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Blind Adaptive Multiuser Detection 
Michael Honig, Senior Member, IEEE, Upamanyu Madhow, Member, IEEE, and Sergio Verdii, Fellow, IEEE 

Abstract-The decorrelating detector and the linear minimum 
mean-square error (MMSE) detector are known to be effec- 
tive strategies to counter the presence of multiuser interference 
in code-division multiple-access channels; in particular, those 
multiuser detectors provide optimum near-far resistance. When 
training data sequences are available, the MMSE multiuser 
detector can be implemented adaptively without knowledge of 
signature waveforms or received amplitudes. This paper intro- 
duces an adaptive multiuser detector which converges (for any 
initialization) to the MMSE detector without requiring train- 
ing sequences. This blind multiuser detector requires no more 
knowledge than does the conventional single-user receiver: the 
desired user’s signature waveform and its timing. The proposed 
blind multiuser detector is made robust with respect to imprecise 
knowledge of the received signature waveform of the user of 
interest. 

Index Terms- Multiuser detection, multiple-access channels, 
code-division multiple access, blind equalization, minimum mean- 
square error detection. 

I. INTRODUCTION 
ULTIUSER detection deals with the demodulation of M digitally modulated signals in the presence of multi- 

access interference. Multiuser detection finds its major ap- 
plication in Code-Division Multiple-Access (CDMA) receiver 
design. A major technological hurdle of CDMA systems is 
the near-far problem: the bit-error-rate of the conventional 
receiver is so sensitive to differences between the received 
energies of the desired user and interfering users that reliable 
demodulation is impossible unless stringent power control is 
exercised. The optimum multiuser detector for asynchronous 
multiple-access Gaussian channels was obtained in [ 11 where 
it was shown that the near-far problem suffered by the 
conventional CDMA receiver (a matched filter for the user of 
interest) is overcome by a more sophisticated receiver which 
accounts for the presence of other interferers in the channel. 
This receiver was shown ([l] and [2]) to attain essentially 
single-user performance assuming that the receiver knows (or 
can acquire) the following. 

1) The signature waveform of the desired user. 
2) The signature waveforms of the interfering users. 
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The timing (bit-epoch and carrier phase) of the desired 
user. 
The timing (bit-epoch and carrier phase) of each of the 
interfering users. 
The received amplitudes of the interfering users (relative 
to that of the desired user). 

The conventional receiver only requires 1) and 3), but it 
is severely limited by the near-far problem, and even in the 
presence of perfect power control, its bit-error-rate is orders 
of magnitude far from optimal. The decorrelating detector of 
[3] and [4] showed that a linear receiver (modified matched 
filter orthogonal to the multiaccess interference) is sufficient 
in order to achieve optimum resistance against the near-far 
problem (for high signal-to-background-noise ratios). At the 
expense of a (generally) slight increase over the minimum bit- 
error-rate, the decorrelating detector avoids the exponential 
complexity in the number of active users of the optimum 
multiuser detector. Moreover, it does not require knowledge 
of 5). Considerable work has been done in the last few years 
on other multiuser detectors not only for coherent detection in 
the Gaussian channel, but for noncoherent demodulation and 
for fading and multipath channels as well. We refer the reader 
to [5] for a tutorial survey. 

Some attention has been focused recently on adaptive 
multiuser detection which eliminates the need to know the 
signature waveforms of the interferers 2), timing 4), and 
amplitudes 5). Note that even in systems where this knowl- 
edge is available (as in the case of a centralized multiuser 
receiver which demodulates every active user), it is usually 
computationally intensive to incorporate that knowledge into 
the receiver parameters, so an adaptive algorithm can be an 
attractive alternative even in such a situation. The adaptive 
multiuser detectors in [6]-[9] are based on the minimization of 
mean-square-error (MMSE) between the outputs and the data. 
For a survey of adaptive multiuser detection see [lo]. The 
decorrelating detector (which can be seen as the conceptual 
counterpart to the zero-forcing equalizer in single-user demod- 
ulation of signals subject to intersymbol interference) can be 
considered an asymptotic form of the MMSE detector as the 
background noise level goes to zero [6], [ l  11. Both detectors 
exhibit the same near-far resistance, which is defined as the 
worst case asymptotic efficiency (slope of bit-error-rate curve 
at high SNR [5]) over all values of the interfering-to-desired 
user energies. However, the MMSE detector lends itself to 
adaptive implementation more readily than the decorrelating 
detector. 

The adaptive MMSE detectors proposed recently in [6]-[8] 
substitute the need to know 2), 4), and 5) by the need to have 

6) Training data sequences for every active user. 
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The typical operation of those adaptive multiuser detectors 
requires each transmitter to send a training sequence at start- 
up which the receiver uses for initial adaptation. After the 
training phase ends, adaptation during actual data transmission 
occurs in decision-directed mode. However, any time there 
is a drastic change in the interference environment (e.g., a 
deep fade or the powering on of a strong interferer) decision- 
directed adaptation becomes unreliable, and data transmission 
(of the desired user) must be temporarily suspended and yield 
to a fresh training sequence. Thus the reliance on training 
sequences is cumbersome in most CDMA systems, where 
one of the most important advantages is the ability to have 
completely asynchronous and uncoordinated transmissions that 
switch on and off autonomously. 

The foregoing observations imply that the need for blind 
adaptive receivers is even more evident in multiaccess chan- 
nels than in single-user channels subject to intersymbol inter- 
ference. The goal of this paper is to obtain an adaptive receiver, 
which does not require training sequences and requires knowl- 
edge of only 1) and 3), that is, the same knowledge as the 
conventional receiver. 

Note that it is possible to pose a problem incorporating no 
a priori information: demodulate all the active users signals 
without knowledge of any of the signature waveforms or train- 
ing sequences. Eavesdropping is one of the main applications 
of such a problem, and in this context it is worth mentioning a 
generalization of the Sat0 blind equalizer to multidimensional 
systems [12]. In addition to spurious local minima, a penalty 
one would be expected to pay for not incorporating knowledge 
of the desired signature waveform is that in near-far situations 
the accuracy with which weak users are demodulated is much 
lower than that corresponding to the strong users. 

The blind multiuser detector derived in this paper is remi- 
niscent of the philosophy of (single-user) anchored minimum- 
energy adaptive equalization proposed in [ 131. That equalizer 
overcomes some of the ill-convergence problems suffered by 
conventional Godard-type blind equalizers (see [14] for a sur- 
vey) by using a very simple cost function: output energy. That 
cost function cannot be used with conventional equalizers, 
where all the taps are adjustable (or floating). The anchored 
equalizer maintains one of the filter tap coefficients constant. 
This could be viewed as decomposing the filter impulse 
response into two orthogonal components, one of which is 
one-dimensional and nonadaptive. The setting in our case 
is, as we shall see, fundamentally different from the single- 
user channel subject to intersymbol interference. However, we 
propose a related approach where the impulse response of the 
linear receiver is decomposed into the signature waveform of 
the desired user plus an orthogonal adaptive component. We 
show that the receiver that results from the minimization of 
the output energy is the MMSE multiuser detector. Thus we 
succeed in obtaining an adaptive MMSE multiuser detector 
that does not require training sequences. In contrast to existing 
gradient-based single-user blind equalization algorithms which 
are plagued by local minima, our blind multiuser detector 
exhibits global convergence. A related blind multiuser detector 
was presented in [ 151 concurrent with a conference version of 
the present paper [16]. The approach in [15] was inspired by 

the minimum variance technique of adaptive array processing 
where the direction of arrival of the desired signal is known 
[17], [18]. The major difference between our approach and that 
of [15] is that the latter assumes knowledge of the interfering 
signature waveforms 2) and the acquisition of their timing 4). 

Section I1 is devoted to the derivation of the relationship 
between the MMSE receiver and the anchored minimum- 
energy multiuser receiver, as well as the derivation of a 
blind adaptation rule which implements the minimum-energy 
multiuser receiver. It is shown for the first time that it 
is possible to have optimum near-far resistance with no 
knowledge beyond that assumed by the conventional single- 
user detector. 

If the ability of our blind multiuser detector to successfully 
combat multiuser interference were predicated on the enact 
knowledge of the signature waveform of the user of interest, its 
practical applicability would be compromised. This is because 
the transmitted waveforms undergo a priori unknown (and 
time-varying) channel distortion in many of the environments 
where CDMA is used, and in particular, in mobile cellular 
and other wireless communication systems. For example, in a 
multipath scenario the received waveform is rather different 
from the transmitted signature sequence, although its normal- 
ized crosscorrelation with the nominal signature sequence is 
(normally) still much higher than the crosscorrelation with 
any of the interfering signature waveforms. Therefore, it is 
important to obtain a blind multiuser detector which is robust 
against imperfect knowledge of the assumed waveform of 
the user of interest. We show in Section I11 that a very 
simple modification of the multiuser detector of Section II 
achieves that goal thereby requiring only $09 knowledge of the 
received waveform of the user of interest. The modification 
of the algorithm in Section I11 makes the receiver robust 
with respect to nominal desired signature waveform mismatch 
but is not designed so that the receiver learns the actual 
received signature waveform. When the mismatch is large, 
this adaptive capability (possessed by the MMSE adaptive 
detector with training sequences) is desirable and can still 
be achieved without training sequences. To that end, one 
possibility suggested by the results of Section I11 and IV, is 
to switch to a different (decision-directed) adaptation strategy 
after the minimum-energy receiver succeeds in lowering the 
bit-error-rate to adequate levels. Another possibility [ 191 is 
to replace the energy cost function by other nonconvex cost 
functions such as those used in single-user blind equalization. 

