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Universal Receivers with Side Information
from the Demodulators: An Example for
Nonselective Rician Fading Channels

Upamanyu Madhow and Michael B. Pursley, Fellow, IEEE

Abstract— We consider binary orthogonal signaling over a
nonselective Rician-fading channel with additive white Gaussian
noise. The received signal over such a channel may have both a
specular component and a scatter (Rayleigh-faded) component.
If there is only a scatter component, the noncoherent receiver
is optimal. If there is only a specular component, the optimal
receiver is the coherent receiver. In general, the optimal receiver
for a Rician channel depends on the strengths of the two sig-
nal components and the noise density, and the set of possible
optimal receivers is infinite. We consider a system in which the
noncoherent receiver and the coherent receiver are employed in
a parallel configuration for a symbol-by-symbol demodulation
of the received signal. Each sequence of transmitted symbols
produces a sequence at the output of each of the parallel receivers.
The task of identifying which of these received sequences is a
more reliable reproduction of the transmitted sequence is the
data verification problem. In this paper, we show that data
verification can be accomplished by combining side informa-
tion from the demodulators with a suitable error-control coding
scheme. The resulting system is a universal receiver that provides
good performance over the entire range of channel parameters.
In particular, the universal receiver performs better than the
traditional noncoherent receiver.

I. INTRODUCTION

HE CONCEPT of universal receivers for unknown and

time-varying channels has been introduced in [5] and
[8]. In this and a companion paper [7], we consider different
aspects of the application of this concept to binary signal-
ing over nonselective Rician-fading channels with additive
white Gaussian noise (AWGN). The received signal over such
channels can have both a specular component and a scatter
(Rayleigh-faded) component. Among the class of channels of
interest are Rayleigh fading channels, for which there is only
a scatter component. Since it is difficult to obtain a phase
reference for the received signal in such situations, we must
employ noncoherent demodulation, so that antipodal signaling
cannot be used. In view of the possibility of Rayleigh fading,
we consider orthogonal signaling in this paper, since such sig-
nals are appropriate for noncoherent demodulation. However,
noncoherent demodulation is not optimal if there is a specular
signal component. In general, the optimal receiver for a Rician
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fading channel depends on the strengths of both the signal
components and the power spectral density of the AWGN, so
that there is no single receiver that gives optimal performance
for all Rician fading channels. If there is only a specular
component, the optimal receiver is the coherent receiver, and
if there is only a scatter component, the optimal receiver is the
noncoherent receiver. Thus, the coherent receiver gives nearly
optimal performance if the scatter component is small, while
the noncoherent receiver gives nearly optimal performance
when the specular component is small.

The foregoing discussion motivates us to consider a com-
munication system in which the received signal is demodulated
in parallel by the coherent receiver and the noncoherent
receiver. Regardless of the parameters of the channel in
effect, one of these receivers gives good performance. In this
paper, we develop side information that identifies, with high
probability, which of these receivers is performing well under
the current channel conditions, and show that the resulting
system outperforms a single noncoherent receiver.

Our purpose is to use this system as an example to illustrate
the concept of a universal receiver [5]—{7]. Given a class of
channels for which no single receiver gives optimal perfor-
mance, it is shown in [5] that, under certain conditions, it is
possible to find a finite set of receivers with the property that,
for any channel in the class of interest, at least one of these
receivers gives a performance which is within a prescribed
deviation of the optimal performance for that channel. The
performance measure of interest is usually the symbol error
probability. These receivers are then used in parallel to perform
a symbol-by-symbol demodulation of the received signal.
For each sequence of transmitted symbols, therefore, there
is one received sequence for each receiver in the parallel
configuration. The task of identifying which receiver output is
the most reliable reproduction of the transmitted sequence is
referred to as the data verification problem. The main purpose
of the formulation in [7] is to show that, even though the
sufficient conditions in [5] are not satisfied for the class of
Rician fading channels, the ideas of [5] can be used to obtain a
finite set of receivers as described above for this channel class.
The tradeoff between the allowed deviation from optimality
and the number of receivers that are required in the parallel
configuration is explored in [7]. However, the data verification
problem is not considered in [7]. In this paper, we address the
data verification problem for a parallel configuration consisting
of the coherent and the noncoherent receivers.
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The data verification problem has been considered in a
general setting in [5] where, assuming that the channel in
effect does not change over the duration of a codeword, the
error-detection capability of the error-control code is used
to achieve a high probability of rejecting the outputs of
mismatched receivers with a high probability. It is seen in
[5] that Reed—-Solomon codes with bounded distance decoding
provide both error-correction and data verification if the error-
detection capability of the code is enhanced by not using its
full error-correction capability. However, in order to maintain
a given error-correction capability, it is necessary to decrease
the rate of the code to provide sufficient error-detection
capability for data verification.

