU = ( N  - 1)/2 Q [ N ( N / J ) ~ ~ ’ ]  (11) 

as an asymptotic upper bound on PFA. Using the result [15, 
P- 391 

I (27r)-1/22-1 exp (-x2/2), 

it is readily seen that, if N is sufficiently large, then Pu (hence 
PFA) can be made as small as desired provided 

J = $a’(N/logN)(l - S) 

for any 0 < 6 < 1. Thus, the maximum allowable J must 
be strictly less than a’ (Nl logN) ,  which is therefore a 
lower bound on the capacity. 

We should note that, as just presented, the application of 
the standard form of the central limit theorem for evaluating 
the upper bound on PFA is naive, since, for J of the order of 
N /  log N ,  the argument of Q(.)  in the asymptotic expression 
on the right hand side of (11) tends to infinity as N -+ 00. 

However, the development can be made rigorous using a large 
deviations version of the central limit theorem [4, p. 5491, 
which is restated in the following proposition. 

Proposition 1: Let ( U k )  be a sequence of independent and 
identically distributed random variables with mean zero and 
variance 1, and suppose that the moment generating function 
M ( s )  = E(exp(sU1)) exists for all s in some interval (--e, e) 
for E > 0. I f s ,  = E;=, Uk, and if x = o(n1I6), then 

P n- l / zs ,  > x] = Q ( ~ > ( I  + o( l ) ) ,n  -+ m. [ 
In our application, the random variables being summed 

are the symmetric Bernoulli random variables h2x!!, which 
do satisfy the conditions of the proposition. We apply the 
proposition to obtain the asymptotic expression (10) from 
(8), setting n = N J  and x = (N/J)l/’ .  The condition 
x = ~ ( n l / ~ )  specializes to the condition N/J’ + 0, and 
this is satisfied if J is of the order of N /  log N .  

For an asymptotic evaluation of the lower bound (9), 
we have to approximate joint probabilities of the form 
PIN-lYm > a ,  N- lY ,  > a] for m # n. As shown in 
the Appendix, each of these terms is asymptotically evaluated 
as Q’[N(N/J)~/ ’] .  This is done by expressing the random 
vector (NJ)-’I2(Y,,Yn) as a normalized sum of suitably 
chosen independent (but not identically distributed) random 
vectors, and using a large deviations version of a multivariate 
central limit theorem [l], [14]. Replacing the terms in (9) by 
their asymptotic estimates, and assuming, as before, that T is 
uniform over the integers in [0, N - 11, we obtain 

PL = ( N  - 1)/2 Q [ N ( N / J ) ~ / ’ ]  

- 1/6 ( N  - 1)(N - 2)Q2 [CY(N/J )~ / ’ ]  (12) 

as an asymptotic lower bound on PFA. 
Let f ( ~ )  = T - 2/3 T‘. From (11) and (12), PL 2 ~ ( P u ) .  

Now, the function f ( ~ )  increases (from 0 to 3/8) with T for 
T E [0,3/4]. From [15, p. 391, we have 

2 (2r)-1/’x-1 (1 - x-’) exp (-x2/2). 

Substituting in ( l l ) ,  we find that for N sufficiently large, we 
can make Pu 2 T for any T E [0,3/4] if 

J = a2/2(N/logN)(1 + 6) (13) 

for any S > 0. Thus, we can make Pu tend to 3/4 from 
below for such a choice of J ,  which implies that ~ ( P u )  tends 
to 3/8 from below. Since F‘L 2 ~ ( P u ) ,  we obtain that PL, 
and hence PFA, is asymptotically bounded away from zero if 
J satisfies (13). However, the asymptotic lower bound (12) 
becomes trivial for larger J ;  for instance, J = N implies that 
PL -+ -cc as N + CO. In order to circumvent this difficulty, 
we need the following proposition, which is proved in the 
Appendix. 