Simulations are illustrated in Section IV along with an 
analysis of the convergence rate of the blind multiuser detector 
and the steady-state mean-square error for a fixed algorithm 
step size. 

11. BLIND MINIMUM OUTPUT ENERGY 
MULTIUSER DETECTOR 

A. Channel Model 

channel is (e.g. [5]) 
The antipodal K-user asynchronous CDMA white Gaussian 
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M K  

y(t) = A k b k [ i ] s k ( t  - iT - Tk) + an(t) (1) 

where n(t) is white Gaussian noise with unit spectral density, 
the data bk [i] are independent and equally likely to be - 1 or 
+1, S k ( t )  is the kth signature waveform which is assumed to 
have unit energy ( l l s k l l  = l), A k  is the received amplitude of 
the kth user, and Tk are the relative offsets of the received 
asynchronous signals at the receiver. The adoption of the 
baseband model in (1) is customary and incurs no loss of 
generality. At this point, we call attention to the fact that 
the assumption that the background noise is Gaussian plays 
a very minor role in this paper; in fact, it is only used in 
connection with a few observations having to do with the 
behavior of bit-error-rate, and it will be evident at which points 
this assumption is not superfluous. 

Even though synchronous CDMA systems are more the 
exception than the rule, it is beneficial as usual (cf. [5 ] ) ,  to 
carry out the development first in the synchronous case, and 
then to incorporate the changes necessary to accommodate 
the more general asynchronous case. When the users are 
synchronous, it is sufficient to consider the one-shot version 
of (1) where 7 1  = . . 

i = - M  k = l  

= TK 

K 

y(t) = A k b k S k ( t )  + d t ) ,  t E [O, TI. (2 )  

The discussion in Sections 11-B through 11-E will be circum- 
scribed to the synchronous case. In Section 11-F we will study 
the asynchronous case. 

k = l  

B. Canonical Representation of Linear Multiuser Detectors 
As we mentioned in Section I, our approach will be based 

on the decomposition of the linear multiuser detector as the 
sum of two orthogonal components. One of those components 
is equal to the signature waveform of the desired user which 
is assumed known and fixed throughout this section. As we 
show in this subsection, this decomposition is canonical in the 
sense that any linear multiuser detector can be represented in 
that form. 

For convenience, we will assume that the user of interest 
is k = 1. A linear detector for user 1 is characterized by the 
impulse response e 1  E L 2  [0, TI, such that the decision on b l  is 

(3) 6 1  = sgn(< y , q  >) 

where the inner product notation denotes 
T 

< x, y >= Jd x(t)y(t) dt. 

Note that in situations where several users are to be demodu- 
lated simultaneously it is equivalent to view a linear multiuser 
detector as a multidimensional linear transformation or as a 
bank of single-user detectors. 

For the purposes of this paper it is important to introduce 
the following canonical representation for the linear detector 
of user 1: 

c1 = s1+ 21 (4a) 

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 41, NO. 4, JULY 1995 

where 

< s 1 , x 1  >= 0. (4b) 

To see why (4) is indeed a canonical representation for any 
linear multiuser detector for user 1, note first that the set of 
signals that can be written as in (4) are those that satisfy 

( 5 )  
2 < C 1 , S l  >= l \ S l l l  = 1 

and there is no loss of generality in restricting attention to 
linear transformations whose inner product with the signature 
waveform of the user of interest is normalized to 1, because 
a) we can rule out linear transformations that are orthogonal 
to the desired signal (they result in error probability equal to 
1 / 2 ) ,  and b) the decision (3) is invariant to (positive) scaling. 

Given a desired (up to a scale factor) c 1 ,  the corresponding 
component orthogonal to s 1  is 

The bit-error-rate of the linear detector defined by (3) is 
equal to 

p1 = 21--K c 

(7) 

In the high SNR region (a + 0), the bit-error-rate is 
dominated by the largest term in the sum in (7). The asymptotic 
multiuser eflciency [2 ]  is 

If 771 > 0, then (7) goes to zero as c -+ 0 with the same 

(9) 

If 71 = 0, then (7) does not go to zero (or at least not 
exponentially in -cP2 ). Therefore, the bit-error-rate in the 
high SNR region is determined by the asymptotic efficiency 
771 which can be viewed as a normalized version of the 
eye opening. The minimum asymptotic efficiency over all 
& / A I ,  k = 2,  K is called the near-far resistance of the 
detector c1 [5 ]  or [20]. Among all the detectors that are inde- 
pendent of A k / A 1 ,  k = 2 , .  . . K ,  the decorrelating detector [3] 
is the only one that has nonzero near-far resistance, equal to 

slope (in log scale) as that of a single-user system 

y(t) = A 1 7 7 i 1 ’ 2 b l s l ( t )  + an@). 

1 
771 = 

1 + 11x1112 

where in addition to being orthogonal to sl, x1 satisfies, for 
k = 2 , * * . , K  

< s k , z 1 > = - < S k i s 1 > .  (11) 
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In fact, the near-far resistance of the decorrelating detector 
is not only nonzero but optimal [5]. Other linear detectors 
(which depend on the received amplitudes and noise level) 
with optimum near-far resistance include the optimum linear 
detector [3] and the MMSE detector [6] (cf. Section 11-C). 

The matrix C that minimizes (14) is 

CMMSE = WR[RWR + 0~R1-l 

(15) a2W-1] -1 = [ R +  

It is interesting to note from (10) that X I ,  the energy of z1 
necessary to cancel the multiple-access interference (in the 
absence of noise) depends (monotonically) only on 71 

because letting Q = RWR + a2R and P = W R  we can use 
the following general result. 

Fact: For any positive definite matrix Q 
X I  = 711 - 1 .  

Another performance measure that we will investigate is the 
signal-to-interference ratio (SIR) at the output of the linear 
transformation c1, i.e., the energy in the decision statistic 
due to the desired signal divided by the energy due to the 
interfering users plus the background Gaussian noise. This is 
an intuitively useful measure of performance, particularly in 
situations where the background noise is not negligible with 
respect to the multiaccess interference. A linear detector in 
canonical form c1 = 5-1 + 2 1  has the following SIR: 

argminc tr [CQCT - PCT - CPT] = PQ-l. (16) 

Pro08 Denote the function of C in the left side of (16) 
by f(C). It is easy to check that 

f ( Q - l P +  2) = f ( Q - l P )  + tr(ZQZT) (17) 

where the last term is nonnegative by nonnegative definiteness 

Note that as o -+ 0, (15) becomes the decorrelating detector 
R-’ [3]. Another characterization of the linear MMSE detector 
is given in Section 111. 

We would like to investigate the canonical form of the linear 
MMSE detector. The two-user solution does not appear to 
reveal any particular structure 

of ZQZT. w 

C. MMSE Linear Multiuser Detector 

The minimum mean-square-error (MMSE) linear multiuser 
detector for user 1 is defined as the signal c1 E L2[0, T ]  that 
minimizes the MSE 

However, a nice general characterization of the canonical 
representation of the MMSE linear detector is found in the 
following subsection. 

This detector has been previously obtained in different forms 
in [ 1 1 1  and [6]. For the sake of completeness we will show a 
simple way to obtain a closed-form expression for c1 . Define 
for an arbitrary K x K matrix, C = { C k j } ,  the following 
signals: 

K 

C k ( t )  = c k j s j ( t ) .  (13) 
j = 1  

Instead of minimizing (12) with respect to c1, we will 
minimize the function in (14) below with respect to C.  
Naturally, the desired c1 is obtained as the linear combination 
of signature waveforms dictated by the first row of C.  

= tr [Wi ( I  - RCT)(I - CR)Wt + g2CRCT] (14) 

where W = diag {AT, . . . A & }  and 

D. Minimum Output-Energy Linear Detector 
We consider in this subsection the linear detector in canon- 

ical form s1  + z1 that minimizes (over all 2 1  orthogonal to 
SI) the mean output energy 

when the input y is given by (2). The terminology “output 
energy” is in keeping with [13]; note, however, that we 
are referring to the variance of the correlator output at time 
T ,  rather than the energy of the correlator output waveform 
y(t)cl(t). Note that it is important to restrict the detector 
to be in canonical form, for otherwise the output energy is 
trivially minimized with c1 = 0. Aside from the aforemen- 
tioned motivation from the anchored minimum output energy 
approach of [ 131, we can expect intuitively that minimizing 
the output energy of the canonical linear detector will be a 
sensible approach. This is because the energy at the output 
can be written as the sum of the energy due to desired signal 
plus the energy due to the interference (background noise plus 
multiaccess interference), and the energy due to the desired 
signal is transparent to the choice of 2 1 .  However, the main 
motivation is that the canonical linear detector with minimum 
output energy is, in fact, the MMSE detector as the following 
almost trivial observation shows. 
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Proposition 1: Consider a linear multiuser detector for user 
1 in canonical form (4). Denote the mean-output-energy and 
the (scaled) mean-square-error, respectively, by 

MOE(z1) =E[(< y,s1 + X I  >)'I (19) 

and 

MSE(z1) = E[(Albl- < y, SI + 2 1  >)'I. (20) 

Then 

MSE ( 2 1 )  = MOE(z1) - A;.  (21) 

Proof: 

MSE ($1) = A: + MOE (21) - 2A; < SI, SI + 5 1  > (22) 

and the result follows from the fact that s1 is orthogonal to 2 1  

Note that in order to obtain Proposition 1 we have not made 
use of the structure of the interference in (2). It is sufficient to 
assume that it is uncorrelated with the desired signal. 