This approach is not quite satisfactory for the present
application. We consider binary signaling in this paper, and
binary codes do not have the good distance properties of
Reed-Solomon codes, which employ much larger alphabets.
A substantial loss in rate would thus be incurred in providing
data verification for a universal receiver, and it would be better
to use instead the noncoherent receiver, which is known to
perform reasonably well for all Rician channels [11]. For
a system employing the noncoherent receiver, the coding
scheme is required mainly for error-correction, and it may
have only moderate error-detection capability. A typical code
may be a short binary BCH code. For comparing the universal
receiver with the noncoherent receiver, we consider such a
code. Data verification is achieved not by decreasing the
rate of the code to increase its error-detection capability,
but by supplementing its available error-detection capability
by developing side information from the demodulators. Such
side information is based on information within the receivers
which is normally discarded once hard decisions are made,
and it has the advantage that no transmission overhead is
incurred.

The universal receiver with side information from the de-
modulators performs better than the noncoherent receiver. The
performance gain is not substantial, being of the order of 1 dB,
and may not justify the added complexity in practice. How-
ever, the results of [7] and this paper illustrate the important
issues in designing universal receivers, and are intended to
motivate exploration of more practical applications.

The system model is given in Section II. The performance
of the system with coding but without additional side in-
formation is analyzed in Section III, and the results of the
analysis are used to motivate the need for side information.
A side-information statistic is developed in Section IV, and
some numerical results are given to show its efficacy. The
performance of the system with coding and side information
is analyzed in Section V, and numerical results comparing the
performance with that of the noncoherent receiver are given.
Section VI contains our conclusions.

II. SYSTEM MODEL

The system model is as in [7] and [11], and further details
can be found in those references. Binary orthogonal signaling
is used, and the signals are narrowband and of duration 7.
The signal s;, transmitted when the binary symbol i(i = 0, 1)
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is sent, is given by
si(t) = 2E)Y2z;(t)cos 2mfot+¢), 0Kt <T (i=0,1)

where zo(¢) and z,(t) are baseband waveforms satisfying
i=j

/Tx-(t)ac i(t)dt = {1’
4] : ! N 01 Z#]v

fe is the carrier frequency, and ¢ is a fixed phase angle. The
signals so and s; are thus orthogonal and have equal energy
E. It is assumed that 0 and 1 are sent with equal probability.

When symbol i is sent, the received signal is given by [7],

[11]
r(t) = a(2E)%xi(t) cos (27 fot + )
+ S(2E)Y?x;(t) cos (2m fot + ¢ + ©) + n(t).

The first term above is the specular component of the signal,
and « is the channel gain for the specular component. The
second term is the scatter component of the signal, and S and
© are random variables with joint density

(s, 8) = {(()s/27ra2)exp(_32/202), 5> 0,0 ¢0, 2n]

, otherwise.
The third term is AWGN with a two-sided power spectral
density of Ny/2. Without loss of generality, the energy E of
the transmitted signal is normalized to 1 by replacing o by
aEY? and 02 by o?E.

When there is a specular component, the receiver is assumed
to be locked to its phase ¢, so that it can compute the following
decision variables by suitable correlations with the received
signal:

T
LC,:/ r(t)2Y%z;(t) cos (2m fot + ) dt (i =0, 1), (1)
0
and
T
Lsi:/ ()22 (t) sin (2n fot + ¢)dt (=0, 1). (2)
0

The correlator outputs L.1, Ls1, Lco, and Ly are sufficient
statistics for deciding whether a 0 or a 1 has been transmitted.

The signal-to-noise ratio for the scatter component of the
received signal is defined as 3 = 202 /No. Denote by N(m, v)
a Gaussian distribution with mean m and variance v. The
random variables L.y, Lg1, Leo, Lso are conditionally inde-
pendent and Gaussian, given that symbol ¢ is sent. If a 1 is
sent, the conditional distributions are given by

Lcl NN(Q, No(ﬁ—{-l)/Z), L1 NN(O, Ng(ﬂ-}—l)/Q),
(3a)

Leo ~ N(0, No/2),  Lso ~ N(0, No/2).  (3b)

If a 0 is sent, interchange L.; and Lo, and L4; and L, in (3).

The noncoherent receiver, which is optimal if there is no
specular component (i.e., @ = 0), corresponds to the following
decision rule.

H,
L+ L§1E L+ L. 4)
0
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The coherent receiver, which is optimal if there is no scatter
component (i.e., 5 = 0), corresponds to the decision rule
Hy

Lcl = Lc0~
0

&)

In general, the optimal decision rule depends on the values of
« and 8, and, for 8 > 0, is given by [7], [11], [12]

H,
Lzl + Lgl + 2bopth]3 LEO + Lg() + 2bopth0 (6)
o

where

bopt = a/ﬁ (7)

Note that the noncoherent receiver (4) corresponds to bope = 0,
and the coherent receiver corresponds to bope = 00, in the
sense that (5) is obtained from (6) by dividing both sides by
bopt, and letting bope — 0.