Proposition 2: Let PFA be the false alarm probability cor- 
responding to J interfering transmissions. Let PkA be the false 
alarm probability if, in addition to these transmissions, there 
are other interfering transmissions. The input to the matched 
filter due to any given interfering transmission is a sequence 
of independent, zero-mean, symmetric random variables, and 
input sequences corresponding to different interfering trans- 
missions are independent. Then, PkA 2 $ PFA. 
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Intuitively, we expect that the false alarm probability in- 
creases with the number of interferering transmissions, but we 
have not been able to prove that. Proposition 2 is a weaker 
result, but it suffices for our purpose, which is to conclude that 
PFA is bounded away from zero for J larger than in (13). This 
yields that f a!’ ( N /  log N )  is an upper bound on the capacity, 
which is the same as the lower bound previously obtained. 

Letting a + 1 from below, we obtain that the 
acquisition-based capacity for synchronous DS/SS CDMA is 
f (N l logN) .  It remains to address the following technical 
detail in order to complete the above argument. As long as 
a < 1, the miss probability PM + 0 as N + CO; setting 
a = 1, however, yields PM = f. Thus, we must let a + 1 as 
a function of N in such a manner that the the miss probability 
tends to zero as N + CO. An asymptotic analysis of the 
expression for PM shows that the required condition is that 
a + 1 in such a way that 

(1  - a)2  log N 4 CO. (14) 

Our result can be generalized to asynchronous multiple- 
access systems with unequal power signals. In such sys- 
tems, the interfering transmissions are not phase- or chip- 
synchronous, and the additive interference X I ,  has the the 
more general form given in (1). The phases O3 for the 
interfering transmissions are modeled as independent random 
variables, uniformly distributed over [ 0 , 2 ~ ] .  The delays rj 
take their values in the interval [0,1], but no assumption on 
their distribution is needed. The capacity is a function of P ,  
the average interference power relative to the power in the 
target signal. Since the target signal has unit power, P = 
J-’ Pi, where P3 is the power in the j-th interfering 
transmission. Upper and lower bounds on the capacity are 
derived in the Appendix. The lower bound on capacity remains 
essentially unchanged from that for the synchronous system, 
being given by f a 2 ( N /  log N ) / P .  The upper bound, given 
by 2a2(N/ log N ) / P ,  is a factor of four larger than the lower 
bound (a factor of two due to asynchronism in phase, and a 
factor of two due to asynchronism in chip alignments). This is 
unlike the synchronous system, for which the upper and lower 
bounds are asymptotically the same. It may be possible to find 
tighter asymptotic bounds, but our concern here is with the 
dependence of the capacity on the acquisition window length; 
small constant factors are not important. 

It is interesting to note the similarity in the form of our 
results to that of previously derived results on the capacity of 
neural networks [8]. The problem addressed in [8] is roughly 
stated as follows. It is desired to store m binary vectors of 
length n (called memories) in a neural network constructed 
using an outer-product construction. The output corresponding 
to any given input to the neural network should be the memory 
that is closest to the input vector. This issue is treated in a 
probabilistic setting in [SI: the m memories are assumed to be 
randomly chosen, and it is desired to determine the capacity 
of the corresponding neural network, which is defined to be 
the maximum value of m as a function of n such that the 
memories are recovered with high probability from a noisy 
input. This capacity is found to be of the order of n/ log n. 
The similarity of our results to those in [8] is not accidental, in 

that the mathematical problems in the two situations, although 
not identical, are very similar. In both problems, the inclusion- 
exclusion principle and large deviations versions of the central 
limit theorem are employed as a means of estimating the 
probabilities of interest. The structure of the problem in [8] 
permits a more detailed analysis than is possible (or necessary) 
in our application. The large deviations results [l], [4, p. 5491, 
[14] used in this paper are more general in scope than those 
used in [8], and it is possible that, together with an analog of 
Proposition 2, they could be used to,simplify the derivation of 
the results in [8]. Pursuing these issues, however, is beyond 
the scope of this paper. 

