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Abstract-The problem of acquisition of synchronism is consid- 
ered for direct-sequence spread-spectrum (DS/SS) code-division 
multiple-access (CDMA) systems. For large systems with large 
timing uncertainties, it has been shown recently that acquisition 
in the presence of multiple-access interference may impose a sig- 
nificant limitation on capacity. This leads us to consider a system 
in which timing uncertainties are relatively small and to propose 
an acquisition scheme which exploits this to reduce complexity 
and acquisition overhead. Our proposal may be appropriate for a 
microcellular environment for personal communications in which 
CDMA packet transmission is employed for both voice and data. 
Packetized transmission would imply that the overhead available 
for acquisition is small, and the large number of microcells would 
restrict the cost (and therefore the complexity) of the acquisition 
scheme used in the receiver in each microcell. The acquisition 
time required for a simple serial search scheme may therefore be 
unacceptably large. On the other hand, while acquisition using 
a passive matched filter is fast, the filter length required for 
reliable acquisition is liable to be excessive in terms of cost and 
complexity. Motivated by these considerations, we propose a two- 
stage acquisition scheme which employs a short programmable 
matched filter for initial detection, followed by a correlator 
for verification. Numerical results based on an approximate 
analysis of acquisition performance in the presence of multiple- 
access interference are employed to compare our scheme with 
conventional acquisition schemes. In particular, it is shown that, 
for a given probability of successful acquisition, our scheme 
acquires much more rapidly than a serial search scheme and 
is much less complex than a passive matched filter scheme. 

I. INTRODUCTION 

CQUISITION of timing for a direct-sequence spread- A spectrum (DS/SS) signal in the presence of multiple- 
access interference is considered. A DS/SS signal is generated 
by spreading the data signal using a spreading, or signature, 
sequence. The signature sequence consists of a sequence 
of pulses, or chips, of a duration much smaller than the 
duration of a data symbol. The choice of signature sequences 
with good crosscorrelation properties enables the simultaneous 
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transmission of several DS/SS signals over the same channel, 
resulting in a code-division multiple-access (CDMA) system. 
However, in order for the receiver to despread and demodulate 
the transmission of interest (henceforth called the desired 
transmission), the receiver must first estimate the delay of the 
desired transmission. Acquisition refers to the task of obtaining 
a coarse estimate of the delay before initiating the tracking and 
demodulation procedures. For this purpose, it is convenient to 
express the delay as a multiple of the chip duration referred 
to as the phase of the signature sequence. 

It has been shown recently [5]  that for CDMA systems 
with many simultaneous transmissions and large timing un- 
certainties, the problem of acquisition in the presence of 
multiple-access interference significantly limits the system 
capacity. However, the results of 1.51 also imply that acqui- 
sition performance can be improved significantly if the timing 
uncertainties are small. In this paper, we propose a method 
of exploiting small timing uncertainties to reduce both the 
complexity of the acquisition scheme and the time required 
to acquire. 

While this work is not limited to a specific application, 
a strong motivation for it is the possibility that packetized 
CDMA may be used to transmit both voice and data in emerg- 
ing wireless mobile networks for personal communications. In 
the latter application, the division of the geographical area of 
interest into microcells ensures that each receiver only hears 
transmissions within a small radius, so that both the number 
of transmissions and the timing uncertainty are relatively 
small. On the other hand, the large number of microcells that 
are likely to be used for personal communications implies 
that the complexity of the hardware used for acquisition in 
each microcell should be low, and packetizing transmission 
implies that the overhead available for acquisition may be 
small. Conventional methods for acquisition such as serial 
search schemes (low complexity but large acquisition time) 
and passive matched filter schemes (small acquisition time 
but high complexity) do not match these constraints very 
well. Preliminary results presented here show that the two- 
stage acquisition scheme proposed here, which consists of a 
short matched filter followed by a correlator, may be more 
successful in balancing the tradeoffs between complexity and 
acquisition overhead. 

Initial detection in our scheme is achieved using a short 
programmable matched filter, and a correlator is used for 
verification. The acquisition scheme is designed so that the 
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timing uncertainty never increases beyond its initial value, 
which is assumed to be small. We will see that this con- 
sideration makes it necessary for the matched filter to be 
programmable. Prior to [ 5 ] ,  the effect of multiple-access 
interference on acquisition, and hence the issue of maintaining 
small timing uncertainties, had not been considered in the 
literature. Thus, our mathematical model for the acquisition 
process differs from those for two-stage acquisition schemes 
considered previously [7], [3, p. 4191, 191, [121. 

We note that additional mechanisms, such as constraining 
transmissions to start at one of a set of prespecified times, may 
be required to achieve the small initial timing uncertainties 
assumed here. The specific mechanism used is not our primary 
concern since it may depend on other system constraints. 
Slotted transmission, for instance, would automatically ensure 
a small timing uncertainty, since the start times are con- 
strained to be at the beginning of time slots. Regardless of 
the mechanism used to reduce timing uncertainty, it would be 
necessary to use reasonably stable clocks sharing time-of-day 
information at the transmitters and receivers. 

