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Abstract- We consider binary orthogonal signaling over a 
nonselective Rician-fading channel with additive white Gaussian 
noise. The received signal over such a channel may have both a 
specular component and a scatter (Rayleigh-faded) component. 
If there is only a scatter component, the noncoherent receiver 
is optimal. If there is only a specular component, the optimal 
receiver is the coherent receiver. In general, the optimal receiver 
for a Rician channel depends on the strengths of the two sig- 
nal components and the noise density, and the set of possible 
optimal receivers is infinite. We consider a system in which the 
noncoherent receiver and the coherent receiver are employed in 
a parallel configuration for a symbol-by-symbol demodulation 
of the received signal. Each sequence of transmitted symbols 
produces a sequence at the output of each of the parallel receivers. 
The task of identifying which of these received sequences is a 
more reliable reproduction of the transmitted sequence is the 
data verification problem. In this paper, we show that data 
verification can be accomplished by combining side informa- 
tion from the demodulators with a suitable error-control coding 
scheme. The resulting system is a universal receiver that provides 
good performance over the entire range of channel parameters. 
In particular, the universal receiver performs better than the 
traditional noncoherent receiver. 

I. INTRODUCTION 
HE CONCEPT of universal receivers for unknown and T time-varying channels has been introduced in [ 5 ]  and 

181. In this and a companion paper [7], we consider different 
aspects of the application of this concept to binary signal- 
ing over nonselective Rician-fading channels with additive 
white Gaussian noise (AWGN). The received signal over such 
channels can have both a specular component and a scatter 
(Rayleigh-faded) component. Among the class of channels of 
interest are Rayleigh fading channels, for which there is only 
a scatter component. Since it is difficult to obtain a phase 
reference for the received signal in such situations, we must 
employ noncoherent demodulation, so that antipodal signaling 
cannot be used. In view of the possibility of Rayleigh fading, 
we consider orthogonal signaling in this paper, since such sig- 
nals are appropriate for noncoherent demodulation. However, 
noncoherent demodulation is not optimal if there is a specular 
signal component. In general, the optimal receiver for a Rician 
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fading channel depends on the strengths of both the signal 
components and the power spectral density of the AWGN, so 
that there is no single receiver that gives optimal performance 
for all Rician fading channels. If there is only a specular 
component, the optimal receiver is the coherent receiver, and 
if there is only a scatter component, the optimal receiver is the 
noncoherent receiver. Thus, the coherent receiver gives nearly 
optimal performance if the scatter component is small, while 
the noncoherent receiver gives nearly optimal performance 
when the specular component is small. 

The foregoing discussion motivates us to consider a com- 
munication system in which the received signal is demodulated 
in parallel by the coherent receiver and the noncoherent 
receiver. Regardless of the parameters of the channel in 
effect, one of these receivers gives good performance. In this 
paper, we develop side information that identifies, with high 
probability, which of these receivers is performing well under 
the current channel conditions, and show that the resulting 
system outperforms a single noncoherent receiver. 

Our purpose is to use this system as an example to illustrate 
the concept of a universal receiver [5]-[7]. Given a class of 
channels for which no single receiver gives optimal perfor- 
mance, it is shown in [ 5 ]  that, under certain conditions, it is 
possible to find a finite set of receivers with the property that, 
for any channel in the class of interest, at least one of these 
receivers gives a performance which is within a prescribed 
deviation of the optimal pegormance for that channel. The 
performance measure of interest is usually the symbol error 
probability. These receivers are then used in parallel to perform 
a symbol-by-symbol demodulation of the received signal. 
For each sequence of transmitted symbols, therefore, there 
is one received sequence for each receiver in the parallel 
configuration. The task of identifying which receiver output is 
the most reliable reproduction of the transmitted sequence is 
referred to as the data verijkation problem. The main purpose 
of the formulation in [7] is to show that, even though the 
sufficient conditions in [5] are not satisfied for the class of 
Rician fading channels, the ideas of [5] can be used to obtain a 
finite set of receivers as described above for this channel class. 
The tradeoff between the allowed deviation from optimality 
and the number of receivers that are required in the parallel 
configuration is explored in [7]. However, the data verification 
problem is not considered in 171. In this paper, we address the 
data verification problem for a parallel configuration consisting 
of the coherent and the noncoherent receivers. 
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The data verification problem has been considered in a 
general setting in [5] where, assuming that the channel in 
effect does not change over the duration of a codeword, the 

is sent, is given by 

s i ( t )  = (2E)1 '2zi( t )~~~(27rfct+4) ,  0 5 t 5 T (i = 0, 1) 
error-detection capability of the error-control code is used 
to achieve a high probability of rejecting the outputs of 
mismatched receivers with a high probability. It is seen in 
[5]  that Reed-Solomon codes with bounded distance decoding 
provide both error-correction and data verification if the error- 
detection capability of the code is enhanced by not using its 
full error-correction capability. However, in order to maintain 
a given error-correction capability, it is necessary to decrease 
the rate of the code to provide sufficient error-detection 
capability for data verification. 