We conclude this section with a discussion of convergence 
issues. The asymptotic capacity estimate f ( N /  log N )  relies 
on letting the threshold a 4 1. However, as indicated by the 
condition (14), for finite N ,  the threshold a may have to be 
significantly less than one in order to keep the miss probability 
small. The following numerical example illustrates this point. 
Consider N = 63, and the following approximation to PF 
based on a union bound and the central limit theorem: 

PF FZ f ( N  - 1) Q[cx(N/J)”’] + Q [ ( l  - .)(N/J)”’]. 

For each value of J ,  let a ( J )  denote the value of a 
that minimizes the above probability, and let the resulting 
probability be denoted as P *  ( J ) .  For a desired acquisition 
failure probability of P * ( J )  2 lo-’, we obtain J = 1 
(the corresponding best threshold is a ( J )  = 0.55) as the 
maximum allowable number of interferering transmissions. 
In contrast, the asymptotic capacity formula 1/2(N/ log N )  
yields the optimistic estimate J = 7. It is worth comparing 
these numerical results to the capacity obtained using a post- 
acquisition criterion such as the signal-to-interference ratio 
(SIR). For a synchronous CDMA system with bandwidth 
expansion N B ,  the SIR is given by NB/  J .  For NB = 63 
and‘ a desired SIR of 10 dB, the maximum allowable number 
of interfering transmissions J = 6. Thus, for small N and NB, 
post-acquisition criteria may yield a smaller capacity than the 
asymptotic formula for acquisition-based capacity; however, a 
more careful calculation of the latter indicates that acquisition 
performance limits the capacity for relatively small N as well. 

Assuming that the threshold a! is small enough to attain an 
acceptable miss probability, we must now examine the rate 
at which the false alarm probability PFA approaches zero as 
N -+ CO in order to obtain results for finite N .  Consider the 
approximation 

and let J = 1/2 a2 (N/log N )  (1  - 6). It is easy to show 
that an upper bound on the value of N required to achieve a 
desired value of PFA is given by the transcendental equation 

N = (  @FA dFT d m  ) ( l - n ) / a -  

For PFA = lo-’, this equation yields N = 1.83 x lo5 
for S = 0.1, and N 61 for S = 0.3. The asymptotic 
capacity formula f a’ ( N /  log N )  is thus optimistic, in that 

= 
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it is obtained only within a factor of (1 - S), which may be 
significantly less than one for finite N .  In general, the smaller 
the value of N ,  the larger the value of 15 required to attain a 
given value of PFA. The foregoing discussion illustrates that 
the acquisition-based capacity for finite N is less than that 
predicted by our asymptotic formulas, which reinforces our 
contention that the acquisition problem may be a significant 
limiting factor in the capacity of CDMA systems. 

Iv .  COMPARISON WITH A MAXIMUM-BASED 
ACQUISITION SCHEME 

We compare the threshold rule considered in our analysis 
to a maximum-based acquisition scheme that forms a delay 
estimate based on the maximum of the matched filter output 
sequence over a given time interval. It is assumed, as before, 
that the true delay T is an integer in the interval [0, N - 11. 
The delay estimate ?max for this scheme is given by 

where W, is the matched filter output at time n. 
We first show that, asymptotically as N + m, the 

maximum-based scheme performs as well as any threshold 
scheme. As remarked in Section 111, in order for the miss 
probability to tend to zero as N 3 00, the threshold a must 
be strictly less than one. Since the capacity expression for the 
threshold scheme increases with the relative threshold a, a 
lower bound for the capacity of the maximum-based scheme 
is obtained by letting Q + 1 (from below) in the expression 
for the lower bound on capacity for a threshold scheme. 
For the maximum-based scheme, therefore, ( N /  log N )  
is a lower bound on capacity for a synchronous system, 
and (N/ logN)/P  is a lower bound on capacity for an 
asynchronous system. 