Assuming that the length of the acquisition preamble is 
fixed, the performance criterion for the acquisition scheme 
is taken to be the probability of successful acquisition of 
the desired transmission within a time T,,, determined by 
the length of the preamble. Numerical results based on an 
approximate analysis show that, for a desired value of the 
probability of successful acquisition, the required value of 
T,,,, for our scheme is much smaller than for a serial search 
scheme. Also, while the required T,,, for our scheme is larger 
than for a passive matched filter scheme, our scheme is much 
less complex for the same probability of successful acquisition, 
the length of the filter used in our scheme can be much smaller 
than the length required for a passive matched filter scheme. 

The system model is given in Section 11. In Section 111, 
we approximate the acquisition process by a renewal process, 
and give a recursive formula for the probability of successful 
acquisition, together with a nonrecursive approximation for 
this probability which is easier to compute. In order to com- 
pare our scheme with existing schemes, we also provide an 
approximate analysis for serial search and passive matched 
filter acquisition schemes. Numerical results are provided in 
Section IV to illustrate this comparison, and our conclusions 
are given in Section V. 

11. SYSTEM MODEL 
The model for the desired and interfering transmissions is 

as in [ 5 ] .  It is assumed that there is a preamble for acquisition, 
so that the desired transmission has no data modulation, and 
is given by 

where y‘, is a unit-amplitude rectangular pulse of duration Tr 
and ( a ] )  is the signature sequence for the desired transmission. 
The delay is expressed as a multiple T of the chip interval 
T,. It is assumed that T is a positive integer; this enables 

us to establish a discrete-time model for the acquisition 
process. The effect of noninteger 7 is discussed later. Because 
multiple-access interference is the dominant impairment even 
for moderate values of signal-to-noise ratio, we ignore thermal 
noise. We note, however, that since we use a Gaussian 
approximation for analyzing the effect of the multiple-access 
interference, the effect of such noise could be incorporated 
simply by increasing the variance of the interference. We 
assume that there are J interfering transmissions at the same 
carrier frequency. The total number of transmissions is thus 
K = J + 1. The j th  interfering transmission 1 5 j 5 J is 
given by 

r j ( t )  = (2Pj)l/’ 
Dc: 

x t ) + ( t  - IcT, - T ~ T , )  
k = - w  

.cos (w, + 4 + e j )  

where Pj is the power relative to that of the desired transmis- 
sion and 0, is the carrier phase relative to that of the desired 
transmission. The sequence (xt)) results from multiplying the 
data sequence (if present) and the signature sequence of the 
interfering transmission, and the delay is expressed modulo 
the chip interval, so T~ takes values in the interval [0, 1 1 .  The 
additive interference is thus given by X ( t )  = C:=lrj(t), and 
the net received signal is ~ ( t )  = ro(t )  + X ( t ) .  

The sequences (Q) and (z t ) )  are modeled as random and 
independent. For each of these sequences, the elements are 
assumed to be independent and identically distributed, taking 
values +1 or - 1 with equal probability. This model is referred 
to as the random sequence model, and has been used previously 
in [5] to evaluate the acquisition performance of a passive 
matched filter scheme, in bit error probability evaluations [4], 
[6], and in modeling a different aspect of the acquisition 
problem [2]. Although signature sequences are deterministic 
in practice, the random sequence model is useful in obtaining 
performance estimates in terms of a few key system parameters 
before detailed design choices (such as choosing the signature 
sequences) have been made. 

If the receiver can acquire the carrier frequency and the 
phase of the target transmission perfectly, it is possible to use 
coherent processing to compute the following statistics: 

where the additive interference X I ;  is given by 
J 

XI, = ~ P , ’ / 2 c o s e J [ ( 1  - T J ) T ! )  + T J T f 2 1 ] .  (2) 
]=I 

In practice, the carrier phase of the target transmission 
may not be known to the receiver prior to acquisition, and 
noncoherent processing may be required. The framework de- 
veloped in this paper applies to both coherent and noncoherent 
processing. For ease of presentation, however, we focus on 
coherent processing for the most part, indicating the changes 
required for noncoherent processing where appropriate. In 
particular, the receiver operations for noncoherent processing 
(see also [lo]) are specified by (7)-(8) in Section 111. 
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We consider an asynchronous multiple-access system, in 
which the relative phases O3 and the relative delays ~j are mod- 
eled as independent random variables: the Oj are uniformly 
distributed over [0, 27r] and the rj are uniformly distributed 
over [0,1]. This system is difficult to analyze due to the 
dependencies introduced by the asynchronism. Most of these 
dependencies can be eliminated by conditioning the acquisition 
process on the relative carrier phases Oj  and the relative delays 
~j appearing in ( 2 ) ,  computing the performance measure of 
interest, and subsequently removing the conditioning. Such 
methods have been used previously in bit and packet error 
probability computations [4], [6]. Although we indicate how 
such methods apply to our problem, our numerical results 
are based on approximations which are less computationally 
intensive. For simplicity in presentation, we assume that all 
received signals have equal power (Pj = 1, 1 5 j 5 J in (2) ) .  
Our approximations are based on an application of the central 
limit theorem to yield an “improved Gaussian approximation” 
(in the terminology of [6]) to the effect of each interfering 
signal, and subsequently simplifying it further to yield the 
“standard Gaussian approximation.” A detailed study of the 
effect of unequal powers can probably be carried out using 
the improved Gaussian approximation, and is worth exploring 
in future work. However, the equal power assumption and 
the standard Gaussian approximation suffice for our present 
purpose of obtaining a preliminary comparison of various 
acquisition schemes. 