The simple observation that the mean-square-error and the 
output energy differ by a constant in terms of the canonical 
representation of the linear detector has key consequences 
for its adaptive implementation. The arguments that minimize 
both functions are the same. This means that (in contrast 
to the MMSE criterion) it is not necessary to know the 
data in order to implement a gradient descent algorithm for 
the minimization of mean-square-error. This sidesteps the 
use of training sequences and leads to the blind adaptation 
rule presented in the next subsection. Can the same idea be 
used to eliminate the need for training sequences in MMSE 
equalization of single-user channels subject to intersymbol 
interference? The answer is negative, because the counterpart 
of SI is the unknown channel impulse response. However, we 
will reconsider this answer in Section 111. 

Since we will be minimizing the mean output energy it is 
interesting to study the shape of this function. It is easy to 
show that the function MOE(z1) is strictly convex over the 
set of signals orthogonal to s1 (a convex set) 

MOE (ax: + ( 1  - Q)z:) = Q MOE (5:) + ( 1  - a )  MOE (5:) 

and has unit energy. 

-a( l  - a ) E [  (< y, 5: - 5; >)"I (23) 

where the expectation in the last term in (23) is larger than or 
equal to 0'11x4 - x ~ \ l ' .  Therefore, the output energy has no 
local minima other than the unique global minimum-a most 
desirable property for gradient adaptation. 

The minimum output energy solution exists even in the case 
where SI is spanned by the interferers, because the MMSE 
solution always exists if ~7 > 0, as we can deduce from (15). 

E. Blind Adaptation Rule 

The output energy function MOE lends itself to a simple 
stochastic gradient-descent adaptation rule which we present in 
this subsection. Note that other, potentially faster, techniques 
can be used in lieu of gradient descent; for example, Recursive 
Least Squares [21]. 

& F [ / I  Z I i I  L x1 Ii-11 

Fig. I .  Blind multiuser detector with zl[i - 11 governed by (26). 

We need to find the projection of the gradient of the output 
energy MOE (21) onto the linear subspace orthogonal s1 , so 
that the orthogonality condition (4b) is satisfied at each step 
of the algorithm. Note that the steepest descent line along the 
subspace orthogonal to s1 is the projection of the gradient on 
that subspace. (The unconstrained gradient can be decomposed 
as the sum of its projections along s1 and its orthogonal 
subspace; steepest descent requires steepest descent in each 
of those directions.) 

Denote the observed waveform in the zth interval [iT, iT + 
TI by y [ i ]  E &[O, TI. Let the ith output of the conventional 
single-user matched filter be the random variable 

ZM&] =< y[i],s1 > . (24) 

Analogously, let the ith output of the proposed linear 
transformation be 

Z[i]  =< y [ i ] ,  s1 + Z l [ i  - 11 > . (25) 

Recall that the output of the detector is &(z)  = sgn (Z[Z]). 
The linear transformation outputs Z[i] and Z M F [ ~ ]  are used 
to compute x1[i] (which therefore depends on the received 
waveforms . . . y [ i  - 11, y[i]). The derivation of the adaptation 
rule for xl[2] is very simple. The unconstrained gradient of 
the averaged random variable in 

MOE(z1) =E[(< y , s i  + x i  >)'I 
is equal to a scaled version of the observations 

2 < y, s1 + 51 > y. 

The component of y orthogonal to s1 is equal to 

y - < y,s1 > s1. 

Therefore, the stochastic gradient adaptation rule is 

5 1 [ i ]  = ~ l [ i  - 11 - p Z [ i ] ( y [ i ]  - Z M F [ ~ ] S ~ ) .  (26) 

In practice, because of finite precision effects, the updated 
vector 2 1  may not exactly satisfy the orthogonality condition 
(4b). It may, therefore, be necessary on occasion to replace 
q [ i ]  by its orthogonal projection onto SI. 

The foregoing derivation has been general enough to apply 
to any Hilbert space, not necessarily Lz[O,T]. In particular, 
in applications where there is a chip-matched filter at the 
front end (or some other sampling mechanism) the signals SI 
and z1 should be viewed as belonging to a finite-dimensional 
Euclidean space whose dimensionality is equal to the number 
of samples used per symbol decision. 
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Using the general results of [22], it can be shown that the 
algorithm (26) converges regardless of the initial condition to 
the MMSE detector if the step size decreases as p [ i ]  = l/i. 
In practice, a lower bounded step size p is often needed to 
track channel variations; the dynamics and excess MSE of the 
adaptation rule in (26) are studied in Section IV, for a fixed 
arbitrary step size p . 

F. Asynchronous Case 
Even though the asynchronous channel (1) looks quite a bit 

more complicated than the synchronous channel (2), it turns 
out that we can extend previous results with little conceptual 
difficulty. 

As in [5] and [20], we may view every bit as transmitted by a 
different fictitious user. Let us single out a particular bit of the 
desired user, say, b1(0), such that among all (2M + l)K bits 
in (1) we take b l (0 )  to be the “user” of interest. Rather than 
restricting our observation interval to [O,T] (which is where 
the desired signal lies, assuming without loss of generality 
that 71  = 0) as in the synchronous case, we may take an 
interval (which we will refer to as the processing window) 
that supports all the bit periods in (l), e.g., [-MT, M T  + TI. 
Now, our previous analysis carries over to the Hilbert space 
Lz[-MT, M T  + TI, and in particular the adaptation rule 
in (26) is unchanged with the proper interpretations of the 
correlations in (24) and (25): 2 1  is now defined over the entire 
processing window. Note that even though the signal of the 
desired “user” is identically zero outside the interval [0, T ]  , 
the minimum-energy z1 need not be zero outside that interval. 
This is because the contributions to < y, s1 + z1 > from 
inside and outside [O,T] are correlated. 

In practice, one would not implement the blind multiuser 
receiver with a processing window spanning the whole ob- 
servation interval. Not only would that be impractical but 
a sufficiently long sliding processing window can achieve 
practically the same performance. In some cases, just the 
interval of the desired symbol is a sensible choice for the 
processing window [6]. The loss of near-far resistance caused 
by truncating the processing window to the interval of the 
desired symbol is studied in [20]. We note that the global 
convergence properties mentioned in the synchronous case can 
also be proven in the asynchronous case using the results of 
[ W .  

In the synchronous direct-sequence spread-spectrum case, 
sampling a chip-matched filter at the chip rate incurs no loss 
of information because all the signature waveforms can be 
decomposed with that basis. In other words, the chip-matched 
filter samples are sufficient statistics. In the asynchronous case, 
we would have to have a chip-matched filter synchronized with 
each of the interfering users. However, acquiring the timing 
of the interfering users (requirement 4) in Section I) is clearly 
undesirable. But if the chip waveforms are bandlimited to fo, 
sufficient statistics are obtained by sampling at 2f0. If the 
results for the MMSE linear multiuser detector in [6] are to 
serve as an indication, we would expect good performance 
by sampling at the chip rate (synchronized with the user of 
interest). 

In some CDMA applications of practical interest the 
channel model in (1) does not apply because the signature 
(pseudonoise) sequence spans L bits for each of the users. If L 
is low enough that the offsets and received waveforms remain 
(reasonably) constant, the blind adaptation algorithm can be 
extended to L independent algorithms running in parallel. 

111. BLIND MULTIUSER DETECTOR 
WITH MISMATCHED NOMINAL 

A. Mismatch and Surplus Energy 

We assumed in Section I1 that the receiver has perfect 
knowledge of the signature waveform s1 used to modulate the 
bits of the desired user. This may not be true in practice, e.g., 
the receiver may assume the original spreading waveform as 
its nominal, whereas the actual received waveform s1 may 
include additional multipath components or other types of 
channel distortion. In this section, we evaluate the performance 
of the minimum energy detector under such a mismatch. 
Specifically, it is assumed that the linear detector for the 
desired user is c1 = 61 + 21, where 31 is the assumed 
nominal, and where < 61,x1 > = 0. We assume that 
1) 61 1) = 1 without loss of generality. When the nominal 
i1 is not equal to the desired waveform SI, minimizing the 
energy E [< y, 61 + 5 1  >‘I without additional constraints can 
cause cancellation of the desired signal, since 2 1  is no longer 
constrained to be orthogonal to the desired waveform. We 
explore the effect of such mismatch in this section, starting 
with an example. 