The triple (o, B, Ny) gives a complete statistical char-
acterization of the channel, in the sense that knowledge of
these parameters enables us to implement an optimal receiver
and to analyze its performance. However, we assume that o
and [ are not known, and hence the optimal decision rule
cannot be implemented. Instead, we consider a system in
which the received signal is demodulated in parallel by the
noncoherent receiver and the coherent receiver. Qur purpose
is to develop a method of selecting the output of the receiver
that is performing better at a given time. It is assumed that a
rough estimate of the noise power spectral density is available
at the destination. Specifically, as in [7], Ny is assumed to lie
in a known interval [No min, No, max]-

It is convenient to define the parameter v = «/c, which
is a measure of the relative strengths of the specular and
scatter components of the signal, and the parameter SNR=
(a®+202) /Ny, which is the overall signal-to-noise ratio. In the
numerical results of Section V, we compare the performance
of the universal receiver and that of the noncoherent receiver
as a function of SNR for different values of ~.

The bit error probability at the output of the noncoherent
receiver is [11]

Pre = (B+2) " exp[—a®/No(B + 2)), (8)

and the bit error probability at the output of the coherent
receiver is [7]

psp = Q{at/[No(B + 2)/2]*%} ©)

where Q(-) is the complementary standard Gaussian distri-
bution function. The task of data verification can be stated
as follows: identify, at any given time, which of these two
receivers is giving a lower symbol error probability, and
choose the output of that receiver. However, data verification
is not done on a symbol-by-symbol basis, since it is assumed
that the channel parameters, and therefore the identity of the
good receiver, do not change significantly over several symbol
durations. Specifically, an error-control code is used, and it is
assumed that the identity of the good receiver does not change
over the duration of a codeword, so that the error-detection
capabilities of the code can be exploited for data verification

2397

[S]. This does not suffice for our application, however, and it is
necessary to develop additional side information that indicates
the relative magnitude of p,. and p,, over the duration of a
given codeword.

The code symbols are transmitted using the orthogonal
signals described earlier. It is assumed that, given the values
of the channel parameters, the channel is memoryless. The
received signal is demodulated symbol by symbol by both the
coherent and the noncoherent receivers, so that there are two
received words corresponding to each transmitted codeword.
These are the two inputs to a decoding system whose task
is to produce a good estimate for the transmitted codeword.
Consider, first, a decoding system (introduced in [S5]) that
does not utilize any additional side information. Each received
word is decoded separately in the usual manner by a bounded
distance decoder. Each decoder produces one of three possible
outcomes: correct decoding, decoding error, and decoding
failure.

The results of the individual decodings are processed using
the following output selection algorithm. Any output that fails
to decode is ignored. If both outputs fail to decode, a failure
is declared for the decoding system. If both outputs decode,
but the resulting codewords do not match, again a failure is
declared for the decoding system. In this case, at least one of
the decoded words must be wrong, and since the identity of
the good receiver is not known, we cannot choose between the
two codewords. If only one of the received words decodes,
or if both received words decode into the same codeword,
the resulting decoded word is assumed to be correct, and a
successful decoding is declared for the decoding system. Thus,
if both the decoded words match, but are wrong, the result is
a decoding error for the decoding system.

If additional side information is available, it is used to
select one or both of the receivers (a fresh selection is made
for every codeword). If both receivers are selected by the
side information, then the output selection algorithm described
above is employed. If only one receiver is selected, the output
of the decoding system is simply the output of the decoder for
the selected receiver.

Note that, if a receiver is poorly matched to the prevailing
channel conditions, the corresponding received word may
have a large number of errors. If this received word decodes
incorrectly, then, even if the output of the other receiver
is decoded correctly, we have a decoding failure for the
decoding system if there is no additional side information.
Thus, the code should be chosen such that even if there are
a large number of errors in a received word, the decoder
is much more likely to fail to decode rather than decode
into a wrong codeword, so that, with high probability, its
output is ignored by the output selection mechanism. Thus,
the error-detection capability of the code is used to reject
the output of a mismatched receiver. Since the short binary
codes considered in this application are not powerful enough
for this purpose, it is necessary to develop additional side
information that selects, with high probability, the outputs
of the receivers that are performing well, in order to direct
only the corresponding decoder outputs to the output selection
mechanism.
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In the next section, we sketch the analysis of the perfor-
mance of the decoding system with no side information. The
results of the analysis are used to motivate the necessity for
side information. The results are also used in Section V, where
we analyze the performance with side information.

III. PERFORMANCE OF THE UNIVERSAL
RECEIVERWITH NO SIDE INFORMATION

The performance measures of interest for the decoding
system are the probability of decoding failure Qr and the
probability of decoding error Qg. Given the values of the
channel parameters, we can calculate the symbol error proba-
bilities for each receiver using (8) and (9). Since the channel
is memoryless, this gives the distribution of the number of
errors in each received word. However, the performance of
the decoding system clearly depends on the joint distribution
of errors at the outputs of the two receivers. This distribution
is difficult to calculate, and we develop bounds on the per-
formance that depend only on the symbol error probabilities
at the outputs of the receivers. This is consistent with our
approach to the data verification problem, in which the goal
is to choose the output of the receiver with the lower symbol
error probability rather than to exploit the dependence of the
outputs of different receivers. The analysis closely follows [5],
and, rather than include all the details, we refer to [5] whenever
possible. The bound on the decoding failure probability is the
same as in [5], but, for our purpose, it is necessary to develop
a tighter bound on the decoding error probability than in [5].