This approach is not quite satisfactory for the present 
application. We consider binary signaling in this paper, and 
binary codes do not have the good distance properties of 
Reed-Solomon codes, which employ much larger alphabets. 
A substantial loss in rate would thus be incurred in providing 
data verification for a universal receiver, and it would be better 
to use instead the noncoherent receiver, which is known to 
perform reasonably well for all Rician channels 1111. For 
a system employing the noncoherent receiver, the coding 
scheme is required mainly for error-correction, and it may 
have only moderate error-detection capability. A typical code 
may be a short binary BCH code. For comparing the universal 
receiver with the noncoherent receiver, we consider such a 
code. Data verification is achieved not by decreasing the 
rate of the code to increase its error-detection capability, 
but by supplementing its available error-detection capability 
by developing side information from the demodulators. Such 
side information is based on information within the receivers 
which is normally discarded once hard decisions are made, 
and it has the advantage that no transmission overhead is 
incurred. 

where zo(t) and zl(t) are baseband waveforms satisfying 

f c  is the carrier frequency, and 4 is a fixed phase angle. The 
signals SO and s1 are thus orthogonal and have equal energy 
E. It is assumed that 0 and 1 are sent with equal probability. 

When symbol i is sent, the received signal is given by [7], 
1113 

~ ( t )  = ~ ~ ( 2 E ) ' / ~ z i ( t )  COS (2xfct  + 4) 
+ S(2E)1/22i(t) cos (27rfct + 4 + 0 )  + n(t). 

The first term above is the specular component of the signal, 
and a is the channel gain for the specular component. The 
second term is the scatter component of the signal, and S and 
0 are random variables with joint density 

(s/27ra2) exp ( - s 2 / 2 a 2 ) ,  s >_ 0, o E [0, 27r] 
otherwise. 

The third term is AWGN with a two-sided power spectral 
density of No/2. Without loss of generality, the energy E of 
the transmitted signal is normalized to 1 by replacing a by 
aE1/2  and a2 by a2E. 

When there is a specular component, the receiver is assumed 
to be locked to its phase 4, so that it can compute the following 
decision variables by suitable correlations with the received 
signal: 

LCi = 
T 

~ ( t ) 2 l / ~ ~ ; ( t )  COS ( 2 ~ f , t  + 4) d t  (i = 0,  l ) ,  (1) 

and The universal receiver with side information from the de- 
modulators performs better than the noncoherent receiver. The 
performance gain is not substantial, being of the order of 1 dB, 
and may not justify the added complexity in practice. How- 

T 
~ , i  = 1 r(t)21/2zi(t) sin (2xf,t + 4) dt  (i = 0,1). ( 2 )  

ever, the results of [7] and this paper illustrate the important 
issues in designing universal receivers, and are intended to 
motivate exploration of more practical applications. 

The system model is given in Section 11. The performance 
of the system with coding but without additional side in- 
formation is analyzed in Section 111, and the results of the 
analysis are used to motivate the need for side information. 
A side-information statistic is developed in Section IV, and 
some numerical results are given to show its efficacy. The 
performance of the system with coding and side information 
is analyzed in Section V, and numerical results comparing the 
performance with that of the noncoherent receiver are given. 
Section VI contains our conclusions. 

11. SYSTEM MODEL 

The system model is as in [7] and [ 111, and further details 
can be found in those references. Binary orthogonal signaling 
is used, and the signals are narrowband and of duration T.  
The signal s i ,  transmitted when the binary symbol i( i  = 0, 1) 

The correlator outputs L,1, L s l ,  Lco, and Lso are sufficient 
statistics for deciding whether a 0 or a 1 has been transmitted. 

The signal-to-noise ratio for the scatter component of the 
received signal is defined as ,B = 2a2/No. Denote by N ( m ,  u )  
a Gaussian distribution with mean m and variance u. The 
random variables Lcl, Lsl ,  Lco, Lso are conditionally inde- 
pendent and Gaussian, given that symbol i is sent. If a 1 is 
sent, the conditional distributions are given by 

Lc1 N ( a ,  No(P + 1 ) / 2 ) ,  Ls1 N(0 ,  No(P + 1 ) / 2 ) ,  
( 3 4  

L o  - N(0,  No/2), Lso N N ( 0 ,  Nola). (3b) 

If a 0 is sent, interchange Lcl and Leo, and Lsl and L,o, in (3). 
The noncoherent receiver, which is optimal if there is no 

specular component (i.e., a = O), corresponds to the following 
decision rule. 

Hi 

H o  
L,2, + z Lfo + I&. (4) 
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The coherent receiver, which is optimal if there is no scatter 
component (Le., ,b’ = O), corresponds to the decision rule 

In general, the optimal decision rule depends on the values of 
N and P, and, for P > 0, is given by [7], [ l l] ,  [12] 

where 

bopt = ./p. (7) 

Note that the noncoherent receiver (4) corresponds to bopt = 0, 
and the coherent receiver corresponds to bopt = 20, in the 
sense that (5) is obtained from (6) by dividing both sides by 
bopt, and letting bopt + 20. 