Henceforth, it is convenient to represent signals as finite- 
dimensional vectors with respect to some basis. We will 
denote such vectors in bold notation (e.g., Sk is the vector 
corresponding to sk, to &, c1 to c1, and 2 1  to 2 1 ) .  Such 
a vector representation arises naturally in practice due to the 
conversion of the continuous-time received signal to discrete 
time by filtering and sampling. The inner product < .,. > 
now denotes a conventional vector inner product. 

Example 3.1: Consider a system with two users ( K  = 2). 
Since the desired signal, the interfering signal and the nominal 
can span a space of dimension at most three, we assume 
without loss of generality that these signals lie in R3. We set 
i: = (1 0 0) and ST = (1 E O ) / d l q ,  where e is a measure 
of the mismatch. We choose saT = ( 6  0 1 ) / d m  . This 
last choice does involve some loss of generality, but it has 
the advantage of parametrizing s2 using a single parameter 6 , 
which is a measure of the correlation of the interferer s2 with 
the nominal 51 and the desired signal s2. In the canonical form 
of the detector, the vector 2 1  is of the form zlT = (0 a b) ,  
since it must be orthogonal to gl. 

Assuming that the desired signal’s amplitude is A1 = 
1 , consider first a situation with zero thermal noise and 
interference amplitude A2 = 0. Provided there is a mismatch 
( E  # 0), a minimum output energy of zero is attained by 
choosing z1 to cancel the desired signal completely, i.e., for 
z1 such that < il + 2 1 ,  s1 >= 0. The minimum-norm 2 1  

achieving this is clearly 2 1  = (0 - e-’ 0) , which has energy 
11z1112 = c - ~ .  In order to prevent cancellation of the desired 
signal, therefore, we must force 11z1112 to be smaller than c-’ 
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(E = 0 corresponds to no mismatch, the situation considered 
in Section 11, where no constraint on ))z1112 is needed). 

Consider now a situation in which A2 + 00. In this 
case, the minimum energy detector clearly needs to satisfy 
< i l  + 21,s~ > = 0 (otherwise the output energy grows 
without bound as A2 + CO), and the minimum-norm z1 
achieving this is zlT = (0 0 - 6). The energy of 11z11(2 in 
this case is given by S2. It is therefore essential to allow (1z1(I2 

to be larger than S2 in order to preserve the ability of the 
minimum energy detector to suppress strong interference. 

Clearly, the two conditions on 11z1112 can both be satisfied 
only if S2 < If the latter does not hold, it is not possible to 
prevent signal cancellation while canceling interference. This 
is to be expected, however, since violation of this condition 
is equivalent to saying that the nominal is closer to the space 
spanned by the interferer than to the space spanned by the 
signal. We elaborate upon this condition in a more general 
setting in the following. 

The preceding example illustrates how the presence of 
mismatch forces us to constrain 1 1 q 1 1 2  , which is henceforth 
termed the surplus energy x available to the detector. The term 
arises from the fact that the energy of the linear transformation 
in the detector is given by . 

so that x is a measure of the extent to which c1 can be 
shaped to reduce the output energy (x = 0 corresponds to 
the conventional detector). In order to discuss the tradeoffs 
involved in choosing the surplus energy, it is convenient to 
define xs, the minimum value of surplus energy necessary 
for complete cancellation of the desired signal (xs = in 
Example 3.1), and X I ,  the minimum value of surplus energy 
necessary for complete cancellation of the multiple-access 
interference regardless of the amplitudes A2, . . . AK ( X I  = S2 
in Example 3.1). As shown in Section 111-B, these quantities 
depend only on the crosscorrelations of {i~, s 1 , ~ 2 ,  . , SK}. 

In the presence of mismatch, choosing too large a value 
of surplus energy leads to cancellation of the desired signal. 
Further, for nonzero background noise, high values of surplus 
energy lead to noise enhancement at the output. On the 
other hand, choosing x < X I  implies that the detector is 
unable to suppress strong interference. A surplus energy of 
approximately X I  appears, therefore, to be the best choice for 
trading off interference suppression versus signal degradation 
and noise enhancement. However, this choice can still lead 
to significant cancellation of the desired signal unless X I  < 
xs  (preferably X I  << X S ) ,  especially when the interference 
is weak. The latter is therefore a necessary condition for 
obtaining near-far resistant performance without excessive 
signal cancellation, and is shown in Section 111-B to be 
equivalent to the intuitively pleasing criterion that the nominal 
21 is closer (in L2 distance) to the subspace spanned by the 
desired signal SI than to the interference subspace SI  spanned 
by the interfering signals s2, . . . , SK. In two-user channels 
with sufficiently low background noise level, it can also be 
shown that the preceding condition is sufficient to ensure that, 
for any interference amplitude, there is a value of surplus 
energy x for which the constrained minimum-energy detector 
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gives rise to nonzero asymptotic efficiency, or equivalently, 
to an open eye. 

While higher surplus energy permits more cancellation of 
both the desired signal and the interference, for nonzero 
background noise, it also increases the noise contribution at 
the output. Since the surplus energy for the minimum output 
energy detector is based on the preceding tradeoff, it is clear 
that higher values of background noise lead to smaller values 
of surplus energy. This implicit constraint on the surplus 
energy due to the background noise (see Section 111-C for 
details) is important for many practical applications in which 
the receiver may not know the range of X I  and X S ,  and 
therefore may have difficulty in choosing the constraint on 
x . However, for relatively high signal-to-noise ratio (SNR), 
the constraint imposed on the surplus energy due to the 
background noise is not stringent enough to prevent significant 
cancellation of the desired signal. In such cases, it is necessary 
to impose a further explicit constraint on x to prevent signal 
degradation (see the numerical results for Example 3.2 later 
in this section). 

The rest of this section is organized as follows. In Section 
111-B, we compute the values of xs and X I  in terms of 
crosscorrelation parameters. In Section 111-C, we derive the 
solution to the problem of minimizing the output energy sub- 
ject to a constraint on the surplus energy. Given the solution, 
performance measures like SIR and asymptotic efficiency can 
be computed using the definitions in Section 11. We also 
give the modification to the adaptive implementation due to 
the constraint on the surplus energy. Numerical results are 
presented in Section 111-D. 

B. Values of Surplus Energy for  Signal 
and Interference Cancellation 

For 1 2 k 5 K, let c k  =< s k , &  > denote the 
crosscorrelation of the kth-signal waveform with the nominal. 
Let p s  denote the projection of i1 orthogonal to the space 
spanned by sl. Note that IlpsII is the L2 distance of from 
the subspace spanned by the desired signal SI, and is given 
by llps112 = 1 - /if . The contribution of the desired signal to 
the output can be canceled completely by choosing z1 such 
that 21 + z1 is a scaled version of ps.  Moreover, this choice 
of 21 attains the minimum surplus energy that cancels the 
desired signal, i.e., 11z11(2 = X S .  While xs can be computed 
algebraically based on the preceding observation, we attempt 
to add to our intuition by computing it via a simple geometric 
observation. Fig. 2 shows the direction of 2 1  for which the 
output signal energy decreases the fastest as a function of x. 
This is also the asymptotic direction of 21 minimizing the 
output energy for small interference amplitudes. The surplus 
energy xs is clearly given by 

= llpsll-2 - 1 = & / ( l -  /i;) (27) 

since the angle Bs between il and ps  is given by 

cose.5 = IlPSll/ll~lll = IIPsll. 
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of both the desired signal and the multiple-access interference 
to be x* = 1/ij - 1 ,  where f j  is the near-far resistance of 
5 1  with respect to the entire signal space, i.e., the space S 
spanned by S I , .  . . , S K ,  given by 

f j  = 1 - pTR-lp 

where bT = (b17 b27 ' .  ' 7 f i K )  and R = ( R k l ) l < k , l < K .  

C. Minimum Output Energy Detector with Constrained 
Surplus Energy 

The constrained minimum output energy detector minimizes 
(over 21) the cost function PSI--- -- 

M O E ( z 1 )  = E [ <  y , i l  + ~ 1 > ~ ]  = E [ <  Y , c ~ > ~ ]  
A is:? 

Fig. 2. Computation of surplus energy for complete signal cancellation. 