It is useful to number the two receivers in accordance with
the symbol error probabilities at their output; the first receiver
(also referred to as the good receiver) has the smaller symbol
error probability p; = min {pnc, psp}, and the second receiver
has the larger symbol error probability p; = max {p,c, psp}-
An (n, k) binary code with minimum distance d is used, and
the decoders in the decoding system attempt to correct up to
t errors where 2t + 1 < d. Let Pg(u) denote the conditional
probability of decoding error for a particular decoder given
that there are u errors in the decoder input.

Because the channel is memoryless, the performance of the
decoder at the output of a particular receiver depends only
on the symbol error probability for that receiver. Since n is
the number of symbols in a codeword, if the symbol error
probability for the receiver is p, the number of errors in the
received word is a binomial random variable with parameters
n and p. The probability that the decoder for that receiver
does not decode correctly, which is a tight upper bound for
the probability of decoding failure for that decoder, is given by

Ppr(p) = i (Z)p"(l —p)(n ),

u=t+1

The probability of decoding error for the same situation is
given by

Ppe(p) = Zn: Pg(u) <Z)p"(1 — p)nmw),

u=d—t

These functions appear in the bounds on @ and Qg given
in the following.
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The bound on the probability of decoding failure for the
decoding system is given by [5]

Qr < Ppr(p1) + Ppe(pe). (10

For the probability of decoding error for the decoding system,
we have [5]

Qr < Pldecoder for good receiver decodes incorrectly]
decoder for good receiver
does not decode correctly
and the other decoder
decodes incorrectly

+ P an

The first term equals Ppg(p;). Some additional notation is
required to give an explicit bound for the second term. Let
U; be the number of code symbols in error at the output of
the ith receiver. As discussed earlier, U; is a binomial random
variable with parameters n and p;. The second term depends on
the distribution of the random vector U = (Uy, U;), which in
turn depends on the joint distribution of errors at the outputs of
the two receivers, but in the following, we give a bound on the
second term that depends only on the marginal distributions
of Uy and Us.
Define the indicator function I,(u) by

0 u < t,
I’(”)'{l u>t+1.

The conditional probability corresponding to the second term
in (11) is

decoder for good receiver
does not decode correctly
and the other decoder
decodes incorrectly

=u| = It(u1)PE(u2)'

Removing the conditioning, the second term in (11) can be
bounded using Holder’s inequality [9, p. 113] as follows:

E{L(U1)Pp(U:)} < LU |1 Pe(Us)|i (12)

r

where || X||, denotes the L, norm [9, pp. 111-112] of the
random variable X, 1 < ¢ < o, 1 < r < oo, and
g l+rt =1

The expressions for the norms of interest are as follows:

(Ul

n n (] (n—u) 1/11_ P 1/q
Du=tt1 u pi(1—p1) = [Ppr(p1)]™?,

= 1< g < oo,
11 D1 > Oa q = 00,
07 P11 = 07
and
|Pe(U),
n ( ) 1/r
ne
{Stadpetn (] )ora-p
= 1<r< oo,
max, Pr(u), p; >0, r =00,
Oa pi = 0.
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Define H(p;, p2) as

H(ps, po) = min { | 1:(U1)llg | P£(U2)]l»
1<qgr<oo, ¢gt+ri= 1}. (13)

Using (12) and (13), the second term in the summation in (11)
is bounded by H(p;, p2), so that

Qe < Ppe(p1) + H(p1, p2)- (14)

It is worth noting that, instead of performing the opti-
mization in (13), we could set ¢ = 1, r oo in (12) to
get

E{1L(U1)Pg(Us)} < Por(p:) [max Pp(u)].

Since the right-hand side is independent of p,, this results in
a much simpler worst-case bound for Qg as follows:

Qe < Ppe(p1)+ Ppr(p1) [mjlx PE(U)]'

This is the bound that is given in [5]. However, while this is a
good bound for the Reed—Solomon codes considered there, for
the binary BCH codes considered in this paper, max,, Pg(u)
can be very large; for instance, it equals one if the all-ones
word is in the code. Thus, it is necessary to use the more
complicated bound of (14).

For our system, the important measure of performance
is the decoding failure probability Q. The decoding error
probability Qg is important only in that it is required to be
several orders of magnitude lower than Q for a good system
design. If there is no scatter component (y = 00), the coherent
receiver is optimal, in which case p; = p;, and p2 = ppe.
However, the noncoherent receiver performs well enough that
the probability of decoding failure for the decoding system is
governed by the decoding failure probability for the coherent
receiver, and not by the decoding error probability for the
noncoherent receiver. That is, Ppg(p2) < Ppp(p;) in (10),
which implies that QF Ppr(p1). This means that for
v = oo the performance of the universal receiver is given
by that of the good receiver, even without additional side
information. This comment also applies for large finite values
of ~.