Our task is to estimate T based on the sequence of statistics 
(2,). We assume that the acquisition process starts at time 
zero, and that T is known to take an integer value in the 
interval [1. T ]  where the initial timing uncertainty T is a 
small integer. The ZI, are the input to a discrete-time filter 
of length N .  At any given time in the process of acquisition, 
the filter is matched to a section u , - ~ + l ,  ar-~7+2,  . . . , a, of 
the signature sequence of the desired transmission; that is, the 
filter coefficients are given by h; = u,-;, i = 0, 1,. . . , N - 1. 
The integer T is called the target phase, and may be changed 
during the process of acquisition by reprogramming the filter. 
Referring to ( l ) ,  current phase at time IC is defined to be 
IC - T .  This is the index of the element of the desired signature 
sequence that contributes to Z,. The matched filter output 
(Wrl) is given by 

N-1 

Lt7,1 = -pLzzTL+L. 
i=o 

We describe the process starting from time r ;  the target 
phase is T ,  and the current phase is T - T .  Note that this 
condition is satisfied for the initial value of T = 0. The matched 
filter output is monitored at intervals of unit length. The desired 
transmission contributes a peak of height N to the matched 
filter output at time T + T (when the current phase equals 
the target phase). Since 1 5 7 5 T ,  we expect a peak by 
time T + T ,  and try to detect it by means of a threshold rule. 
Specifically, for 01 E [0,1], a hit is said to occur when the 
matched filter output W,, exceeds the threshold trN for some 
n in the range T + 1 5 n 5 T + T .  If there is no hit by time 
T + T, we know that we have failed to detect the peak at time 

T+T (since T E [l, TI). We reset the matched filter coefficients 
to accommodate the resulting delay, replacing T by T + T ,  and 
continue monitoring the matched filter output. This preserves 
the initial timing uncertainty. 

For t # T + T ,  a hit at time t is called a false alarm. A hit 
at time t = T + 7 is called a correct hit, and the absence of a 
hit at that time is called a miss. If a hit does occur, we stop 
monitoring the matched filter output and start verifying the 
hit by correlating the matched filter input with the appropriate 
section of the desired signature sequence over an interval C. 
Starting from phase T ,  a hit occurs at time t if the phase 
corresponding to the first time the threshold is exceeded is 
T + t ,  i.e., if 

t =  min{n : r + I  5 n 5 r + T ,  W,  > C Y N } .  

Following the hit, we correlate Zk, t + 1 5 IC 5 t + C with 
a,+1, . . . , a , + ~  to obtain the verification statistic 

C 

v = C a r + i Z t + r .  
k l  

The verification statistic is compared to a threshold to 
determine whether a hit is authenticated. For /3 E [0, I], if 
V > PC, then the hit is authenticated, and the acquisition 
process terminates (typically, tracking and demodulation are 
initiated at this point). If the hit is correct, then we have 
successful acquisition upon authentication. On the other hand, 
if the hit is a false alarm and is authenticated, then we have an 
overall false alarm. We assume that the opportunity to acquire 
the desired signal is lost by the time the receiver recovers 
from the tracking and demodulation procedures initiated by 
an overall false alarm. This is typical of applications in which 
the acquisition time is critical, such as a packet radio network. 
If V 5 PC, the hit is rejected, and we resume monitoring the 
output of the matched filter. However, in order to account for 
the delay in verification, the filter coefficients are matched to 
a later section of the desired signature sequence. Specifically, 
we set T = T + t + C, so that a peak is expected again after a 
time T (when the current phase equals T ) ,  thus preserving the 
initial timing uncertainty. A block diagram of the acquisition 
scheme is given in Fig. 1. 

In both situations under which the matched filter is reset, 
we revert to the conditions at the beginning of the acquisition 
process by preserving the relative delay 7 E [l, T ]  between 
the target phase and the current phase of the desired signa- 
ture sequence. If neither of these two situations occur, the 
acquisition process terminates in either successful acquisition 
or overall false alarm. The foregoing description suggests 
viewing the acquisition process as a renewal process with 
absorbing states, and our analysis is based on this view. We 
note that a renewal process model is an approximation even 
for the random sequences considered in this paper. This is 
because the portion of the acquisition process that starts after 
resetting the matched filter is not independent of the past, since 
some elements of the input sequence (2,) contribute both to 
past decisions and to the matched filter output for the new 
process. However, the dependence is weak, and is ignored in 
our analysis. 
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MONITOR MATCHED 

In general, all transitions from VERf and VER, take time C ,  
and all other transitions take unit time. 