Upper bounds on capacity for the maximum-based scheme 
are derived by showing that, for any p > 0, the probability of 
acquisition failure for the maximum-based scheme is asymp- 
totically the same as the false alarm probability for a fictitious 
threshold scheme with threshold a = 1 +p. Although it is not 
possible to employ such a threshold scheme in practice due 
to unacceptable miss probabilities, this consideration does not 
affect the asymptotic analysis of the false alarm probability for 
such a threshold scheme, so that we can substitute a = 1 + ,L? 
in the upper bounds on capacity for the threshold scheme 
to obtain corresponding upper bounds on capacity for the 
maximum-based scheme (for each p > 0). Letting p + 0 
(from above), we obtain that, for the maximum-based scheme, 
$ ( N /  log N )  is an upper bound on capacity for a synchronous 
system, and 2(N/ log N ) / P  is an upper bound on capacity for 
an asynchronous system. 

For proving the results previously stated, it is convenient to 
assume that the true delay T = N - 1. The proof under the 
assumption that T is O ( N )  is quite similar, and is omitted. 
From (15), we see that, for the maximum-based scheme, 
acquisition failure occurs if and only if the matched filter 
output at time n 5 N - 2 exceeds the output at the true 

delay N - 1; that is, 

max Wn > W N - 1 .  
O 5 n 5 N - 2  

If a threshold scheme processes a sequence of matched filter 
outputs satisfying (16), there are two possible results. Either 
the threshold is not exceeded by any of the outputs (which 
results in a miss), or, by virtue of (16), the threshold is 
exceeded at time n 5 N - 2 (which results in a false 
alarm). Acquisition failure occurs in either situation, so that a 
threshold scheme always performs worse than the maximum- 
based scheme if the true delay T assumes its maximum value. 
This yields lower bounds on the capacity of the maximum- 
based scheme as argued earlier. The foregoing argument can 
be modified quite easily to handle the more general situation 
when T i s  O ( N )  (uniformly distributed T is a special case of 
the latter). 

The probability of acquisition failure PF for the maximum- 
based scheme is the probability of the event (16), which 
reduces, under the approximation (3), to 

PF=P Inax Yn > Y N - l + N  [ O s n S N - 2  1 
For any p > 0, we have 

PF 2 P [ ~ ~ F ~ F - ~ ~ ~  > YN-1 + ~ 1 y N - i  < PN] 

P [ Y N - l  < PN] 

max Y, > (1 + P)N P [ Y N - l  < PN]. 

(17) 
OSnSN--2 1 ? P [  

If the number of interfering transmissions J is of the order of 
( N /  log N ) ,  it is easy to see that, for any P > 0, P[YN - 1 < 
PN], the second term on the extreme right-hand side of (17), 
tends to one as N + ca. The first term on the extreme right- 
hand side can be bounded away from zero as N + cc in 
exactly the same manner as the false alarm probability for a 
fictitious threshold scheme with threshold a = 1 + p. Using 
this value of a, we can bound PF away from zero for J as 
in (13) for a synchronous system, and for J as in (A.9) for 
an asynchronous system. It is also easy to prove an analogue 
of Proposition 2 for the maximum-based scheme. Since these 
arguments hold for any p > 0, we obtain upper bounds on 
capacity by letting /3 + 0. 