The triple ( a ,  p, N O )  gives a complete statistical char- 
acterization of the channel, in the sense that knowledge of 
these parameters enables us to implement an optimal receiver 
and to analyze its performance. However, we assume that a 
and /3 are not known, and hence the optimal decision rule 
cannot be implemented. Instead, we consider a system in 
which the received signal is demodulated in parallel by the 
noncoherent receiver and the coherent receiver. Our purpose 
is to develop a method of selecting the output of the receiver 
that is performing better at a given time. It is assumed that a 
rough estimate of the noise power spectral density is available 
at the destination. Specifically, as in [7], NO is assumed to lie 
in a known interval [No, min,  No, ,,,I. 

It is convenient to define the parameter y = a/o, which 
is a measure of the relative strengths of the specular and 
scatter components of the signal, and the parameter SNR= 
( a 2 + 2 0 2 ) / N o ,  which is the overall signal-to-noise ratio. In the 
numerical results of Section V, we compare the performance 
of the universal receiver and that of the noncoherent receiver 
as a function of SNR for different values of y. 

The bit error probability at the output of the noncoherent 
receiver is [ l l ]  

(8) 

and the bit error probability at the output of the coherent 
receiver is [7] 

P,, = (P + 2I-l exp [ - a 2 / ~ o ( / 3  + 2)] ,  

(9) 

where Q ( . )  is the complementary standard Gaussian distri- 
bution function. The task of data verification can be stated 
as follows: identify, at any given time, which of these two 
receivers is giving a lower symbol error probability, and 
choose the output of that receiver. However, data verification 
is not done on a symbol-by-symbol basis, since it is assumed 
that the channel parameters, and therefore the identity of the 
good receiver, do not change significantly over several symbol 
durations. Specifically, an error-control code is used, and it is 
assumed that the identity of the good receiver does not change 
over the duration of a codeword, so that the error-detection 
capabilities of the code can be exploited for data verification 

[ 5 ] .  This does not suffice for our application, however, and it is 
necessary to develop additional side information that indicates 
the relative magnitude of p,, and p,, over the duration of a 
given codeword. 

The code symbols are transmitted using the orthogonal 
signals described earlier. It is assumed that, given the values 
of the channel parameters, the channel is memoryless. The 
received signal is demodulated symbol by symbol by both the 
coherent and the noncoherent receivers, so that there are two 
received words corresponding to each transmitted codeword. 
These are the two inputs to a decoding system whose task 
is to produce a good estimate for the transmitted codeword. 
Consider, first, a decoding system (introduced in [5]) that 
does not utilize any additional side information. Each received 
word is decoded separately in the usual manner by a bounded 
distance decoder. Each decoder produces one of three possible 
outcomes: correct decoding, decoding error, and decoding 
failure. 

The results of the individual decodings are processed using 
the following output selection algorithm. Any output that fails 
to decode is ignored. If both outputs fail to decode, a failure 
is declared for the decoding system. If both outputs decode, 
but the resulting codewords do not match, again a failure is 
declared for the decoding system. In this case, at least one of 
the decoded words must be wrong, and since the identity of 
the good receiver is not known, we cannot choose between the 
two codewords. If only one of the received words decodes, 
or if both received words decode into the same codeword, 
the resulting decoded word is assumed to be correct, and a 
successful decoding is declared for the decoding system. Thus, 
if both the decoded words match, but are wrong, the result is 
a decoding error for the decoding system. 

If additional side information is available, it is used to 
select one or both of the receivers (a fresh selection is made 
for every codeword). If both receivers are selected by the 
side information, then the output selection algorithm described 
above is employed. If only one receiver is selected, the output 
of the decoding system is simply the output of the decoder for 
the selected receiver. 

Note that, if a receiver is poorly matched to the prevailing 
channel conditions, the corresponding received word may 
have a large number of errors. If this received word decodes 
incorrectly, then, even if the output of the other receiver 
is decoded correctly, we have a decoding failure for the 
decoding system if there is no additional side information. 
Thus, the code should be chosen such that even if there are 
a large number of errors in a received word, the decoder 
is much more likely to fail to decode rather than decode 
into a wrong codeword, so that, with high probability, its 
output is ignored by the output selection mechanism. Thus, 
the error-detection capability of the code is used to reject 
the output of a mismatched receiver. Since the short binary 
codes considered in this application are not powerful enough 
for this purpose, it is necessary to develop additional side 
information that selects, with high probability, the outputs 
of the receivers that are performing well, in order to direct 
only the corresponding decoder outputs to the output selection 
mechanism. 
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In the next section, we sketch the analysis of the perfor- 
mance of the decoding system with no side information. The 
results of the analysis are used to motivate the necessity for 
side information. The results are also used in Section V, where 
we analyze the performance with side information. 