Note that, if the process is in state %, it must be true that 

r-. VERIFY HIT RESET MATCHED .I FILTER, r t I + T 

RESET MATCHED 
FILTER. r e r + r  + C  

Fig. I .  Block diagram of two-stage acquisition scheme 

111. MATHEMATICAL MODEL AND ANALYSIS 

For the rest of this paper, it is convenient to make the 
worst-case assumption 7 = T .  A generalization to 7 5 T is 
straightforward, and is omitted. We first describe the renewal 
process model for the acquisition process, and then give 
approximate formulas based on the central limit theorem for 
the transition probabilities for the renewal model. Based on this 
(approximate) renewal model, we develop an exact recursive 
formula for the probability of successful acquisition PACQ ( . I ; )  

within time :E. We also obtain an approximation for this 
probability which is much easier to compute, and is used in 
Section IV when optimizing the parameters of the acquisition 
scheme via exhaustive search. Finally, we give approximate 
formulas for the probability of successful acquisition for two 
conventional acquisition schemes: serial search and passive 
matched filter. 

A. Development of the Renewal Process Model 

It is assumed that there is a renewal whenever the matched 
filter is reprogrammed. The possible states of the acquisition 
process are described in the following. State i corresponds to 
the current phase being T + i - T (since we assume 7 = T )  
when 1 5 i 5 T .  There are two absorbing states, ACQ and 

there have been no false alarms in the previous z - 1 states 
that have been visited since the last renewal. Thus, transition 
probabilities out of state i must be computed by conditioning 
on no such false alarms having occurred. Since the interference 
is likely to be less harmful subject to such conditioning, we 
argue that replacing the conditional probability of a false alarm 
at state i by the unconditional probability of false alarm leads 
to a pessimistic approximation to the acquisition probability. 
This independence approximation is further validated by the 
fact that for large N, application of a multidimensional central 
limit theorem (see [5] and the Appendix) shows that the 
matched filter outputs corresponding to different states are 
asymptotically independent. Similar approximations are made 
for other transition probabilities as well. 

We also make an approximation regarding the contribu- 
tion of the target transmission to the matched filter output. 
When the current phase equals the target phase, the desired 
transmission contributes a peak of height N to the matched 
filter output. At other instants, we model its contribution to 
the matched filter output as resulting from an independent 
interfering transmission; this, together with the J original 
interfering transmissions, constitutes the net interjerence. Let 
Y,, be the matched filter output at time n due to this net 
interference, and let W,, be the net output at time 71. Thus, after 
each renewal (with target phase T ) ,  we have that W,, = Y,), 
11 # T + T ,  and WrtT = N + Yr+I. A similar approximation 
is made regarding the correlator output V .  When a correct hit 
is being verified, the correlator output V = C + U < ~ ,  and when 
a false alarm is being verified, V = Uf where U,, U f  are 
the contribution of the net interference of the output of the 
correlator for a correct hit and a false alarm, respectively. 

Using the above approximations, we obtain the signal 
flow graph representation of the acquisition process shown 
in Fig. 2. A transition labeled pz’ has probability p and 
occurs over 1 time units. The transition probabilities shown are 
specified as follows. A false alarm at state i ( i  # T )  causes 
a transition to state VERf. The probability of this transition, 
which is independent of ,i under our approximations, is given 
by 

= P[Yi > O N ]  = P[Y, > t r N ] .  1 5 i 5 T - 1. ( 3 )  

FA, corresponding to successful acquisition and overall false 
alarm, respectively. In addition, there are 
states, VERf and VER,. The process starts from state I ,  and 
a renewal consists of a return to state 1. For 1 5 i 5 T - 1, a 

A miss at state i = T = T causes a transition to state 1 through 
a resetting of the matched filter; the corresponding transition 
probability is given by 

pTrL1 = P [ N  + YT 5 t r N ]  = P[YT 5 -(1 - t r ) N ] .  (4) 

Authentication of a false alarm leads to a transition from State 
VERf to the absorbing state FA, This transit,on probability 
is given by 

transition from state i can lead either to VERf or to i + 1; a 
transition to VERf corresponds to initiation of the verification 
stage following a false alarm, and a transition to ,i + 1 occurs 
if there is no false alarm. Rejection of the false alarm leads 
to a renewal, and authentication to absorption into FA. From 
the state 7 = T corresponding to the target phase, there 

VER,., which corresponds to initiation of the verification stage 
following a correct hit. From VER,, authentication of the hit 
leads to absorption into ACQ, and rejection leads to a renewal. 