Consider, however, the situation in which there is only a
scatter component (i.e., v = 0). The noncoherent receiver is
optimal, and p; = py,., but the coherent receiver performs
very poorly, with py = p,, = 0.5. The output of the coherent
receiver has a relatively large probability of decoding into
an incorrect codeword, so that, even if the output of the
noncoherent receiver decodes correctly, we have a decoding
failure for the decoding system. This corresponds to the second
term in (10) being dominant. Note that this term, which takes
the value Ppg(0.5) for v = 0, does not decrease as SNR
increases. On the other hand, the decoding failure probability
for the decoder for the noncoherent receiver is given by
Ppr(pne), which does decrease with SNR. Thus, in this-
situation, the noncoherent receiver gives better performance
than the universal receiver with no side information, and it
is necessary to develop additional side information about the

~
~
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identity of the good receiver in order for the universal receiver
to be competitive with the noncoherent receiver.

The requirements on the side information are given as
follows. Since the performance of the coherent receiver de-
teriorates rapidly as « decreases, it is required that, with high
probability, the side information select only the noncoherent
receiver for small values of +. On the other hand, in order to
exploit the presence of the coherent receiver for large values
of «, it is required that, with high probability, the selection
include the coherent receiver (the noncoherent receiver can
also be included in the selection without affecting the decoding
failure probability). In the following section, we develop side
information that satisfies these requirements.

IV. DEVELOPMENT OF THE SIDE-INFORMATION STATISTIC

Ideally, we would like to have perfect side information,
which corresponds to selecting the receiver that has the low-
est bit error probability at its output. The side information
developed here is a consequence of attempting to achieve this
goal using the limited information at our disposal.

Using the bound [12, p. 391

Q(z) < exp(—a*/2)/=(2m)"?,
it follows from (9) that

No(B +2)'/?

2n)ire P [—a?/No(B + 2)].

sp < (15)
It is convenient to compare the expression (8) for p,. with
the upper bound (15) for p,, rather than with the original
expression (9). Since the comparison is biased in favor of
the noncoherent receiver, this is also a more conservative
approach, because the noncoherent receiver performs quite
well for all values of the channel parameters. Note that (15) is
used only for the purpose of developing the side information;
in all computations involving ps,, the exact value (9) is used.

Our objective, therefore, is for the side information to
select the coherent receiver if the value of the bound (15)
on py, is less than the value of p,. given by (8); otherwise,
it should select the noncoherent receiver. Defining 7'
a/[No(8 +2)/2]%/2, if a, B, and Ny are known, the decision
rule can be expressed as follows: select the coherent receiver
if 7> (2/7)Y/2N;1; and select the noncoherent receiver if
T < (2/7)2N;". Since these parameters are not known,
however, this decision rule is approximated by estimating 7’
and using the fact that Np, min < No < No, max-

To this end, let T be an estimate for 7. The statistic
is referred to as the side-information statistic. Define t,
(2/m)Y/2Ng axo and £* = (2/7)Y/2Ng 1. The decision rule

0, min"

T

is to select only the coherent receiver if T > t*, select only
the noncoherent receiver if T' < ¢,, and select both receivers
if t, < T' < t*. Lack of knowledge of the channel parameters
affects the decision rule for the side information in two ways:
the estimate 7" is used instead of the actual value of 7, and
the choice of both receivers is allowed for certain values of
T The outputs of the selected receivers are the input to the
decoding system described in Section IIL.
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_In the following, we develop a side-information statistic
T and give its distribution. The selection probabilities are
expressed in terms of this distribution, and some numerical re-
sults are given to show that the side-information statistic does
satisfy the requirements described in the previous section. In
the next section, we analyze the performance of the decoding
system when this side information is used with a binary code,
and we give numerical results for a (32, 16) extended BCH
code.

Consider a particular transmitted codeword. Assume that the
channel parameters do not change during the transmission of
ng consecutive bits, which include the n bits of the codeword.
These bits are indexed by 4, which ranges from one to n,.
Let Z; = (Lg), ngl), Lf;lo) , LSO)) be random vectors whose
components are the correlator outputs that correspond to the ith
bit. Since the channel is memoryless, these random vectors are
independent and identically distributed, and their distribution
depends on the channel parameters only. One can use the Z; to
attempt to estimate the channel parameters «, 3, and Ny, but
for our purposes, it suffices to estimate T. The distribution
of the Z; depends on whether the ith transmitted bit was a
0 or a 1, and this makes a maximum likelihood estimate of
T very complicated. It is preferred, therefore, to use a very
simple estimate of T" based on a function of the Z; that does
not depend on the sequence of transmitted bits.