111. PERFORMANCE OF THE UNIVERSAL 
RECEIVERWITH NO SIDE INFORMATION 

The performance measures of interest for the decoding 
system are the probability of decoding failure QF and the 
probability of decoding error QE. Given the values of the 
channel parameters, we can calculate the symbol error proba- 
bilities for each receiver using (8) and (9). Since the channel 
is memoryless, this gives the distribution of the number of 
errors in each received word. However, the performance of 
the decoding system clearly depends on the joint distribution 
of errors at the outputs of the two receivers. This distribution 
is difficult to calculate, and we develop bounds on the per- 
formance that depend only on the symbol error probabilities 
at the outputs of the receivers. This is consistent with our 
approach to the data verification problem, in which the goal 
is to choose the output of the receiver with the lower symbol 
error probability rather than to exploit the dependence of the 
outputs of different receivers. The analysis closely follows [5] ,  
and, rather than include all the details, we refer to [5]  whenever 
possible. The bound on the decoding failure probability is the 
same as in [ 5 ] ,  but, for our purpose, it is necessary to develop 
a tighter bound on the decoding error probability than in [5] .  

It is useful to number the two receivers in accordance with 
the symbol error probabilities at their output; the first receiver 
(also referred to as the good receiver) has the smaller symbol 
error probability p l  = min {pnc ,  p s p } ,  and the second receiver 
has the larger symbol error probability p 2  = max {pnc ,  p s p } .  
An (n ,  k) binary code with minimum distance d is used, and 
the decoders in the decoding system attempt to correct up to 
t errors where 2t + 1 5 d. Let PE(u) denote the conditional 
probability of decoding error for a particular decoder given 
that there are u errors in the decoder input. 

Because the channel is memoryless, the performance of the 
decoder at the output of a particular receiver depends only 
on the symbol error probability for that receiver. Since n is 
the number of symbols in a codeword, if the symbol error 
probability for the receiver is p ,  the number of errors in the 
received word is a binomial random variable with parameters 
n and p .  The probability that the decoder for that receiver 
does not decode correctly, which is a tight upper bound for 
the probability of decoding failure for that decoder, is given by 

The probability of decoding error for the same situation is 
given by 

n I \  

These functions appear in the bounds on QF and QE given 
in the following. 

The bound on the probability of decoding failure for the 
decoding system is given by [5] 

QF 5 PDF(YI) + PDE(PZ).  (10) 

For the probability of decoding error for the decoding system, 
we have [5] 

&E 5 P[decoder for good receiver decodes incorrectly] 
decoder for good receiver 
does not decode correctly ] (11) and the other decoder ' +.[ decodes incorrectly 

The first term equals P D E ( P ~ ) .  Some additional notation is 
required to give an explicit bound for the second term. Let 
Vi be the number of code symbols in error at the output of 
the ith receiver. As discussed earlier, Ui is a binomial random 
variable with parameters n and pi.  The second term depends on 
the distribution of the random vector U = (U1, Uz ) ,  which in 
turn depends on the joint distribution of errors at the outputs of 
the two receivers, but in the following, we give a bound on the 
second term that depends only on the marginal distributions 
of Ul and U2. 

Define the indicator function It(.) by 

The conditional probability corresponding to the second term 
in (11) is 

rdecoder for good receiver I 7 
does not decode correctly I and the other decoder 

1 decodes incorrectly I 1 
Removing the conditioning, the second term in (1 1) can be 
bounded using Holder's inequality [9, p. 1131 as follows: 

E{ It (ul )pE (vi ) } 5 1 I It (ul ) 1 I I I PE ( vi) I I (12) 

where IIX11, denotes the L, norm [9, pp. 111-1121 of the 
random variable X ,  1 5 q 5 03, 1 5 T 5 co, and 

The expressions for the norms of interest are as follows: 
4-1 + r-1 = 1. 

I I It (Ul) I I , 

max,PE(u), 
0, pi = 0. 

pi > 0,  T = co, 
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Define H(p1 ,  PZ) as 

H(pl, p 2 )  min { Illt(ul)linllPE(~Z)llpJ 
1 I q , ~  5 00, qP1+ rP1 = l}. (13) 

Using (12) and (1 3), the second term in the summation in (1 1) 
is bounded by H ( p l ,  p 2 ) ,  so that 

Q E  I P D E ( P ~ )  + H(pi, PZ). (14) 

It is worth noting that, instead of performing the opti- 
mization in (13), we could set q = 1, T = ca in (12) to 
get 

identity of the good receiver in order for the universal receiver 
to be competitive with the noncoherent receiver. 

The requirements on the side information are given as 
follows. Since the performance of the coherent receiver de- 
teriorates rapidly as y decreases, it is required that, with high 
probability, the side information select only the noncoherent 
receiver for small values of y. On the other hand, in order to 
exploit the presence of the coherent receiver for large values 
of y, it is required that, with high probability, the selection 
include the coherent receiver (the noncoherent receiver can 
also be included in the selection without affecting the decoding 
failure probability). In the following section, we develop side 
information that satisfies these requirements. 

Since the right-hand side is independent of pa,  this results in 
a much simpler worst-case bound for QE as follows: 

Q~ i pDE(pi) + pDF(P1) [m$xpE(4]. 

This is the bound that is given in [ 5 ] .  However, while this is a 
good bound for the Reed-Solomon codes considered there, for 
the binary BCH codes considered in this paper, max, PE(u) 
can be very large; for instance, it equals one if the all-ones 
word is in the code. Thus, it is necessary to use the more 
complicated bound of (14). 