We conclude, therefore, that using a threshold rule with 
threshold a close to one yields a performance that is asymptot- 
ically almost as good as that of the maximum-based scheme. 
Since the maximum-based scheme is more complex, a thresh- 
old scheme is preferable in practice. 

v. CONCLUSION 

The results of this paper show that the problem of acquisi- 
tion imposes a limitation on the capacity of DS/SS networks. 
As discussed in Section I and Section 111, the acquisition- 
based capacity result is more pessimistic than the the result 
based on the post-acquisition BER and SNR criteria, provided 
that the acquisition window length N is linearly related 
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to the bandwidth expansion NB.  Despite some simplifying 
assumptions, we believe that our model captures the essential 
features of why the task of acquisition is so difficult. The 
basic reason is that, unless the receiver has a very good idea 
of the delay of the target transmission, there are too many 
opportunities for the interfering transmissions to produce a 
false alarm, and this results in a reduction of capacity by a 
factor of logN. The reason a false alarm is so damaging in 
many applications is that it may cause the receiver to enter 
into useless and time-consuming demodulation, decoding, and 
tracking procedures that can lead to the loss of the opportunity 
to acquire the signal of interest. This is in contrast to the 
demodulation process, in which the interference can affect only 
one bit at a time (interleaving the bits if necessary), and error- 
control coding can be effectively exploited to yield reliable 
transmission. On the positive side, we must note that the 
performance of the acquisition scheme considered here (and 
indeed, that of any acquisition scheme) can be significantly 
improved by decreasing the initial timing uncertainty. For 
instance, if the timing uncertainty is of the order of a constant 
rather than of the order of N ,  it is easy to see that the 
acquisition-based capacity is of the order of N rather than 
N /  log N .  

The random sequence model used here has been used in 
BER evaluations [6] ,  [9]-[lo], as well as in other models of 
acquisition [2]-[3]. Thus, we have considerable confidence in 
the qualitative nature of our conclusions, and we feel that the 
acquisition problem requires careful examination. We conclude 
by mentioning several issues that require further research. 

If there are a large number of interfering transmissions, 
the acquisition window required for good acquisition per- 
formance will be correspondingly long. In such situations, 
it may not be possible to use the matched-filter scheme 
described in this paper, since the length of matched filters 
currently used is limited by both cost and technology. On the 
other hand, for several applications (such as packet radio), 
serial search schemes using a correlator may require too 
much transmission overhead for the acquisition preamble. It 
is of interest, therefore, to devise alternative schemes [7] for 
acquisition and attempt to accurately evaluate the capacity of 
such schemes. In many applications of interest, tight control 
of network timing is possible and the initial timing uncertainty 
can be reduced. This should be exploited to the greatest 
degree possible by the acquisition scheme to provide good 
performance in the presence of multiple-access interference. 
Effects of the periodicity of the signature sequences used 
in practice must also be accounted for, since the acquisition 
process may be severely impaired by the periodic recurrence 
of bad cross correlation peaks. Further analytical results, 
together with extensive computer evaluations or simulations 
with deterministic sequences such as Gold sequences and 
maximal-length sequences [13], are required for evaluating the 
capacity of practical systems. 

VI. APPENDIX 
We first consider a synchronous system, and give some 

details of the asymptotic evaluation of the lower bound (9) 

on the false alarm probability. This is followed by a brief 
derivation of upper and lower bounds on capacity for an asyn- 
chronous system. Finally, we provide a proof of Proposition 
2. Throughout the Appendix, the notation g refers to a row 
vector, and gT to its transpose. 

A. Asymptotic Evaluation of the Lower Bound (9) 
We are concerned with obtaining asymptotic values for 

terms of the form P[Y,/N > a, Y n / N  > a] for m # n in 
a synchronous system; these terms appear in the lower bound 
(9) on the false alarm probability. Since (Y,) is a stationary 
sequence, we can, without loss of generality, let m = 0 and 
n 2 1. For any j, 

N - 1  

Yj = hiXj-i. (A.1) 
i=O 

For a synchronous system, the X j - ;  are independent and 
identically distributed symmetric binomial random variables 
with parameter J ,  and are independent of the hi, which are 
independent and identically distributed symmetric Bernoulli 
random variables. Using this, we can write 

N - n - 1  N - 1  

( N J ) - 1 / 2 ( Y ~ , Y n )  = N-l12{ A+ &}, 
i=O i=N-n 

where 

and 

The random vectors 4 and 3 are all independent. The Ai 
are identically distributed and are said to be of type 1, and 
the & are identically distributed and are said to be of type 
2. Type 1 and type 2 random vectors both have mean zero 
and covariance matrix 12,  where Is denotes the s x s identity 
matrix. However, their distributions are different. Specifically, 
if U ,  V and W are independent and identically distributed 
symmetric binomial random variables with parameter J ,  and h 
is a symmetric Bernoulli random variable, then J-l12(U, hU) 
is of type 1, and J-l12(V, W )  is of type 2. 