is a renewal if there is a miss, otherwise we proceed to f j f 2  = P[Uf  > /q. ( 5 )  

Rejection of a correct hit leads to a transition from VER,. 
to state 1 through a resetting of the matched filter, and the 
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Fig. 2. Signal flow graph representation of acquisition process. 

transition probability is given by 

pmz = P[C + u, I PC] = p[uc I - ( I  - a ) C ] .  (6) 

So far, we have restricted attention to coherent processing 
in which the receiver knows the carrier phase of the desired 
signal prior to acquisition. If this is not the case, noncoherent 
processing is required. The receiver computes two orthogonal 
samples as follows: 

21/2 ( k + l P - c  
T ( t )  cos (wet) d t  = f J - r  cos 4 + Xk,<:. 

Z k , c  = TiTc 
Tc LT< 

(7) 

~ ( t )  sin (wet) d t  = a k - r  sin 4 + X k . , s .  

(8) 

2 1 / 2  . ( k + l ) T c  

zk,s = -~ 

where 
J 

Xk.  c = py2 C O S O j [ ( l  - T j ) Z t )  + TJ”&]. (9) 
J=1 

(Note a slight change of notation, in that the carrier phases 
of the interfering signals are now expressed relative to the 
receiver’s carrier rather than the carrier phase for the desired 
signal.) 

The decision statistic used for the matched filter stage is 

and that for the verification stage is 

As before, a hit occurs if W,, > a N  and is assumed 
to be correct if V > LjC. The renewal model for the 
acquisition process is as for coherent processing, but the 
transition probabilities are different. As mentioned in Section 
111-B and shown in the Appendix, the central limit theorem 
can be used to approximate the transition probabilities for both 
coherent and noncoherent processing. 

It is also worth commenting on the effect of noninteger T 

on the preceding development. First, if 7 is not an integer, 
the matched filter target phase may never be perfectly aligned 
with the current phase, so that, instead of a single state 
corresponding to a hit, there may be several consecutive states 
in which there is a strong component due to the desired 
signal. However, the contribution of the desired signal to the 
matched filter output in these states would, in general, be 
smaller than N .  This problem can be alleviated by sampling 
the matched filter output at faster than the chip rate, so that 
there is at least one state for which the desired signal’s 
contribution is close to N .  For PN sequences, with chip rate 
sampling, there may be two consecutive samples for which 
the desired signal’s contribution is roughly N / 2 ,  whereas 
sampling at twice the chip rate may lead to two samples 
with signal contribution approximately 3N/4 and two with 
signal contribution approximately N / 4 .  On the other hand, 
sampling at higher rates also increases the number of false 
alarm states. A detailed examination of the impact of this 
tradeoff on acquisition performance is an important topic for 
future work. Note that the problem is additionally complicated 
by the fact that the magnitude of the signal contribution in the 
hit states, and hence the state transition probabilities, depends 
on the offset of the phase from the target phases at the sampling 
instants. (The range over which the offset can vary decreases 
with the sampling rate). To first order, however, this problem 
may be addressed simply by scaling up the values of N ,  C, 
TI,,, obtained for integer T (by a factor of two for chip- 
rate sampling, or a factor of 4/3 for sampling at twice at 
chip rate). Note also that this problem has a similar impact 
on the conventional acquisition schemes as well, so that the 
assumption of integer T is adequate for an initial comparison 
of acquisition performance. 

B. Computation qf Transition Probabilities 
We approximate the transition probabilities (3)-(6) by ap- 

plying the central limit theorem as N + x and C + x. The 
reasoning that leads to the formulas below is sketched in the 
Appendix, and is based on the development in [5] .  Previous 
applications of the central limit theorem in evaluation of bit 
error probability are found in [4], [6], and, at least implicitly, 
in [SI. Note that, while we apply these asymptotic approxi- 
mations for moderate values of N and C ,  the corresponding 
numerical results for the bit error probability [6] indicate that 
the approximations should be fairly accurate. 

Let Q( .) be the complementary standard Gaussian distribu- 
tion function. We obtain that 
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For noncoherent processing, assuming that the desired sig- 
nal's carrier phase qh is a random variable which is uniformly 
distributed over [O, 2 ~ 1 ,  we show in the appendix that the cen- 
tral limit theorem approximation implies that the distribution 
of the decision statistics (1 1) and (12) is Rician for a hit state 
and Rayleigh for other states. The transition probabilities for 
noncoherent processing are therefore obtained as: 

where Qhf  (xl y) is the Marcum's Q-function [ 111, defined by 

and where I"(.) is the modified Bessel function of order zero. 

C. Evaluation of the Probability of Successful Acquisition 

Let PA4cq (x) denote the probability of successful acquisi- 
tion within time x. We give a recursive formula for P*cQ(z) 
in the following. The performance criterion of interest is the 
probability of successful acquisition F'SA = PAC$ (T,,,) 
where T,,, is the maximum time allowed for acquisition. We 
also obtain an approximation and upper and lower bounds for 
PSA in the form of easily computable nonrecursive formulas. 