For our system, the important measure of performance 
is the decoding failure probability Q F .  The decoding error 
probability Q E  is important only in that it is required to be 
several orders of magnitude lower than QF for a good system 
design. If there is no scatter component (y = ca), the coherent 
receiver is optimal, in which case p l  = p, ,  and pz = pnc. 
However, the noncoherent receiver performs well enough that 
the probability of decoding failure for the decoding system is 
governed by the decoding failure probability for the coherent 
receiver, and not by the decoding error probability for the 
noncoherent receiver. That is, P D E ( I ) ~ )  << P D F ( I ) ~ )  in (IO), 
which implies that QF E P D F ( ~ ~ ) .  This means that for 
y = m the performance of the universal receiver is given 
by that of the good receiver, even without additional side 
information. This comment also applies for large finite values 
of y. 

Consider, however, the situation in which there is only a 
scatter component (Le., y = 0). The noncoherent receiver is 
optimal, and pl = p,,, but the coherent receiver performs 
very poorly, with p2 = p,, = 0.5. The output of the coherent 
receiver has a relatively large probability of decoding into 
an incorrect codeword, so that, even if the output of the 
noncoherent receiver decodes correctly, we have a decoding 
failure for the decoding system. This corresponds to the second 
term in (10) being dominant. Note that this term, which takes 
the value p ~ ~ ( 0 . 5 )  for y = 0, does not decrease as SNR 
increases. On the other hand, the decoding failure probability 
for the decoder for the noncoherent receiver is given by 
PDF@,,), which does decrease with SNR. Thus, in this- 
situation, the noncoherent receiver gives better performance 
than the universal receiver with no side information, and it 
is necessary to develop additional side information about the 

Iv. DEVELOPMENT OF THE SIDE-INFORMATION STATISTIC 

Ideally, we would like to have perfect side information, 
which corresponds to selecting the receiver that has the low- 
est bit error probability at its output. The side information 
developed here is a consequence of attempting to achieve this 
goal using the limited information at our disposal. 

Using the bound [12, p. 391 

Q ( X )  5 exp ( - x ~ / ~ ) / x ( ~ T ) ~ / ~ ,  

it follows from (9) that 

It is convenient to compare the expression (8) for p,, with 
the upper bound (15) for p, ,  rather than with the original 
expression (9). Since the comparison is biased in favor of 
the noncoherent receiver, this is also a more conservative 
approach, because the noncoherent receiver performs quite 
well for all values of the channel parameters. Note that (1 5) is 
used only for the purpose of developing the side information; 
in all computations involving p,,, the exact value (9) is used. 

Our objective, therefore, is for the side information to 
select the coherent receiver if the value of the bound (15) 
on p,, is less than the value of p,, given by (8); otherwise, 
it should select the noncoherent receiver. Defining T = 
a/[No(P + 2)/213/', if a, p, and NO are known, the decision 
rule can be expressed as follows: select the coherent receiver 
if T > (2/7r)'/'N-'; and select the noncoherent receiver if 
T 5 (2/7r)'/'N; . Since these parameters are not known, 
however, this decision rule is approximated by estimating T 
and using the fact that No, min 5 NO 5 NO, max. 

To this end, let T be an estimate for T.  The statistic f' 
is referred to as the side-information statistic. Define t ,  = 
(2/7r)1/2N<Lax, and t* = (2/7r)l/ 'N;+. The decision rule 
is to select only the coheren! receiver if T 2 t*, select only 
the noncpherent receiver if T 5 t,, and select both receivers 
if t ,  < T < t*. Lack of knowledge of the channel parameters 
affects the detision rule for the side information in two ways: 
the estimate T is used instead of the actual value of T ,  and 
+e choice of both receivers is allowed for certain values of 
T .  The outputs of the selected receivers are the input to the 
decoding system described in Section 11. 

P .  



2400 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 42, NO. 7, JULY 1994 

In the following, we develop a side-information statistic 
T and give its distribution. The selection probabilities are 

sults are given to show that the side-information statistic does 
satisfy the requirements described in the previous section. In 
the next section, we analyze the performance of the decoding 

It remains to specify the distribution of T .  The density of 
S3 is shown in the Appendix to be 

expressed in terms of this distribution, and some numerical re- (n ,  - 3.5)("s-1)/2 z(ns-4)/3 
= 3Xns-i2(ns-3)/2q(n, - 1)/21 

. exp [-i(n, - 3 . 5 ) ~ ' / ~ ]  (20) 
system when this side information is used with a binary code, 
and we give numerical results for a (32, 16) extended BCH 
code. 

Consider a particular transmitted codeword. Assume that the 
channel parameters do not change during the transmission of 
n, consecutive bits, which include the n bits of the codeword. 
These bits are indexed by i ,  which ranges from one to n,. 
Let Zi = (L:), L!:, L$, L!i) be random vectors whose 
components are the correlator outputs that correspond to the ith 
bit. Since the channel is memoryless, these random vectors are 
independent and identically distributed, and their distribution 
depends on the channel parameters only. One can use the Zi to 
attempt to estimate the channel parameters cy, /3, and No, but 
for our purposes, it suffices to estimate T.  The distribution 
of the Zi depends on whether the ith transmitted bit was a 
0 or a 1, and this makes a maximum likelihood estimate of 
T very complicated. It is preferred, therefore, to use a very 
simple estimate of T based on a function of the Zi that does 
not depend on the sequence of transmitted bits. 