We now need a large deviations version of the central limit 
theorem for random vectors. Detailed discussion of the result 
is beyond the scope of this paper, hence we state the result 
without giving all the conditions required for it to hold. The 
pertinent references are [l] and [14]. Let S, denote the sum 
of n independent random vectors in R" with mean zero and 
covariance matrix I,. Let D be a convex Borel set in R" with 
- a the point in the closure of D that is closest to the origin. Let 
p denote the probability measure on R" induced by a standard 
Gaussian random vector (mean zero, covariance matrix 1"); 
that is, if X is such a vector, then for any Borel set A, we 
have by definition that p ( A )  = P [ x  E A]. Then, given that 
llall = o(n116), and given certain additional conditions on 
D and the random vectors involved, we have the following 
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multidimensional large deviations version of the central limit 
theorem: 

P n-1/2Sn E D = p ( D ) ( l +  o ( l ) ) ,  n + CO. [ -  1 
The details of checking that this result indeed applies in the 

situation of interest here are omitted. Since the random vector 
(NJ) - l l2  (Yo,Y,) is a normalized sum of N independent 
random vectors of either type 1 or type 2, we conclude that 
as N + 00, it converges to a two-dimensional Gaussian 
random vector with mean zero and covariance matrix I2, and, 
if N / J 3 / 2  + 0, the large deviations probability of interest is 
evaluated as 

P[Yo/N > a,Y,/N > a]  

=P[y,/(NJ)1/”a(N/.7)’/2,Y,/(NJ)1~2 > a(N/J) l /2]  

= Q 2  [ C U ( N / J ) ~ / ” ]  (1 + o (l)), 

which is the required result. 

B. Bounds on Capacity for an Asynchronous 
Multiple-Access System 

Upper and lower bounds on capacity that differ by a factor 
of four are derived for the asynchronous system described 
at the end of Section 111. We condition on the 8j and the 
~j unless explicitly stated otherwise. The input sequence XI, 
(due to the interference) to the matched filter is given by (l), 
where the hi and the are independent and identically 
distributed symmetric Bernoulli random variables. Due to 
chip-asynchronism, the x k  are no longer independent, and 
some manipulations are needed for asymptotic evaluations of 
the upper and lower bounds on PFA via the central limit 
theorem. 

We first consider the term P[Yo/N > a] in the upper bound 
(8). Define 

J 

v k  = f l c o s o j  Tj2(1L, 
j=1 

and 
J 

wk = c f l c o s 8 j  ( l - T j ) Z ( j L .  
j=1 

Note that ( v k ,  wk) is an independent and identically dis- 
tributed sequence of random vectors, although, for a given 
k ,  v k  and wk are not independent. The matched filter input 
at time -k is given by 

x - k  = v k + 1  + wk. ( A 4  

Define 

and define the random variables 

From (A.l) and (A.2), 

,=1 

The random variables C, and D are independent, and have 
mean 0 and variance 1 (the C, are identically distributed). It is 
easy to see that D is independent of the C,, since VN and WO 
in (AS) are independent, symmetric random variables that do 
not appear in the expression (A.4) for the C, for the range of 
i of interest. To show that the C, are independent, it suffices 
to show that for any i, Cz+l is independent of Cl , . . . ,C  %. 