Define the positive real variable A by A2 = Ny(8 + 2)/2,
and define X; by X; = L% + L% From (3), we see that the
distribution of X; is independent of whether the ith bit is a
0 or al, and is given by

Xi ~ N(a, \?). (16)

Then

T = /)3 7

The random variables X;, 1 < i < n,, are independent and
identically distributed. Thus, if X and S? are estimates of the
mean and variance of the X, respectively, then (16) and (17)
suggest the estimate

T=X/5% (18)
The statistic X used here is the sample mean X =
ny' Yot Xi. Itis easy to see that X ~ N(a, A>n 1), The
estimate S? for the variance is chosen from a class of estimates
82, 7 > 0, defined by 2 = (ny — )71 3.0 (X; — X)2
The standard unbiased estimate for the variance corresponds
to r = 1 [10, p. 73]. Since the purpose here is to estimate T’
using (18), however, it is more appropriate to choose r such
that X/S2 is an unbiased estimate of T up to first order in
nyl. It is not possible to make 7' = X /52 a truly unbiased
estimate of 7.

Thus, it is required to choose r to satisfy

E{X/S3} = a/X* +0(n;?), n,— oc.

(19)

It is shown in the Appendix that r = 3.5 satisfies (19), and
does not depend on either a or A. Thus, we consider the side-
information statistic 7' = X /83, with % = (S3.5)?, so that
E{T} = T + O(n;?), n, —» .
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It remains to specify the distribution of T. The density of
53 is shown in the Appendix to be
(ngy — 3.5)(ns—1)/2
3An:—12(n=3)/2T[(n, ~ 1)/2]
-exp[—3(ns — 3.5)2%/3]  (20)

(ns—4)/3

pss(z) = z

for z > 0. Since the sample mean X ~ N(a, A?n71), and
is independent of the sample variance S3 3, p. 356], the
distribution F' of T is given by

F(t)=P[X/8*<t]= Amé[(zt —a)/n Y Npss (2) dz
(21

where ®(-) is the standard Gaussian distribution function.

It can be shown [6] that T is an asymptotically normal
estimate of 7', in the sense that n;/ 2(T —T) tends in distribu-
tion to a zero mean Gaussian random variable with variance
€ = (A + 4.50%)/X% as n, — oo. This can be used to
approximate the distribution of T by a Gaussian distribution
with mean 7' and variance £2n;! for finite n,. However, the
values of n, that are of interest here are relatively small,
so that the tails of the actual distribution of 1" decay much
more slowly than those of the Gaussian distribution. Thus, it
is necessary to use the exact distribution of 7" in computing
the selection probabilities in the following.

The selection probabilities for the various receivers are
expressed in terms of the distribution of 7' as follows. The

probability of selecting only the coherent receiver is
Ps(sp) = PIT > t*] =1 — F(t*); (22)

the probability of selecting only the noncoherent receiver is

Ps(ne) = PIT < t,] = F(t); (23)
and the probability of selecting both receivers is
Ps(both) = Plt, < T < t*] = F(t*) — F(t.).  (24)

These probabilities can be computed using (21).

We now give some numerical results that demonstrate
the efficacy of the side information developed above. The
numerical results of the next section are for a code with
a blocklength of 32. Assuming that only correlator outputs
corresponding to bits of the codeword are used for computing
the side-information statistic, the value n, = 32 is appropriate.
However, the value n, = 31 is used for computational
convenience, because the argument of the gamma function in
(20) is an integer for odd values of n, (so that I'[(ns—1)/2] =
[(ns — 3)/2]1). We consider No min = 1 and No max = 10.
The selection probabilities given by (22)—(24) are shown as a
function of SNR in Figs. 1 and 2 for two representative values
of v, v = 0, and v = oc, respectively. Note that, while the
error probabilities for the two receivers depend on ~ and the
SNR alone, the selection probabilities depend on the value of
Np as well. A single value of Ny = 5 is considered here,
but the results obtained are typical for all values of Ny in the
range of interest [6].

The numerical results displayed in Figs. 1 and 2, together
with other numerical results in [6], show that the side informa-
tion from the demodulators satisfies the requirements discussed
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at the end of Section III. The undesirable selection events for
7y = 0 are selecting only the coherent receiver and selecting
both receivers. We see from Fig. 1 that the probabilities of
these undesirable events, Ps(sp) and Pg(both), respectively,
are small, as desired. For v = oo, the side information
should, with high probability, select either both receivers or
the coherent receiver alone to realize the advantage in SNR
from using the two receivers in parallel instead of using the
noncoherent receiver alone. We see from Fig. 2 that the side
information from the demodulators does satisfy this property.