Define the positive real variable X by X2 = N O ( @  + 2)/2,  
and define X i  by X i  = LF? + L!;). From (3), we see that the 
distribution of X i  is independent of whether the ith bit is a 
0 or a 1, and is given by 

xi N N ( a ,  A". (16) 

T = cy/X3. (17) 

Then 

The random variables Xi, 1 5 i 5 n,, are independent and 
identically distributed. Thus, if x and S2 are estimates of the 
mean and variance of the X i ,  respectively, then (16) and (17) 
suggest the estimate 

T = x/s3. (18) 

The statistic x used here is the sample mean = 
n;' Cy& X i .  It is easy to see that x N N ( a ,  X2ng1). The 
estimate S2 for the variance is chosen from a class of estimates 
S:, T 2 0, defined by SF = (n, - T)- '  Cy:l (Xi - x)'. 
The standard unbiased estimate for the variance corresponds 
to T = 1 [IO, p. 731. Since the purpose here is to estimate T 
using (18), however, it is more appropriate to choose T such 
that x/S," is an unbiased estimate of T up to first order in 
ngl. It is not possible to make T = x/S," a truly unbiased 
estimate of T .  

Thus, it is required to choose T to satisfy 

E { x / S : }  = a/X3 + O ( n s 2 ) ,  n, + 00. (19) 

It is shown in the Appendix that T = 3.5 satisfies (19), and 
does not depend on either a or A. Thus, we consider the side- 
information statistic T = x/S3, with S2  = ( S ~ . S ) ~ ,  so that 
E { F }  = T + O(n;'), n, -+ co. 

for z 2 0. Since the sample mean x - N ( a ,  X'n;'), and 
is independent of >he sample variance S3 [3, p. 3561, the 
distribution F of T is given by 

i y t )  = P[X/S3 5 t] = @[(A - a)/n,l'2X]ps3(z) d z  

(21) 
Lm 

where a(.) is the standard Gaussian distribution function. 
It can be shown [6] that T is an asymptotically normal 

estimate of T ,  in the sense that nB/2(T - T )  tends in distribu- 
tion to a zero mean Gaussian random variable with variance 
t2  = (A2 + 4.5cy2)/X6 as n, i 03. This can be used to 
approximate the distribution of T by a Gaussian distribution 
with mean T and variance E2ng1 for finite n,,. However, the 
values of n, that are of interest here are rekatively small, 
so that the tails of the actual distribution of T decay much 
more slowly than those of the Gaussian distribution. Thus, it 
is necessary to use the exact distribution of T in computing 
the selection probabilities in the following. 

The selection probabilities for the various receivers are 
expressed in terms of the distribution of T as follows. The 
probability of selecting only the coherent receiver is 

(22) Ps(sp)  = P[T 2 t*] = 1 - P( t* ) ;  

Ps(nc) = P[+ 5 t*] = F ( t * ) ;  

the probability of selecting only the noncoherent receiver is 

(23) 

and the probability of selecting both receivers is 

PS(b0th) = P[t ,  < T < t*] = p( t*)  - &(t*).  (24) 

These probabilities can be computed using (21). 
We now give some numerical results that demonstrate 

the efficacy of the side information developed above. The 
numerical results of the next section are for a code with 
a blocklength of 32. Assuming that only correlator outputs 
corresponding to bits of the codeword are used for computing 
the side-information statistic, the value 71, = 32 is appropriate. 
However, the value n, = 31 is used for computational 
convenience, because the argument of the gamma function in 
(20) is an integer for odd values of ri, (so that r'[(n, - l ) /2]  = 
[(n, - 3)/2]!). We consider NO,,;, = 1 and No,max = 10. 
The selection probabilities given by (22)-(24) are shown as a 
function of SNR in Figs. 1 and 2 for two representative values 
of 7, y = 0, and y = 00, respectively. Note that, while the 
error probabilities for the two receivers depend on y and the 
SNR alone, the selection probabilities depend on the value of 
No as well. A single value of No = 5 is considered here, 
but the results obtained are typical for all values of NO in the 
range of interest [6]. 

The numerical results displayed in Figs. 1 and 2, together 
with other numerical results in [6], show that the side informa- 
tion from the demodulators satisfies the requirements discussed 
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Fig. 1. Selection probabilities for 7 = 0.  