Interference Space, SI 

subject to 11z11I2 = x and < il,zl > = 0. Expressing the 
optimization problem in terms of c1 = 1 1  + z 1 ,  we obtain, 
upon taking the derivative with respect to c1 of the associated 
Lagrangian, the following optimality condition: 

(30) 

where v 1  and u2 are Lagrange multipliers chosen so that 
11c1112 = x + 1 and < c 1 , &  >= 1. Assuming that the bits bk 

are uncorrelated, the preceding condition can be rewritten as 

E[< c 1 , y  > y] + V l C l  - v201 = 0 

K 

C A ; < C l , S k  > S k + ( y + ~ 2 ) C 1 - - 2 ~ 1 = 0 .  (31) 
k = l  

Fig. 3. Computation of surplus energy for complete interference cansellation. Letting A denote the outer-product mahx 

The computation of X I ,  the minimum value of x required K 

to cancel all the interfering signals, is entirely similar. In this 

PI of 31 orthogonal to the interference space S I ,  as shown 
in Fig. 3. Note that llpIII is the L2 distance of 5 1  from the 
interference space. Since cos81 = llprII and X I  = tan281, we 
have >?(A + y I j v ) - l 5 1  

A = A z S k . 9 k T  

case, z 1  is chosen so that 5 1  +zl is a multiple of the projection k = l  

the optimdity condition (31) can be shown to yield 

(A + ~ I N ) - ~ ~ I  (32) 
c 1  = v2(A + y l ~ ) - ' i l  = 

X I  = 1/llPIl12 - 1 = 1/61 - 1 (28) 

where 41 = Jl$11(2/11i1112 = llp1112 is the near-far resistance 
of 51 with respect to the interference space, and is given by [6] 

(29) 

where 6: = (b2 . . . , b ~ )  is the crosscorrelation vector of 
Sl with the interfering signals, and RI = ( R k l ) 2 < k , l < ~  is 
the ( K  - 1) x (K - 1) matrix of crosscorrelatiofi for the 
interfering signals. 

Note that the choice of z 1  in Fig. 3 is not necessarily that 
which minimizes the output interference energy for a given 
value of x < X I  , since the minimizing z 1  depends on the 
amplitudes A2, . . , A K .  However, the direction of z1 shown 
in Fig. 3 is an amplitude-insensitive choice which completely 
cancels the interference with the least possible surplus energy. 

From (27) and (28), the condition X I  < xs is seen to be 
equivalent to lipI )I > IlpsII, i.e., to the nominal Sl being further 
from the interference space than from the space spanned by 
the desired signal. 

It is worth noting that similar reasoning also gives the 
minimum surplus energy x* required for complete cancellation 

f j ~  = 1 - pYR1-'p1 

where 

y = v 1  + I s 2  

I N  is the N x N identity, and where the value of 

(33) 

is obtained using the condition < q 7 i 1  >= 1 . The corre- 
sponding minimum value t m i n  of output energy is obtained 
by taking the inner product of (30) with c 1  

(34) tmin  = v2 - v 1 ( 1 +  X )  

where the surplus energy x is given by 

The preceding results can be easily specialized to the 
situation in which there is no explicit constraint on surplus 
energy by setting vl = 0. Defining 

R,=E[wT] = A + a 2 1 j v  



952 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 41, NO. 4, JULY 1995 

we obtain 

c 1  = S m i n l t y - l i 1  Cmin = ( & l I t - l i l ) - l .  

This is further specialized to the solution without mismatch 
by setting 3 1  = S I .  

Having specified the detector c 1  as in (32), we can now 
compute all the performance measures of interest, including 
SIR and asymptotic efficiency, using the definitions in Section 
11. The performance and the surplus energy x are functions of 
y, so that we can plot the performance as a function of x by 
varying y. Note that the value of y completely determines the 
minimum-output energy solution. It follows from (33) that the 
Lagrange multiplier v 1  plays precisely the same role as the 
noise variance u2, i.e., that imposing an explicit constraint on 
the surplus energy is equivalent to an implicit constraint due 

In order to find z, we express the optimality condition (31) 
in terms of crosscorrelation parameters by taking the inner 
product of both sides with s k  , 1 5 k 5 K .  Using (38) and 
(39), the resulting K equations can be expressed in vector 
form as 

RW R z + p  +y R z + p  - 1 / 2 i ) = O .  (41) r -1 - >  
fiTW(Rz + i ) )  + y - v2 = 0. 

An additional equation is obtained by taking the inner 
product of (31) with ii1 

(42) 

Eliminating 24 between (41) and (42), we obtain upon 
simplification that z must satisfy 

(43) 
to excess background noise in terms of the minimum-output 
energy solution (the solution in the absence of any implicit k [ (Wk + 7IK)Z + wi)] = 0 

- -  
or explicit constraint on the surplus energy corresponds to 
y = 0). However, for a given value of 7, the performance 
will clearly be worse for a larger value of 0' , since the 
noise contribution to the output is greater while the signal 
and interference contributions remain the same. 

Since the rank of the outer product matrix A is bounded 
above by the number of signals K, inverting the N x N 
matrix A + y l ~  may be an ill-conditioned problem for small 
y if N > K, as is typically the case. These difficulties 
are overcome by expressing the minimum energy solution in 
terms of crosscorrelation parameters as follows. Without loss 
of generality, we write c1 as 

K 

c1 = ffsl + zksk. (36) 

Any component of c1 orthogonal to the space spanned by 
51, SI, . . . , SK increases the contribution of the background 
noise to the output energy while not affecting the signal 
contribution. For a nonzero background noise level, therefore, 
no such component can appear in the minimum-output energy 
solution. In the adaptive implementation of the minimum- 
output energy detector, however, such components can cause 
the phenomenon of "tap wandering" [23] for low noise levels. 
This can be prevented, however, by an explicit constraint on 
the surplus energy. 

It remains to compute (Y and zT = ( 2 1 , .  . . , ZK). The 
constraint < c 1 ,  i l  >= 1 yields a in terms of z 

k = l  

Q: = 1 - Z T i .  (37) 

From (36) and (37), we obtain 

< C 1 , S k  > = a c k  + ( k ) k  

= a k + ( k Z ) k ,  l < k < K .  (38) 

where 

R =  R-pp? (39) 

Using (36), (37), and (39), it is easy to show that the surplus 
energy is given by 

x = ZT&. (40) 

where I K  denotes the K x K identity. The solution to (43) 
is unique if, and only if, R is nonsingular. It can be checked, 
however, that for fixed y, all solutions to (43) lead to the 
same detector and the same value of surplus energy, so that it 
suffices to consider a specific solution 

where th," inverse is replaced by a pseudoinverse if necessary 
(i.e., if R is singular and y = 0 ). Using (38), (40), and 
(44), we can now compute quantities such as SIR, asymptotic 
efficiency, and surplus energy in terms of y and the cross- 
correlation parameters. As before, y = 0 corresponds to the 
decorrelating solution z = k-lfi for unconstrained surplus 
energy. 

Stochastic Gradient Algorithm for  Constrained 
Minimum Output Energy Detector 

Finally, we give an adaptive algorithm for implementing the 
constrained minimum output energy detector. This is obtained 
by modifying the stochastic gradient algorithm in Section II 
to reflect that fact that the Lagrange multiplier v 1  2 0 simply 
adds a term vlzl  to the projection of the gradient of the output 
energy orthogonal to i l .  

The results of Section IV show, however, that a good 
practical alternative to the preceding constrained adaptation 
is to adapt using an unconstrained output energy criterion at 
the beginning, starting from z 1  = 0 (hence x = 0), then 
let x grow, and finally switch to a decision-directed mode 
using a mean-squared-error criterion before the surplus energy 
becomes too large. One possibility for the value of surplus 
energy at which to switch is XI = - 1. While X I  is 
typically unknown, a rough estimate for it may be obtained 
as follows. If all the signature waveforms are chosen to be 
independent random binary sequences, it has been shown in 
[24] that E[%] x 1 - (K - 1)/N for synchronous CDMA and 
E[7j1] x 1 - 2(K - 1)/N for asynchronous CDMA, where 



HONIG et al.: BLIND ADAPTIVE MULTIUSER DETECTION 953 

-5 

A.E. 

10 
Fig. 4. Asymptotic multiuser efficiency as a function of surplus energy and interference ratio. Example 3.1 with E = 0.001 and 6 = 0.2. 

these estimates are actually lower bounds. Replacing 7jI by 
these estimates of E [ f j ~ ] ,  we obtain 

K - 1  
N -  (K - 1)’ 

synchronous CDMA 

asynchronous CDMA. 
{ 2(K - 1) 

N - 2(K - 1) ’ 

D. Numerical Results 

We consider two examples. In the first, we retum to the two- 
user system described in Example 3.1, and study the effect of 
surplus energy on asymptotic efficiency, which, as described 
in Section 11, is a measure of the detector performance relative 
to a single-user system. In the second example (Example 
3.2), we consider a system with K = 7 and processing gain 
N = 10. The signature sequences are generated randomly, 
and the mismatch is generated by assuming .the presence of 
multipath. The performance measure considered in Example 
3.2 is the SIR. This second model is also used to generate 
the numerical results in Section IV on the performance of the 
adaptive algorithm. 

Example 3.1 (Continued): For the two-user system consid- 
ered at the beginning of this section, we have 

where p = S/J(l + c2)(1 + S2). The values of X S ,  X I ,  and 
x* are given by 

As mentioned earlier, choosing x = X I  = S2 balances the 
ability to suppress multiple-access interference with the need 
to avoid excessive signal cancellation and noise enhancement. 
The necessary condition X I  < xs for this approach to work 
translates to (d)’ < 1 (the smaller the left-hand side, the 
better the performance can be expected to be). 