V. PERFORMANCE OF THE UNIVERSAL
RECEIVERWITH SIDE INFORMATION

The performance of the decoding system is analyzed by first
conditioning on the selection event, and then removing the
conditioning. However, the correlator outputs for the bits of
the codeword are being used to provide side information to the
decoding system. Therefore, when conditioned on the selection
event, the bit errors in the codeword are not conditionally
independent, so that the channel is not memoryless. Moreover,
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the conditional probabilities of bit error for the two receivers
are not equal to the unconditional error probabilities given
by the expressions (8) and (9). We will, however, use an
approximation to the performance of the decoding system.
To obtain this approximation, one assumes that, conditioned
on the selection event, the channel is memoryless, with the
conditional bit error probabilities for the two receivers given
by the expressions (8) and (9). The dependence of bit errors
due to conditioning on the side-information statistic 7' =
X/S% is weak, because the contribution of the correlator
outputs for any given bit to either X or S? is attenuated by
a factor n7 . Thus, the approximation should be quite good.
Further, the true performance is expected to be better than that
predicted by the approximation, and an intuitive justification
for this belief is given in the following.

The correlator outputs that are used to make the symbol-
by-symbol hard decisions at each receiver are also used to
select one or both of the receivers. If the good receiver is
selected (i.e., the right decision is made), the correlator outputs
used for the selection are likely to be less noisy, so that the
performance of the good receiver conditioned on its selection
should be better than the unconditional performance used in
the approximation. Because the probability of selecting the
bad receiver is much smaller than that of selecting the good
receiver, the main contribution to the overall performance
comes from the term that corresponds to the selection of
the good receiver. Consequently, the approximate analysis is
conjectured to give upper bounds for the decoding failure
probability and the decoding error probability for the universal
receiver with side information from the demodulators. Because
the channel is memoryless, the approximate analysis is exact
if the n, bits used for the side information do not include
any of the bits in the codeword (for instance, if the n, bits
immediately preceding the codeword are used). Intuitively, we
expect that by using the bits of the codeword we get better
side information about how well each receiver performs over
the duration of the codeword than if we used bits not in the
codeword.

We denote by Q(F | J) and Q(E | J) the conditional prob-
abilities of decoding failure and decoding error, respectively,
given the selection event J. In our notation, J = sp denotes
the event that the coherent receiver is selected, J = nc the
event that the noncoherent receiver is selected, and J = both
the event that both receivers are selected. The performance of
the decoding system with side information is therefore given
by

Qr = Ps(sp)Q(F | sp) + Ps(nc)Q(F | nc)

+ Ps(both)Q(F | both), (25)
and
QE = Ps(sp)Q(E | sp) + Ps(nc)Q(E | nc)

+ Ps(both)Q(E | both). (26)

The approximation discussed above is used at this point (for
simplicity, this is not reflected in the notation). We have
Q(F | sp) < Ppr(psp) and Q(F | nc) < Pprp(pnc), and
Q(E ‘ Sp) = PDE(psp) and Q(E | nc) = PDE‘( nc). If both
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receivers are selected, the performance is identical to that of
a system with no side information; that is, upper bounds on
Q(F | both) and Q(E | both) are given by (10) and (14),
respectively. The performance measures O r and Qg can now
be computed using (25) and (26).

The numerical results are for a (32, 16) triple-error-
correcting extended BCH code with minimum distance 8,
obtained by adding an extra parity check bit to the codewords
of a (31, 16) triple-error-correcting primitive BCH code. The
(32, 16) code is preferred over the (31, 16) code because of
its enhanced error-detection capability (at the expense of a
single extra parity check bit), but we have found that there is
not a very significant difference in the performance of these
two codes. The performance of the universal receiver with
side information is to be compared to that of the noncoherent
receiver alone. Clearly, in the latter instance, the full error
correction capability of the code would be used, so t = 3
is the appropriate choice for ensuring a fair comparison. We
need the conditional probabilities of decoding error Pr(u) in
our analysis (see Section III). These can be obtained from the
weight distribution of the code [4]. The weight distribution is
easily obtained from tables in the literature (see, for instance,
[2]). As in the previous section, n, = 31, No min = 1,
No, maz = 10, and Ny = 5. The performance of three
receivers is shown as a function of SNR: the noncoherent
receiver, the universal receiver with side information from
the demodulators, and the universal receiver with no side
information. As noted earlier, the decoding failure probability
is a more important performance measure than the decoding
error probability, hence we include a graph of the latter in
only one of the situations considered in the following (see [6]
for additional numerical results).

The decoding failure probability for v = 0 is plotted in
Fig. 3(a), and the decoding error probability in Fig. 3(b). The
performance with no side information is, of course, quite bad,
because the coherent receiver performs very poorly in this
situation. The performance of the universal receiver with side
information from the demodulators, however, is indistinguish-
able from that of the (optimal) noncoherent receiver. These
observations hold for small values of « as well; as an example,
we show the decoding failure probability for v = 2 in Fig. 4.
Fig. 5 shows the decoding failure probability for v = co. The
performance of the universal receiver with no side information
and that of the universal receiver with side information from
the demodulators is almost the same, and both these systems
are better than the noncoherent receiver. This property is also
typical of large finite values of 4, as is illustrated by Fig. 6,
which shows the decoding failure probability for v = 20.