Fig. 2. Selection probabilities for -, = ea. 

at the end of Section 111. The undesirable selection events for 
y = 0 are selecting only the coherent receiver and selecting 
both receivers. We see from Fig. 1 that the probabilities of 
these undesirable events, Ps( s p )  and Ps(both), respectively, 
are small, as desired. For y = 00, the side information 
should, with high probability, select either both receivers or 
the coherent receiver alone to realize the advantage in SNR 
from using the two receivers in parallel instead of using the 
noncoherent receiver alone. We see from Fig. 2 that the side 
information from the demodulators does satisfy this property. 

v. PERFORMANCE OF THE UNIVERSAL 
RECEIVERWITH SIDE INFORMATION 

The performance of the decoding system is analyzed by first 
conditioning on the selection event, and then removing the 
conditioning. However, the correlator outputs for the bits of 
the codeword are being used to provide side information to the 
decoding system. Therefore, when conditioned on the selection 
event, the bit errors in the codeword are not conditionally 
independent, so that the channel is not memoryless. Moreover, 

the conditional probabilities of bit error for the two receivers 
are not equal to the unconditional error probabilities given 
by the expressions (8) and (9). We will, however, use an 
approximation to the performance of the decoding system. 
To obtain this approximation, one assumes that, conditioned 
on the selection event, the channel is memoryless, with the 
conditional bit error probabilities for the two receivers given 
by the expressions (8) and (9). The dependence of bit errors 
due to conditioning on the side-information statistic T = 
X / S 3  is weak, because the contribution of the correlator 
outputs for any given bit to either x or S2 is attenuated by 
a factor n;'. Thus, the approximation should be quite good. 
Further, the true performance is expected to be better than that 
predicted by the approximation, and an intuitive justification 
for this belief is given in the following. 

The correlator outputs that are used to make the symbol- 
by-symbol hard decisions at each receiver are also used to 
select one or both of the receivers. If the good receiver is 
selected (i.e., the right decision is made), the correlator outputs 
used for the selection are likely to be less noisy, so that the 
performance of the good receiver conditioned on its selection 
should be better than the unconditional performance used in 
the approximation. Because the probability of selecting the 
bad receiver is much smaller than that of selecting the good 
receiver, the main contribution to the overall performance 
comes from the term that corresponds to the selection of 
the good receiver. Consequently, the approximate analysis is 
conjectured to give upper bounds for the decoding failure 
probability and the decoding error probability for the universal 
receiver with side information from the demodulators. Because 
the channel is memoryless, the approximate analysis is exact 
if the ns bits used for the side information do not include 
any of the bits in the codeword (for instance, if the ns bits 
immediately preceding the codeword are used). Intuitively, we 
expect that by using the bits of the codeword we get better 
side information about how well each receiver performs over 
the duration of the codeword than if we used bits not in the 
codeword. 

We denote by Q ( F  1 J )  and Q(E I J )  the conditional prob- 
abilities of decoding failure and decoding error, respectively, 
given the selection event J .  In our notation, J = sp  denotes 
the event that the coherent receiver is selected, J = ne  the 
event that the noncoherent receiver is selected, and J = both 
the event that both receivers are selected. The performance of 
the decoding system with side information is therefore given 
by 

Q F  = Ps(sp)Q(F I S P )  + Ps(nc)Q(F I nc) 

- 

+ Ps(both)Q(F I both), (25)  

and 

Q E  = Ps(w)Q(E I sp )  + Ps(nc)Q(E I nc) 
+ Ps(both)Q(E I both). (26) 

The approximation discussed above is used at this point (for 
simplicity, this is not reflected in the notation). We have 
Q ( F  I S P )  5 P D F ( P ~ ~ )  and Q ( F  I ne)  5 P D F ( ~ ~ ~ ) ,  and 
Q ( E  I S P )  P ~ ~ ( p s p )  and Q ( E  I ne) = P ~ ~ ( p n c ) .  If both 



2402 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 42, NO. 7, JULY 1994 

receivers are selected, the performance is identical to that of 
a system with no side information; that is, upper bounds on 
Q ( F  I both) and Q(E I both) are given by (10) and (14), 
respectively. The performance measures Q F  and Q E  can now 
be computed using (25) and (26). 

The numerical results are for a (32, 16) triple-error- 
correcting extended BCH code with minimum distance 8, 
obtained by adding an extra parity check bit to the codewords 
of a (31, 16) triple-error-correcting primitive BCH code. The 
(32, 16) code is preferred over the (31, 16) code because of 
its enhanced error-detection capability (at the expense of a 
single extra parity check bit), but we have found that there is 
not a very significant difference in the performance of these 
two codes. The performance of the universal receiver with 
side information is to be compared to that of the noncoherent 
receiver alone. Clearly, in the latter instance, the full error 
correction capability of the code would be used, so t = 3 
is the appropriate choice for ensuring a fair comparison. We 
need the conditional probabilities of decoding error PE(u) in 
our analysis (see Section 111). These can be obtained from the 
weight distribution of the code [4]. The weight distribution is 
easily obtained from tables in the literature (see, for instance, 
[2]) .  As in the previous section, ns = 31,  NO,,^, = 1, 
No,maz = 10, and No = 5. The performance of three 
receivers is shown as a function of SNR: the noncoherent 
receiver, the universal receiver with side information from 
the demodulators, and the universal receiver with no side 
information. As noted earlier, the decoding failure probability 
is a more important performance measure than the decoding 
error probability, hence we include a graph of the latter in 
only one of the situations considered in the following (see [6] 
for additional numerical results). 