The random variable C, + 1 depends on h,,h,+l, K+1 and 
W,+l; among the latter, only the symmetric Bernoulli random 
variable h, is involved in the expressions for C1, . . . , C,. 
Note that the random vectors ( v k ,  wk) are independent, and 
that ( V k ,  wk) has the same distribution as ( - I&,  - W k ) .  

Further, ho, . . . , h,-l are independent and symmetric random 
variables. Using these facts, it is easy to see that knowing the 
values of C1, ’ . . , C, does not convey any information about 
the sign of h,, and hence does not convey any information 
about C,+l. This proves the independence of the C,. At this 
point, it is appropriate to note that in the following, we will 
assert without proof the independence of other collections of 
random vectors; the proofs are based on arguments similar to 
the one used in this paragraph. 

Normalizing each side of (A.6) by multiplying by N-1/2, 
we obtain, using the large deviations version of the central 
limit theorem, that 

P[Yo/N > a] = Q[aN’/’/ao] ( 1  + o( l ) ) ,  (A.7) 

provided N / a i  4 0. 
The extreme right-hand side of (A.7) increases with 00, 

and it is easy to see from (A.3) that the maximum value of 
00 = is achieved if, for 1 5 j 5 J ,  we set 8, = 0 
and r3 = 0. Using this value of 00,  we proceed exactly as 
for the synchronous system to evaluate the upper bound on 
PFA, and obtain the corresponding lower bound on capacity 
to be a 2 ( N / l o g N ) / P .  Note that the condition N / a i  for 
applying the large deviations result is satisfied if we consider 
the the maximum value of 00 for this value of J .  

For convenience, we consider the worst-case value of r = 
N - 1 for deriving the upper bound on capacity (our result 
depends only on r being O(N) ) .  In order to deal with the 
dependencies caused by chip-asynchronism, the lower bound 
on PFA used to derive the upper bound on capacity is different 
from (9), and is given by 

PFA 2 P[UE;’{~A~/N > a}]  
2 MP[Yo/N > a]  

A!-1 A!-1 

r=o s=r+l 

(‘4.8) 

where M = LN/Al, and A > 1 is an integer that tends to 
infinity as N -+ 00. By virtue of Proposition 2, it is only 
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necessary to show that, for any 6 > 0, PFA is bounded away 
from zero as N -+ 00 when 

J = {2a2(N/logN)/H}(1 + 6). (A.9) 

In order to do this, we must make an appropriate choice 
(specified later) of the parameter A in (A.8) in terms of 
both N and 6. It is worth noting that letting A -+ CO is 
merely a proof technique; for finite N ,  the lower bound (9) 
(which corresponds to A = l), together with an approximation 
regarding the independence of the Y,, would probably yield a 
better approximate lower bound for the false alarm probability. 

For an asymptotic evaluation of (A@, we consider, us- 
ing the stationarity of the Y, as in Section A.l, the term 
P[Yo/N > a,Yn/N > a],  where n 2 A. The matched filter 
output YO can be expressed as in (A.6), and the corresponding 
expression for Y, is 

N-1 

OilYn = (hz-1~z-n + h , ~ , - n )  
a=1 

+ ( ~ N - ~ V N - ~  + how-,). 

In order to apply the central limit theorem, we must express 
  YO,^,) as a sum of independent vectors. To this end, we 
consider first the situation in which N - 1 - n 5 n, and 
define the following random vectors in R2: 