We need to establish the following notation. For 1 5 i 5 
T - 1, let 

4f(4 = (1 - P f d - l P f l ( 1  - PfZ) 

be the probability that a renewal (after time i + C) is caused 
by a false alarm at state i that is subsequently rejected at the 
verification stage. Let 

4m2 = (1 -pf1IT-l( l  - ~ m l ) ~ m 2  

be the probability of a renewal (after time T + C) because a 
correct hit at state T is rejected at the verification stage. Let 

4nh = (1 -PfdT-lPml 

be the probability of a renewal (after time T )  caused by no 
hits at states 1 through T .  Finally, let 

be the probability of occurrence of successful acquisition 
without any renewal (absorption into ACQ after time T + C). 

The required recursion now follows from Fig. 2, and is 
given by 

with initial condition 

P A C Q ( 5  + N )  = 0, IC < T + C. 

The acquisition time 5 + N includes the time required to 
initially clock the signal into the matched filter, and the initial 
condition reflects the fact that successful acquisition starting 
from state 1 takes a time of at least T + C. 

The computational complexity of the above recursion is 
principally due to the fact that the amount of time required for 
a renewal via a hit that is subsequently rejected depends on 
the state at which the hit occurs; a hit at state i corresponds 
to a duration i + C. The computation can be simplified by 
assuming that all renewals via rejected hits correspond to a 
duration a + C,  and we denote the resulting estimate of the 
probability of successful acquisition by p (  a ) ,  computed as 
follows. Starting from state 1, successful acquisition results 
from any sequence of renewals, followed by absorption into 
ACQ, which satisfies the property that the net time elapsed is 
at most T,,,, - N .  After the last renewal before absorption into 
ACQ, we have a correct hit a state T followed by successful 
verification; these two steps take time 7' + C.  Prior to these 
steps, we index by s i  the number of renewals due to rejected hits 
(each such renewal takes time u + C under the approximation) 
and j the number of renewals due to no hits in a duratiqn T 
(each such renewal takes time T ) ,  so that the estimate P(a)  
is given by 

where the set A is given by 

and where C(n,  m) = n!/[m!(n - m)!]. 
In our numerical results in Section IV, we use the approxi- 

mation &A = P(Ti) where Ti is the expected value of a, given 
by 
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via a rejected hit. It is worth noting that PO. = F(1) and 
PL = P ( T )  are upper and lower bounds for the acquisition 
probability, respectively. 

D. Analysis of Existing Schemes 

We give an approximate analysis for serial search and 
passive matched filter schemes. A serial search correlates the 
received signal against a given phase for a duration C*, and 
comparing with a threshold P*C*. This is done for each of 
the T possible phases, so that, assuming that the correct phase 
is the last one tested, we obtain a worst case acquisition time 
of TC*. Whenever a threshold is exceeded, the acquisition 
process terminates. It is possible to improve this scheme by 
employing techniques based on the sequential probability ratio 
test (see [ 2 ]  and [lo], for instance) but such refinements are 
beyond the scope of this paper. Formulas for the probability 
pf(ss) of a false alarm @e. of the threshold being exceeded 
for an incorrect phase) and the probability p m ( s s )  of a miss 
(Le., the threshold not being exceeded for the correct phase) 
follow from the same reasoning that leads to ( 1  3)-( 14), and 
are given by 

Making the worst case assumption that the correct phase is 
the last to be tested, the probability of successful acquisition 
is given by 

PSA(SS)  % [l -pf(s.s)lT-’[l - ~ , ( s s ) ] .  (19) 

A passive matched filter scheme applies a threshold rule at 
the output of a matched filter of length N*;  the acquisition 
process terminates if the output exceeds a* N * .  Once the 
correct phase is missed, no reprogramming of the matched 
filter is done to restart the search. Assuming again that the 
correct phase appears last, the acquisition time is T+N* where 
we include the time N* required to initially clock the received 
signal into the matched filter. The probability of successful 
acquisition is given by 

where 

As in the analysis for our scheme, the formula (20) may be 
viewed as an approximation resulting from a multidimensional 

version of the central limit theorem, which implies that the 
matched filter outputs corresponding to different phases are 
asymptotically independent. Further, this independence ap- 
proximation is likely to be pessimistic by an argument similar 
to the one in Section 111-B. For the serial search scheme, on 
the other hand, the correlator outputs for different phases are 
truly independent under the random sequence model, so that 
(19) is approximate only in that the expressions for p f ( s . 5 )  
and p ,  ( s s )  in (1 8) are approximate. Further, as for the two- 
stage scheme, the preceding probabilities are easily modified 
as in (15)-( 16) to account for noncoherent processing. These 
formulas are omitted for brevity. 