In Figs. 4-6 we show the asymptotic efficiency of the 
desired user as a function of the surplus energy and the ratio of 
interfering user amplitude to desired user amplitude. All three 
quantities are displayed in decibels; the value in decibels of 
the surplus energy can be thought of as being relative to the 
nominal signal energy. Figs. 4-6 correspond to the values: 
(6,s) = {(0.001,0.2), (0.5,O.l)’ (0.1, l)}, respectively. Fig. 
4 corresponds to a case with extremely small mismatch. Fig. 
5 has relatively high mismatch but moderate crosscorrelation 
with the interfering waveform, and Fig. 6 depicts the case 
of unusually heavy crosscorrelation between both received 
signals The corresponding values of X I  = S2 are -14 dB, 
-20 dB, and 0 dB, respectively. In all three cases, we can 
see that for low A2/A1 , the choice of surplus energy is 
relatively unimportant, unless it is much higher than X I ,  in 
which case the effect of desired-signal cancellation and noise 
enhancement is evident. As we would expect the sensitivity of 
asymptotic efficiency to surplus energy in the region of low 
interference increases with the degree of mismatch, quantified 
by E. If the surplus energy is well below X I ,  the detector is 
not near-far resistant. In the high-interference region, we see 
that the sensitivity to the surplus energy is much higher below 
X I  than above. In all cases considered, given an optimum 
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Fig. 5.  Asymptotic multiuser efficiency as a function of surplus energy and interference ratio. Example 3.1 with E = 0.5 and 6 = 0.1. 

choice of surplus energy the worst case asymptotic efficiency 
with respect to A2/A1 occurs roughly between -5 dB and 
0 dB-a typical behavior in multiuser detection. We can see 
that in each of the cases we consider, values of surplus energy 
equal to or moderately above X I  are excellent choices unless 
A2/A1 is extremely low. 

Example 3.2: We now consider a somewhat larger system 
with K = 7 users and a processing gain N = 10. Each 
user uses a signature sequence of N chips to generate the 
symbol waveform. In order to avoid averaging over the relative 
delays of the interferers, we assume that the interferers are 
synchronous. On the other hand, we choose the signature 
sequences randomly rather than optimizing over deterministic 
sequences. We assume an observation interval of 1-bit period 
Tb for each bit decision. We assume that the received 
signal due to the desired user has two components, one main 
component which is aligned with the observation interval, and 
a multipath component which is offset by half a bit-interval 
( N / 2  chips) from the observation interval. The nominal al 
is taken to be a scaled version of the desired spreading 
sequence, and the signal 3 1  modulating the desired bit within 
the observation interval [0,Tb] is given by 

where a is the relative amplitude of the multipath component. 
The self-interference due to the multipath component (i.e.. the 
part within [O,T,] of the multipath signal modulating a bit 
other than the desired bit) is modeled as an additional interferer 

with modulating waveform 

A K + ~ s K + ~  = aSAi(t -k Tb/2) ,  0 5 t 5 Tb. 

The relative amplitude a of the multipath component dictates 
the extent of the mismatch between the desired signal and the 
nominal. In our numerical results, we consider a = 1, which 
causes a fairly large mismatch and corresponds to a minimum 
surplus energy for signal cancellation xs = 2.47. 

The K - 1 interfering signals are taken to be scaled versions 
of randomly generated spreading sequences. For convenience, 
we assume that all interferers have the same amplitude A 
relative to the desired signal, i.e., that Ak = A for 2 5 IC 5 K .  
For the particular choice of signature sequences we consider, 
the minimum surplus energy for complete interference can- 
cellation is X I  = 0.6. Since the self-interference due to 
multipath does not cause a near-far problem, it is ignored 
in the computation of X I  (we do include this interference 
in computing performance measures such as SIR, however). 
Since X I  << XS. a well-designed constrained minimum-energy 
detector is expected to perform well. In the following, we 
compare the SIR of the minimum-output-energy detector with 
mismatch (with and without explicit constraints on surplus 
energy) with that of the minimum-output-energy detector 
without mismatch and without an explicit constraint on surplus 
energy. As shown in Section 11, the latter is also the MMSE 
detector. 

In Fig. 7, we plot the SIR versus the SNR of the desired 
signal, given by 11s1112/u2 = U-’. In the absence of mismatch 
(i.e., if the anchor takes into account the multipath component), 
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f as a function of surplus energy and interference ratio. Example 3.1 with E = 0.1 and 6 = 1. 

the SIR increases almost linearly with SNR. However, with 
mismatch, the SIR of the minimum-energy detector degrades 
for SNRs beyond a certain range unless there is an explicit 
constraint on the surplus energy. This is because for high SNR, 
the low noise level allows a high value of surplus energy, 
which leads to signal degradation and noise enhancement. 
The performance improves substantially when we impose an 
explicit constraint on surplus energy by taking v = 0.1. This 
choice is motivated by the fact that o2 = 0.1 or an SNR of 
10 dB gives reasonable SIR when no explicit constraint is 
used, so that an explicit constraint which maintains the same 
level for y = v1 + o2 as oz -+ 0 should prevent excessive 
signal degradation and noise enhancement for high SNR. Thus 
while mismatch does cause a deterioration in performance, the 
SIR is good enough to justify the use of the minimum energy 
algorithms as an initial blind adaptation mechanism, possibly 
to be followed by decision-directed adaptation based on an 
MMSE criterion. Fig. 8 shows the values of surplus energy x 
for the constrained minimum energy detector as a function of 
SNR. In the absence of an explicit constraint on the surplus 
energy, the surplus energy grows with the SNR, leveling off 
at a value that permits almost complete cancellation of both 
desired and interfering signals. This is because for high SNR 
(i.e., low background noise), there is effectively no implicit 
constraint on the detector surplus energy. However, the surplus 
energy levels off much faster when an additional fictitious 
noise level is imposed via a Lagrange multiplier of v = 0.1 
in the cost function. Thus the imposition of an appropriate 
explicit constraint on the surplus energy permits interference 

407 

-20 - 

Fig. 7. Signal-to-interference ratio of blind minimum-output energy detector 
versus signal-to-noise ratio of desired user. 

suppression without excessive signal degradation and noise 
enhancement. 

Iv. CONVERGENCE ANALYSIS OF 
STOCHASTIC GRADIENT ALGORITHM 

In this section we analyze the convergence properties of 
the gradient algorithm (26). Our goal is to obtain expressions 
for the trajectories of the mean tap vector and the MSE 
as functions of the amplitudes, signature waveforms, and 
algorithm step-size p (which we assume fixed throughout 
this section). Because the true gradient of the energy is 
approximated by its instantaneous value, algorithm “noise” 
contributes “excess” MSE beyond that achievable with a fixed 
optimal (minimum energy) tap vector c. The asymptotic value 
of the MSE after convergence, together with a condition on the 
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Surplus energy of blind minimum output energy detector versus 

step size p that guarantees convergence (i.e., finite asymptotic 
MSE), is therefore of interest. Throughout this section we 
assume a vector representation for the user waveforms, which 
results from projection onto a finite basis. For example, 
the signature signals assigned to each user can be viewed 
as vectors of samples of chip-matched filter outputs within 
a symbol period. Throughout this section lower case bold 
variables will denote vectors in R N .  Here we assume a symbol- 
synchronous system, and no mismatch, so that 21 = s 1  . 

The analysis given here is analogous to that given in [21] for 
the conventional stochastic gradient (LMS) algorithm, which 
is patterned after the analysis given by Ungerboeck [25]. 
The approximations made in our analysis are similar to those 
made in the analysis of the LMS algorithm, and include the 
approximation of fourth-order statistics in terms of second- 
order statistics.’ In addition, we obtain simple expressions for 
quantities of interest by approximating the eigenvalues of the 
outer product matrix I& = E(y[ i ]y ’ [ i ] ) .  However, we also 
point out that the independence assumption, which states that 
the tap vector at time i - 1 is independent of the data vector 
y [ i ] ,  is in fact satisfied in the synchronous multiuser case 
considered. This is in contrast to the standard analysis of the 
single-user adaptive equalizer, where this assumption is not 
satisfied, but is assumed nevertheless for analytical tractability. 
We also point out that, under the independence assumption 
and assuming that the user signal vectors are appropriately 
modified, the following analysis also applies to asynchronous 
users. 

A. Trajectory of the Mean Tap Vector 

E(c [ i ] ) .  Adding s1 to both sides of (26) gives 
We start by computing the trajectory of the mean tap vector 

c[i] = c[i - 11 - p(d[ i  - l ]y [ i ] )u[ i ]  

= ( I  - pu[i]y’[i])c[i - 11 (46) 

where 

u[i] = ( I  - s 1 s ’ 1 ) y [ i ] .  (47) 
‘These fourth-order statistics can be computed exactly for the situation 

considered. However, this computation is quite involved, and approximations 
are still needed to derive a stability condition along with an expression for 
asymptotic MSE 

Now define the vector GPt = JminR;’sl, and the tap vector 
error 

e[ i ]  = c[ i ]  - Gpt. (48) 

Rewriting (46) as 

e[ i ]  = ( I  - pu[i]y’[i])e[i - I ]  + ( I  - pu[iI~’[il)q,pt - Gpt 

= ( I  - pu[i]y’[i])e[i  - 11 - p ~ [ i ] y ’ [ i ] ) q , ~ t  (49) 

and taking expectation of both sides gives 

where 

RY = E(u[i]y’[i])  = ( I  - SlSi )R,  

k=l  

where p j k  = S>Sk, and the fact that &yq,pt = 0 has been 
used. 