_. Ea = 2-1/2~,1(h,-1V, + h,W, + hz+n-lV,+n 

+ hz+nWz+n, h z - 1 K - n  + h,W,-n 
+ ha+n-lV, + ha+nW,), 

1 5  i 5 N -  1 - n ,  

and 

Then 
N-1-n  n 

c ~ ~ ~ ( Y o , Y , )  = G +  2ll2 E,+ 3. (A.lO) 
i=l i=N-n 

The contribution of the random vector G to the right-hand side 
above is asymptotically negligible, and is ignored henceforth. 
It is easy to see that the vectors & and 5 are independent, and 
each have mean zero and covariance 4. If N - 1 - n = o ( N ) ,  
the contribution of the E, is asymptotically negligible, and the 
central limit theorem can be applied to the second summation 
in (A.10). Otherwise, the central limit theorem is applied 
separately to each of the two summations in (A.10), assuming 

n = PN + o ( N )  for 1/2 5 P < 1. In either case, it is easy 
to conclude that 

P[&/N > a,  Yn/N > a] = Q2 [ a N 1 / 2 / ~ ~ ]  (1 + o(1)). 
(A. 1 1) 

The situation when n < N - 1 - n is more difficult to 
handle, and this is where the choice of A becomes critical. The 
appropriate summands for applying the central limit theorem 
in this case are the random vectors found in the equation at 
the bottom of the page. By virtue of the above definition, 
dependent terms that contribute to the random vector (YO, Y,) 
are grouped into each of the H,  in a manner such that the H,  
are independent. Each of the H,  has mean zero and asymptotic 
covariance I,, and it can be shown that 

II. 

i=l 

Since A -+ CO and n 2 A, the central limit theorem can 
now be applied to obtain the asymptotic evaluation (A.11). As 
before, we need a large deviations version of the central limit 
theorem, which requires the condition N112/ao = o(n1j6). 
For this condition to hold, it is sufficient that 

N1/2/ao = o All6 . (A.12) 

Substituting (A.7) and (A.ll)  in (A@, we have the asymp- 
totic lower bound g(T0)  for PIW, where g(z) = z - x2/2, 
and 

TO = LN/AJ Q [ a N 1 / 2 / ~ o ] .  

0 

A lower bound on (TO is obtained by setting rj = 1/2 for 
all j in (A.3), so that 

J J J 

2 3 P ~ ~ ~ ~ ~ o ,  = + p3 + ; p3 ~ 0 ~ 2 8 ~ .  
j=1 ,=1 3=1 

If the O3 are independent and uniform over [ 0 , 2 ~ ] ,  the second 
term on the right-hand side above is a symmetric random 
variable, so that, with probability at least 1/2, 

j=1 

For T E [0,1], g(T) is positive and increasing. Since TO 

increases with (TO, on averaging over e = (81, . . . , 19 J ) ,  we 
obtain 

E~{PFA) 2 ig(Ti),  

where T I  = LN/Al Q[a(4N/JP)1/2] .  For J as in (A.9), we 
obtain, using the asymptotic evaluation for & ( e ) ,  that 

T I  = 2-1/2A-1N6/1+6(l~gN)-1/2(1 + ~ ( l ) ) .  
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We show that E,g { P F A }  is bounded away from zero by 
showing that T I  is bounded away from zero, and the latter 
is achieved for 

A = O(N6/1+6(logN)-1’2). (A. 14) 

It i s  easy to check that, for J as in (A.9) and CO as in (A.13), A 
can be chosen to simultaneously satisfy the conditions (A.12) 
and (A.14). This completes the derivation of the upper bound 
on capacity. 

C. Proof of Proposition 2 
We condition throughout on the filter coefficients. Denote 

by Y, the matched filter output at time n due to the J original 
interfering transmissons, 2, the output due to the additional 
interference, and YA the net output due to the interference. 
The sequences {Y,} and {Z,} are independent, and since 
the filter is linear, we have YA = Y, + 2,. Note that since 
the interference input is, symmetric, the 2, are symmetric 
random variables. Let M = min(0 5 n 5 T - lIY, = 
maxo<i<,-l _ _  y Z } .  Then 

I PLA = P ,,5~~~-1 (Yn + z n )  > a N  [ 
2 P[YM > aN,ZM 2 01 = P[YM > aN]P[Zn(l 2 01 
= $ p F A ,  

where we have used the facts that the Y, and M are in- 
dependent of the Z,, that the 2, are symmetric, and that 
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