Iv .  NUMERICAL RESULTS AND DISCUSSION 

Given the number of interfering transmissions J and the 
timing uncertainty T ,  our design objective is to choose the 
parameters of each of the acquisition schemes such that the 
probability of successful acquisition is at least parq. For our 
two-stage scheme, we impose an additional constraint on the 
length N of the matched filter for the first stage. This constraint 
may arise from the fact that the matched filter employed for 
acquisition may be the same filter that is subsequently used 
for demodulation, in which case N equals the number of 
chips per symbol, or the processing gain. Alternatively, there 
may be other considerations of cost and technology which 
constrain the length of the matched filter. The desired value 
of the acquisition probability is fixed at parq = 0.99 for all 
the results in this section. 

For the serial search scheme, we compute the minimum 
value of the correlation period C* such that, when opti- 
mized over p*, the acquisition probability Ps.;\(ss) 2 parq. 
The acquisition time is given by TI,,,, = TC*. Since the 
formulas for acquisition probability for the passive matched 
filter are entirely similar, the minimum value of N* and the 
corresponding threshold a*, are equal to C* and P* obtained 
above. The acquisition time, however, is much smaller, and 
is given by T,,, = N* + T where we count the time for 
initially clocking the signal into the matched filter. While there 
are only two parameters to be chosen in the conventional 
schemes, we must choose four parameters for the two-stage 
scheme, despite the fact that we have fixed the matched filter 
length N: the thresholds (Y and p, the verification period 
C, and the time T,,,, allowed for acquisition. This choice 
must be made to minimize T,,,,,, subject to the constraint 
that Ps.4 2 pacq. Since the optimization of the two-stage 
scheme is so time consuming, we attempt to find the best set 
of parameters by exhaustive search for coherent processing 
only, since computation of the transition probabilities for 
noncoherent processing is more time consuming (there is 
a good rational approximation [ I ]  for Q(. ) ,  but not for 
CJ,,(.. .)). For noncoherent processing, we use trial and error 
to find a suboptimal set of parameters for the two-stage scheme 
that satisfies the design constraints. Despite this bias against 
the two-stage scheme (the conventional schemes are optimized 
for both coherent and noncoherent processing), it is seen to 
compare very favorably with both the serial search and passive 
matched filter schemes in all the cases considered. 
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TABLE I 
PARAMETERS FOR ACHIEVING AN ACQUISITION PROBABILITY 

OF 0.99 FOR A SYSTEM WITH .J = 9 INTERFERING 
SIGNALS AND A TIMING UNCERTAINTY T = 10. 

Type of scheme Parameters 

Coherent Noncoherent 

Two-stage N = 30, a= 1, C =27, N = 30, a= 1, C = 50, 
p = 0.48. T, = 184 

C' = 121, p' = 0.6, 
T, = 1210 

p = 0.75, T, = 338 

C' = 134, p' = 0.63, 
T, = 1340 

Send search 

Passive matched filter N' = 121. a* =0.6, 
T,= 131 T,=144 

N' = 134, a* = 0.63, 

TABLE I1 
PARAMETERS FOR ACHIEVING A N  ACQUISITION PROBABILITY 

SIGNALS A N D  A TIMING UNCERTAINTY T = .50 
OF 0.99 FOR A SYSTEM W I T H  7 = 30 INTERFERING 

Type of scheme Parameters 

Coherent Noncoherent 

Two-stage N = 100. a= 1. C = 112, N = 100, a =  1, C = 180, 
B = 0.56, T, = 858 p = 0.8, T,, = 2339 

Serial search C' =418, p' =0.61. C' =472, p' =0.65. 
T,, = 20900 T,, = 236OO 

Passivematchedfilter N*=418,a'=O.61, N'=472,a'=O.65. 
T,, = 468 T,,= 512 

Table I contains our first set of numerical results, which are 
for a system with a small number of interfering signals, .I = 9, 
and a small timing uncertainty, T = 10. We fix the matched 
filter length for the two-stage scheme at N = 30, which 
is a length which might typically be used for demodulation 
purposes. We note that the passive matched filter scheme 
required for the same performance is much more complex than 
the two-stage scheme ( N *  >> N ) ,  and that the acquisition 
time T,,,,, for the two-stage scheme is much smaller than 
that for serial search, and only moderately larger than for a 
passive matched filter scheme. The two-stage scheme therefore 
satisfies its design objective of trading off complexity versus 
acquisition time. 

The value CY = 1 used for the first stage indicates that it is 
primarily devoted to rejecting false alarms. The extra time that 
elapses due to a miss is T ,  while the time for a false alarm is at 
least as large as C.  Even with a miss probability p7,L1 = l / 2 ,  
we ultimately get a correct hit with high probability, and p in 
the second stage is set to ensure that, with high probability, 
a false alarm gets rejected and a miss accepted. For all the 
schemes, the complexity and acquisition time are higher for 
noncoherent processing, as expected. 