We therefore conclude that c[i] converges to Copt along N 
modes, each of which decays exponentially with parameter 
1 - PA?’), where At ’ )  is the kth eigenvalue of Ry . Since 

need not be symmetric, the eigenvalues A t ’ )  may be 
complex. For stability, we must have 

n 

To gain more insight into the convergence of the mean tap 
vector, it is necessary to study the eigenvalues of the matrix 
RY. We first observe that s1 is an eigenvector of with 
eigenvalue XI“’) = 0. Consequently, the convergence of the 
mean tap vector is determined by the remaining N - 1 modes. 
We next observe that K eigenvectors of RY lie in the space 
spanned by the signal vectors SI ,  . . . , SK, and the remaining 
N - K eigenvectors of RY are orthogonal to the signal space. 
The eigenvalue associated with these latter eigenvectors is u2. 
An approximation for the eigenvalues of RY corresponding 
to the remaining K - 1 eigenvectors in the signal space 
can be obtained by observing that if the signal vectors are 
approximately orthogonal, then uisj M 0 for IC # j ,  where Uk 
is the orthogonal projection of S k  onto 31, i.e., u k  = S k - p l k s l .  

We therefore have that 

& y u k  X [At  ( 1  - p f k )  + a2] U/c (53) 

so that the eigenvalues of RY can be approximated as 

Note that this approximation becomes exact as pl/c + 0, 
k = 1, ... , K .  There are, of course, other approximations 
for the eigenvectors of RY that could be used to obtain 
approximations for the corresponding eigenvalues, given that 
the signal vectors are approximately orthogonal. The reason 
for choosing the preceding approximation is that summing 
over the approximate eigenvalues, given by (54), gives the 
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correct value for tr&,y, which will appear in the forthcoming 
analysis of MSE. Specifically 

K K 

trKY = A t y )  = A i ( 1  - p : k )  + ( N  2 1 ) 0 2 .  (55) 
k=l k=2 

We also point out that according to the preceding ap- 
proximation, taking p < 2/(A2, ,  + 02) , where A,,, = 
maxk Ak, satisfies the stability condition (52). 

B. Trajectory of MSE 

MSE. Let 
We now tum our attention to the convergence of output 

~ [ i ]  = MSE ( 4 2 1 )  (564 

and 

that is, ~ [ i ]  and [ [ i ]  are the MSE and mean output energy, 
respectively, at iteration i . First recall from (22) that 

E[i] = [ [ i ]  - 2E(c’[i]s1) + E@;) 
= Emin + Eez[i] - 2E(E’[i])Sl 

[ [ i ]  = E(c’[i - l ]y[ i ]y[ i ] ’c[ i  - 11) 

(57) 

where 

is the expected output energy at time i, emin is the MSE 
with Copt = [,inR;’s1, where <,in = 1 / ( s i R i 1 s 1 )  is 
the minimum output energy, and [,,[i] = <[z] - <,in is 
the excess output energy due to adaptation at time i. Since 
limi-,OO E(E[i])  = 0, we therefore have that 

The asymptotic excess MSE due to adaptation is therefore 
equal to the asymptotic excess output energy. 

We therefore focus on the trajectory of E[i] , and in partic- 
ular, we are interested in the asymptotic excess energy f e x .  

First note that 

<[i] = E(y[i]c[ i  - l]C’[i - l ] y [ i ] )  
= trE(c[Z - l]c’[i - l ]y[ i ]y’[ i ] )  

= trE(R,[i - 1 1 4 )  (59) 

where & E(&) . We therefore have that 

&[iI = E { ( + ]  + copt)(e[il +Copt)’) 

= Reo,, + E(e[i1)cbpt + ~o, tE(e’ [ i ] )  + &[i] (60) 

where 

= CoptCbpt = i ; i n ~ ; l ~ l ~ ; ~ ; l .  
The following coordinate transformation will be useful. 

Since I&, is symmetric and nonnegative definite, we can write 

4 = @A@‘ (61) 

where the columns of @ are the orthonormal eigenvectors of 
q, and A is the diagonal matrix of corresponding eigenvalues 
AI, + . . , AN. Defining the rotated tap vector error 

421 = @’e[i] (62) 

@[i] = @’y[i] 51 = @’Is1 (63) 

and the rotated signal vectors 

we have from (50), 

E(E[i])  [ I  - p ( I  - 515;)h]E(2[i  - 11). (64) 

Rewriting (60) in terms of the transformed vector E, we first 
note that 

(65) Re = E [Et?’] = @’Re@ 

and from (59) and (60) 

( [ i ]  = trE(A@’R,[i - 1 ] @ )  

= [,in + tr {E(E[i])$ + 5lE(E’[i]) + ARe[i]) .  (66) 

Since lim2+00 E(E[i])  = 0, it follows that fe, = 
lim2+m tr {ARE [ i ] } .  

The preceding results imply that to study the evolution 
of output MSE, it is sufficient to study the evolution of the 
covariance matrix Re[[i]. It is shown in the appendix that 

&[i] M Re[i - 11 - p(I - 515’,)ARe[i - 11 
- pRe[i - 1]A(I  - 515;)  
+ p 2 ( I  - 5l.%;)A(I - 515;) 
. (tr (&[i - 1111) + 2cminE(E’[i - 1 ] ) 5 1 )  

+ p2Jmin(I - 515i)A(I - 515;) (67) 

We now observe that if the signal vectors are approximately 
orthogonal, then the first K eigenvectors of 4 can be approx- 
imated as sl  , . . . , S K .  Since the remaining eigenvectors of &, 
are orthogonal to the signal space, [ & I 3  M 0, j # 1 ,  and 
[51ll R 1 .  To proceed, we therefore make the approximation 
that the matrix g 1 5 ;  is diagonal, so that Re[i]  is approximately 
diagonal. Define the N-vector r&] with elements equal to the 
diagonal elements of Rg[i] .  After some manipulation, we can 
rewrite (67) as 

r&] M Bre[i - 11 + p 2 [ , i n ( 2 ~ ( 2 ’ [ i  - 1 ] ) 3 1  + 1 )  

* ( I  - Y l q 2 X  (68) 

where 

B = I - 2p(I  - 515;)A + p 2 ( I  - 515;)2XX’ 

and X is the N-vector containing the eigenvalues of I&, . 
Since E(E[i]) converges to zero, to guarantee stability 

of the preceding difference equation it is sufficient that all 
eigenvalues of B have magnitude less than one, which is true 
if the row sums of B are less than one. This implies that for 
stability 

(69) 

(70) 
2 - - 2 

P < y  K 
A k  A $ + N U 2  

k=l k=l 
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which is the same stability condition for the conventional 
LMS algorithm, which could be used to adapt the vector c 

condition than (52). Letting i 4 CO in (68), using the fact that 
limi,CO X’re[i] = E,,, and rearranging gives 

whereas it is easily shown that 

4 with a training sequence, and is a considerably more stringent = 1 - A ; ~ ; A - % ~  M 1 - ~ A: + u2’  

- 
Even though tr&, and trRy may be close, if u2 is close 

to zero, the difference between Emin and emin is likely to be 
substantial. Consequently, (74) implies that the blind gradient 

P lim r g [ i ]  M - (Emin + t eZ)A- ’ ( I  - S1Sl,)X. 
i-CO 2 (7 ’) 

algorithm (26) is quite “noisy,” and it is therefore best to 
switch to a decision directed algorithm as soon as possible. 

Multiplying both sides by A and summing components gives 

where 1 is the N-vector with elements equal to one. Approx- 
i m a t i n g 

N N  

n=l m=l 
N 

M trR, - Ana’&, = trR,, 
n=l 

(73) 

we have that 

(74) 

where tr&, is given by (55). 

C. Comparison with LMS Algorithm with Training Sequence 
We now compare the preceding results with the analogous 

This will be illustrated in Section IV-D, which contains a 
numerical example. 