Another way of comparing the performance of the nonco-
herent receiver and the universal receiver with side information
from the demodulators is in terms of the value of SNR
required to attain a given performance level for each receiver.
A comparison of the SNR required for these two receivers
to attain a decoding failure probability of 10710 is given in
Table I (each entry is rounded to a tenth of a dB). The universal
receiver with side information from the demodulators is better
by almost 1 dB for high to moderate values of ~, and it is no
worse for low values of +.
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Our results demonstrate that the universal receiver with
side information from the demodulators provides a gain in
SNR over the noncoherent receiver. They also show that the
universal receiver with no side information performs better
than the noncoherent receiver for large <y, but it suffers a
significant degradation in performance for small ~.

VI. CONCLUSIONS

We have developed side information from the demodulators
for a universal receiver for Rician-fading channels, and we
have shown that the performance of the resulting system is
superior to that of the noncoherent receiver. As noted in the
introduction, the example of Rician fading channels is chosen
mainly as an illustration of the universal approach, even though
the potential gains are limited to about 1 dB. However, the
results of the paper are encouraging for precisely the same
reason: even though the noncoherent receiver gives such good
performance, it is possible to do better using a universal
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TABLE 1
SNR (dB) REQUIRED TO ATTAIN A DECODING FAILURE PROBABILITY OF 10710 FOR THE NONCOHERENT
RECEIVER AND THE UNIVERSAL RECEIVER WITH SIDE INFORMATION FROM THE DEMODULATORS

Noncoherent receiver

Universal receiver

3 Gain in SNR (dB)
0 36.4 36.4 0
2 325 325 0
3 24.8 248 0
4 17.9 17.7 0.2
5 15.2 142 1.0
10 12.6 1.6 1.0
20 12.0 11.1 1.0
o0 11.9 10.9 0.9
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Fig. 4. Decoding failure probability for v = 2. Fig. 6. Decoding failure probability for v = 20.
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1072 Recgjiver (a, B, No) is given by b,y = o/ [see (7)], estimates of
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5
SNR (dB)
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approach and some ingenuity in developing side information.
It is hoped that our results will motivate consideration of
the application of universal receivers to practical problems in
which potential performance gains are much greater.

Since the demodulation side information depends on esti-
mating a function 7" of the channel parameters, it is appropriate

this side information along with the outputs of the decoders
in making its decision. Another problem with the adaptive
approach is that, since the channel parameters may vary with
time, only a moderate number of samples can be used to
make the estimate. The choice of the optimal receiver is
probably more sensitive to errors in estimation than is the
demodulation side information used for the universal receiver.
Finally, the implementation of an adaptive receiver of this kind
is much more complicated than that of a universal receiver
with demodulation side information.
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APPENDIX

We first show that r = 3.5 satisfies (19), and then derive
the density of $3 = S3.. Standard results [3, p. 356] for
the sample mean and sample variance for Gaussian random
variables imply that S, and X are independent, and that the
distribution of S, does not depend on «a. This yields

E{X/S}} = E{X}E{1/s}} = aE{1/S}},
so that it is enough to choose r to satisfy

E{1/S3} = 1/X* +0(n7?), n,— oo. (A1)

It is clear from the foregoing that the value of r satisfying
(A.1) does not depend on «. Moreover, it is seen by a simple
scaling argument that the required value of r does not depend
on A, either. In order to find the desired value of r, therefore,
we can, without loss of generality, let « = 0 and A = 1. For
these values, (16) implies that the independent and identically
distributed samples X; are standard Gaussian. The distribution
of Sy is then given by [3, p. 356]

f(s) = As™ % exp (—nys?/2), (A2)

for s > 0. The normalization constant A is given by
A =200=3/21((n, — 1)/2]/nirs~1/2

where I' is the gamma function [1, p. 253].
The density of Sy is now used to obtain

E{1/83} = (%/%sz A3)

((ns - 1)/2) .

An asymptotic relation for the gamma function [1, p. 257]
implies

Zb_aF(z +a)
T(z10)

1, la-batb-1)

-2
5 +0(z7?),
Setting 2 = n,/2, a = —2, and b = —3 in (A.3) gives

21
E{1/S5} = 1+ = nit 4+ 0(n?),

Ty — OO.

Since (ns — 7)S? = n, S, it follows that, for n, — oo,

BO/SE) = (=2 (14 ot 4 00,
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which yields

21 3

E{1/83} =1+ (Z - 57‘)77,3_1 +0(n; ).

Thus, setting 7 = 3.5 cancels the first-order term in n 1.

‘We now return to the original problem, in which a > 0 and
A? > 0 are arbitrary. The density of S3 is obtained from the
preceding results for standard Gaussian samples as follows.
With a slight change of notation, let S} denote a random
variable with density f given by (A.2). Then

3 3 ns 3 /3

A change of variables in (A.2) now yields the desired expres-
sion (20) for the density of S3.
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