The decoding failure probability for y = 0 is plotted in 
Fig. 3(a), and the decoding error probability in Fig. 3(b). The 
performance with no side information is, of course, quite bad, 
because the coherent receiver performs very poorly in this 
situation. The performance of the universal receiver with side 
information from the demodulators, however, is indistinguish- 
able from that of the (optimal) noncoherent receiver. These 
observations hold for small values of y as well; as an example, 
we show the decoding failure probability for y = 2 in Fig. 4. 
Fig. 5 shows the decoding failure probability for y = 00. The 
performance of the universal receiver with no side information 
and that of the universal receiver with side information from 
the demodulators is almost the same, and both these systems 
are better than the noncoherent receiver. This property is also 
typical of large finite values of y, as is illustrated by Fig. 6, 
which shows the decoding failure probability for y = 20. 

Another way of comparing the performance of the nonco- 
herent receiver and the universal receiver with side information 
from the demodulators is in terms of the value of SNR 
required to attain a given performance level for each receiver. 
A comparison of the SNR required for these two receivers 
to attain a decoding failure probability of 10-l' is given in 
Table I (each entry is rounded to a tenth of a dB). The universal 
receiver with side information from the demodulators is better 
by almost 1 dB for high to moderate values of y, and it is no 
worse for low values of y. 
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probability for y = 0. 

(a) Decoding failure probability for y = 0. (b) Decoding error 

Our results demonstrate that the universal receiver with 
side information from the demodulators provides a gain in 
SNR over the noncoherent receiver. They also show that the 
universal receiver with no side information performs better 
than the noncoherent receiver for large y, but it suffers a 
significant degradation in performance for small y . 

VI. CONCLUSIONS 

We have developed side information from the demodulators 
for a universal receiver for Rician-fading channels, and we 
have shown that the performance of the resulting system is 
superior to that of the noncoherent receiver. As noted in the 
introduction, the example of Rician fading channels is chosen 
mainly as an illustration of the universal approach, even though 
the potential gains are limited to about 1 dB. However, the 
results of the paper are encouraging for precisely the same 
reason: even though the noncoherent receiver gives such good 
performance, it is possible to do better using a universal 
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Fig. 4. Decoding failure probability for y = 2. Fig. 6. Decoding failure probability for y = 20. 

Fig. 5.  

approach and some ingenuity in developing side information. 
It is hoped that our results will motivate consideration of 
the application of universal receivers to practical problems in 
which potential performance gains are much greater. 

Since the demodulation side information depends on esti- 
mating a function T of the channel parameters, it is appropriate 

to conclude this paper by comparing the universal receiver 
that employs demodulation side information with the following 
adaptive system. Since the optimal receiver bopt for a channel 
( a ,  p, N O )  is given by bopt = a//? [see (7)] ,  estimates of 
the channel parameters a and /3 could be used to estimate 
the receiver parameter bopt, and the resulting receiver used to 
demodulate the received signal. One major drawback of this 
procedure is that it cannot be carried out in real time; before 
making any decisions about the transmitted bits, it is necessary 
to make an estimate of bopt based on the corresponding 
received waveforms. For the universal receiver, on the other 
hand, the receivers in the parallel configuration make the 
hard decisions on the bits as the corresponding signals are 
demodulated, so that the decoders can proceed to decode 
a given received word as soon as it is received. The side- 
information statistic can be obtained by the time the decoding 
is completed, and the output selection algorithm can use 
this side information along with the outputs of the decoders 
in making its decision. Another problem with the adaptive 
approach is that, since the channel parameters may vary with 
time, only a moderate number of samples can be used to 
make the estimate. The choice of the optimal receiver is 
probably more sensitive to errors in estimation than is the 
demodulation side information used for the universal receiver. 
Finally, the implementation of an adaptive receiver of this kind 
is much more complicated than that of a universal receiver 
with demodulation side information. 
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APPENDIX which yields 

We first show that T = 3.5 satisfies (19), and then derive 
the density of S3 = S&,. Standard results [3, p. 3561 for 
the sample mean and sample variance for Gaussian random 
variables imply that S, and fz; are independent, and that the 
distribution of S, does not depend on a. This yields 

E{X/S,3} = E { X } E { l / s : }  = aE{l/S,3},  

E { I / s , ~ }  = 1 + - - --T nL1 + 0 ( n i 2 ) .  (: ;) 
Thus, setting T = 3.5 cancels the first-order term in n i l .  

We now return to the original problem, in which a >_ 0 and 
X2 > 0 are arbitrary. The density of S3 is obtained from the 
preceding results for standard Gaussian samples as follows. 
With a slight change of notation, let SA denote a random 
variable with density f given by (A.2). Then so that it is enough to choose T to satisfy 

ns - 3.5 

It is clear from the foregoing that the value of T Satisfying 
(A.l) does not depend on a. Moreover, it is seen by a simple 
scaling argument that the required value of T does not depend 
on A, either. In order to find the desired value of T ,  therefore, 

A change of variables in (A.2) now yields the desired expres- 
sion (20) for the density of S3.  
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