We observe from the preceding discussion that one way 
to improve upon the dynamics of the stochastic gradient 
algorithm (26) is to use a different cost function. Namely, each 
component of the stochastic driving term for the algorithm (26) 
has variance on the order of Jmin whereas each component of 
the stochastic driving term for the conventional LMS algorithm 
has variance on the order of emin . This explains why the 
blind algorithm (26) performs worse than the conventional 
LMS algorithm with a training sequence. We can, however, 
replace the energy cost function by other cost functions which 
are driven close to zero when c is chosen optimally (i.e., 
[c‘y - sgn (c‘y)I2). However, this may introduce local minima, 
i.e., c may adapt to an interferer rather than to the desired 
user. However, if the signal vectors are nearly orthogonal, 
then the orthogonal decomposition of the tap vector described 
in Section I1 guarantees that the c which achieves a local 
minimum must have a very large norm, and can therefore be 
rejected by an appropriate norm constraint. 

results for the conventional LMS algorithm with a training 
sequence, which is given by Simulation Results 

1) Stochastic Gradient Alrrorithm: Fig. 9 shows a d o t  of 
U - 

c[i] = c[i - 11 - pe,[i]y[i] (75) averaged SIR versus time assuming the algorithm (26) is used 

where the error e,[i] = bl[i] - c‘[i - l]y[i], and bl[i] is the 
transmitted symbol for user 1 at time i. It is well known 
[21] that the mean tap vector converges to Copt = R;’sl 
along N normal modes, each corresponding to the eigenvalues 
of I - pRy (cf. [26]). In contrast, for the blind algorithm 
(26), we have shown that the mean tap vector converges to 
&,t = EminRilS1 along N normal modes corresponding 
to the eigenvalues of I - pKY.  If the signal vectors are 
approximately orthogonal, then according to the preceding 
discussion, N - 1 eigenvalues of Ry and KY are given 
approximately by (54), where p l k  M 0 , IC # 1. However, 
for Ry, A 1  M A: + u2, whereas for &,, A y y )  = 0. 

The asymptotic excess MSE for the conventional LMS al- 
gorithm is given approximately by 

and for the same p is significantly smaller than the asymptotic 
MSE for the blind algorithm, given by (74). This is because 
emin << Emin for small levels of background noise. Specifi- 
cally, when the signal vectors are approximately orthogonal 

in a synchronous CDMA system with processing gain N = 10 
and number of users K = 7. Averaged SIR at the ith iteration 
is given by 

5 (4 [iISl )2 
r=l SIR,, [i] = 

c c‘,[il(Y,[il - bl,T[iIS1)l2 
r=l 

where A1 = 1, the number of algorithm runs is M = 100, and 
the subscript T indicates that the associated variable depends 
on the particular run. The signature sequences are the same 
randomly picked sequences used to generate the numerical 
results for Example 3.2. As explained in Section 111, there is 
a multipath component associated with the desired user. The 
signal power to background noise power is 20 dB. 

The interfering amplitudes A2,  . . . , A7 are each 20 times 
AI,  representing an extreme near-far situation. Because of the 
strong interference, conventional single-user blind equalization 
algorithms (i.e., those discussed in [14]) do not succeed in 
isolating user 1. Two plots are shown in Fig. 9 corresponding 
to no mismatch and a mismatched nominal. The desired signal 
contains the same multipath component as that in Example 
3.2. Namely, the nominal signal is the normalized sum of 
the spreading sequence of the desired user plus the part of 
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Fig. 9. Averaged SIR versus time for the stochastic gradient algorithm 
(26) with and without a mismatched nominal. The simulation parameters are 
specified in Section IV-D1. 

time 

the multipath component multiplied by the same bit. The plot 
with mismatch assumes that the nominal tap vector is equal 
to the spreading sequence of the desired user (neglecting the 
multipath component) plus an additive Gaussian perturbation 
where the variance of each component is 0.01. This latter 
type of mismatch models finite precision effects. The blind 
algorithm (26) is used for the first 800 iterations, and the 
conventional LMS algorithm in decision directed mode is used 
thereafter. 

In both cases shown in Fig. 9 the blind algorithm succeeds in 
suppressing the strong interferers, and drives the SIR above 0 
dB. What is interesting is that the mismatch creates an initial 
condition for the conventional LMS algorithm which leads 
to a lower SIR than the case without mismatch. Additional 
simulation results show that different mismatches lead to 
different SIR’S. The explanation for this is that the mismatch 
causes the tap vector to wander outside the space spanned by 
the actual signal vectors, and thereby creates an orthogonal 
component to the signal space which takes an extremely long 
time to suppress with a training sequence if the background 
noise is very small. This is an inherent problem with the LMS 
algorithm with a training sequence, and can be handled by tap 
leakage [23]. 

2) Simulation Results-kast Squares Algorithm: As an al- 
ternative to the stochastic gradient algorithm (26), one could 
instead select the tap vector c that achieves 

subject to 

C’Sl = 1. (77) 

In the presence of mismatch, we add the constraint 

l1cIl2 = 1 + x (78) 
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Averaged SIR versus time for the least squares algorithm (79)-(81). 
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Fig. 10. 
The cases simulated are described in Section IV-D2. 

time 

where x is chosen according to the guidelines set in Section 
111. The solution to this optimization problem is 

where 
2 

@$I = Ylj lY’ l j l+  
j = O  

and U is selected to satisfy the constraint (78). 
decreases, x increases. Comparing (79)-(8 1) 
observe that the least squares (LS) solution 

(79) 

(80) 

(81) 

Note that as v 
with (32), we 
for c has the 

same form as the optimal solution (32) where expectations 
are replaced by time averages. 

Fig. 10 shows averaged SIR versus time for the LS solution 
(79), assuming the same parameters as were used to generate 
Fig. 9. The following four cases were simulated: 

Case 1 (No mismatch, U = 0.01): Since U is very small, 
the surplus energy is very large. The LS algorithm drives 
the SIR to 5 dB in less than 50 iterations, which is roughly 
four times faster than the convergence time of the stochastic 
gradient algorithm shown in Fig. 9. Because the LS solution 
in (79) does not have a forgetting factor (i.e., does not 
exponentially weight the data), the tap vector converges to 
the MMSE solution, so that the asymptotic SIR is 20 dB. 

Case 2 (Mismatch, v = 0.01): In this case the same mis- 
matched nominal without the multipath component is used, as 
was assumed in Example 3.2. The steady-state SIR is -7 dB 
since the allowed surplus energy is large enough to suppress 
most of the desired signal. 

Case 3 (Mismatch, U = 100): The surplus energy in this 
case is much smaller than for the preceding case. The per- 
formance of the blind LS algorithm is nearly identical to 
the performance shown in the first case without mismatch. 
The only difference is that without mismatch the tap vector 
converges to the MMSE solution, whereas with mismatch the 
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tap vector converges to another solution which lowers the 
asymptotic SIR. However, Fig. 10 indicates that this difference 
in SIR is very small after 500 iterations. 

Case 4 (Mismatch, v = 100, Switch to decision-directed 
mode): This case is the same as that just considered except that 
the algorithm switches to an LMS algorithm used in decision- 
directed mode after 50 iterations. The steady-state performance 
is only slightly better than that of the blind LS algorithm. 

V. APPENDIX 

Premultiplying both sides of (49) by a’, we can compute 
DERIVATION OF (67) 

Re[ i ]  = E(E[i]E’[i]) 
= E(P[i]E[i  - l]E’[i - l ] P [ i ] )  
- pJ,;, E ( P  [ i ]  E [i - 11 5; A- y[i]U’ [i] ) 
- pEminE(U[i]y’[i]A-’slel[i - l ] P [ i ] )  
+ pzJ~inE(~[Z]y’[Z]A-li i l i i~A-l~[i]~’[Z]) (Al) 

where P = I - pG[i]ij’[i], and variables with tildes indicate 
premultiplication by W. 

Examining the first term on the right, 

E(P[i]E’[i - l]E’[i - l ] P [ i ] )  = Re[i - 11 - pE(u[ i ]y ’ [ i ] )  
Re[i - 11 - pRe[ i  - l ]E(y [ i ]u ’ [ i ] )  
+ pZE(u[i]y’[i]e[i - l]E’[i - l ] y [ i ]u [ i ] )  

+ ( I  - 515;)E(y[i]y’[i] 

. Re[i - l ]y [ i ]y ’ [ i ] )  ( I  - i i l i i ; ) .  

= Re[i - 11 - p(I- al&)ARe[i - 11 
- pRe[i - 1 ] A ( I -  515;) 

(‘42) 

Assuming that the correlations between different compo- 
nents of y and between components of E are small, the last 
expectation can be approximated as (see [21, eq. (7.1.26)]) 

E(y[i]y’[i]E[i  - l]E’[i - l ] f j [ i ]y[ i ] )  M Atr(Re[i - 11A). 

Examining the second term on the right of (Al) 
(-43) 

E(PE[i- l]ii;A-’y[i]G’[i]) =E(E[i - 1])5;A-’A(I - ii15;) 

- pE(u[i]y’[i]E[i - l ] 5 ~ A - 1 ~ [ i ] u [ i ] ’ )  
= -p(I - 915;)E(y[i]@’[i]E[i - 11 

. ii;A-’ij[i]y‘[Z])(I - 515;) 
M -p(E(E’[i - 1 ] ) S 1 )  ( I  - iil%;)A(I - 515;) 

(‘44) 

where the last approximation is analogous to the approxima- 
tion (A3). Finally, the last term on the right of (Al) can be 
approximated as 

E(W[~]y’[i]A-’iilii~A-~y[i]U’[Z]) = ( I  - 515;) 
. E(y[i]~’[i]A-’ii1ii~A-’~[Z]~’[i])(I  - 515;) 

M ( I  - i i l i i;)A(I - i i 1 . 5 ; )  (S;A-’ii;) 

Combining (Al)-(A5) gives (67). 
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