Our second set of numerical results, shown in Table 11, are 
for a larger system with J = 30 and T = 50. Since the 
matched filter length for demodulation typically scales linearly 
with J ,  it is reasonable to scale up our constraint for the 
matched filter length for the first stage of our scheme as well, 
so that we set N = 100. As before, the two-stage scheme is 
seen to strike a good compromise between the serial search 
and passive matched filter schemes. 

We note that the search for the parameters of the two-stage 
scheme was carried out using the nonrecursive approximation 

Ps4, and the results were verified using the recursive formula 
(17). In all the instances considered, the error in the approxi- 
mation was negligible: the relative error in (1 - Ps.4) was a 
few percent. 

V. CONCLUSIONS 
Numerical results based on approximate analysis for ran- 

dom signature sequences indicate that, for both coherent and 
noncoherent processing, rapid acquisition in the presence of 
multiple-access interference is possible by means of a suitably 
optimized two-stage acquisition scheme. This scheme repre- 
sents a compromise in terms of performance and complexity 
between serial search schemes on the one hand, and parallel 
search or passive matched filter schemes on the other. The key 
idea consists of using a programmable matched filter front-end 
to maintain a small timing uncertainty and to reject incorrect 
phases so that a long correlation is not required for most such 
phases. 

The results of this study, which is based on a number 
of idealizations and approximations, are meant to serve as 
motivation for more detailed studies. However, the conclusions 
from our numerical results are so intuitively reasonable that 
we expect them to be true, at least at a qualitative level, even 
for more detailed system models. Some of the issues that need 
to be addressed in future work are as follows: 

1)  the effect of the loss in desired signal strength due to 
mismatch between the phase at sampling instants and the 
current phase, and the tradeoffs involved in increasing 
the sampling rate; 

2) refining the approximations for the transition probabili- 
ties (e.&., by using an improved Gaussian approximation) 
to obtain better estimates of acquisition performance for 
the random signature sequence model; 

3) verification of the rough system sizing based on the 
random signature sequence model by simulations for 
specific choices of signature sequences. 

APPENDIX 

We use the central limit theorem to develop approximations 
for the transition probabilities for both coherent and nonco- 
herent processing. The general approach is as in [SI; here, we 
merely sketch the reasoning behind ( 1  3)-( 16) employed in our 
numerical results. We consider coherent processing first. The 
interference input is given by (2) where we condition on the 
Qj and the rj, and we assume equal-power signals (P, = 1). 
For the purpose of computing false alarm probabilities, we 
model the effect of the desired transmission as that of an 
independent interferer, resulting in a net interference input of 
XA = X I ,  + 'LI, which is independent of the filter coefficients 
{ h i } .  We set Xk  = X I ,  for computing miss probabilities. We 
then have 

5 - 1 

Y,, = C h 7 X : , - i .  (A. 1) 
l=O 

The individual terms in the above sum are not independent 
for an asynchronous system. However, as shown in [S, Ap- 
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pendix], Y,, can be expressed as a linear functional of a 
two-dimensional random vector which can be expressed as a 
sum of N random vectors. Application of a two-dimensional 
central limit theorem then yields, as N --f 02, that 

where 
J 

o2 = X P ,  cos2 (8,)[(1 - T , ) ~  + 7-3. (A.3) 
3 - 1  

Similarly, as C -+ cm, we obtain that 

(A.4) 

Conditioned on the 0, and the r,, therefore, we can solve 
for the probability of successful acquisition using the above 
transition probabilities in the renewal model. The conditioning 
can subsequently be removed by averaging over the 8, and rJ. 
Expressions similar to the above in the context of computing 
error probabilities are developed in [6] using a different 
approach; the resulting approximation is called the “improved 
Gaussian” approximation. This is contrast to the “standard 
Gaussian” approximation (a term used in [6] for the formula 
introduced in [81), which amounts to replacing a* in (A.2) 
and (A.4) by its mean 5 / 3  (obtained by averaging (A.3) 
over rl and O J ) .  This yields (13) and (141, which are used 
in our numerical results. We have chosen to use this simple 
approximation in our numerical computations because our 
purpose is restricted to providing a rough comparison of our 
scheme with other acquisition schemes; all conclusions based 
on a random sequence model must in any event be validated 
through experiments with specific deterministic sequences. 
Note that the equations (1 8) and (2 1) for the other schemes 
follow from arguments similar to the above. 

We now consider noncoherent processing. We analyze the 
first stage in detail; the analysis for the second stage is entirely 
similar. It follows from (7)-( 1 1 )  that the decision statistic for 
this stage can be written in the following form: 

t%’ = ( A $  + A:)’” 

where 

A,  = r n f i c o s 4  + Y,.. A,? = n L f i s i n 4  + Y5 (A.6) 

where m = 0 when the target phase equals the current 
phase, and m = 0 otherwise, and where Y,, Y, are, respec- 
tively, the cosine and sine parts of the effective interference. 
The random variables Y, and Y, are uncorrelated, and each 
has mean zero and variance N J / 3  when the target phase 
equals the current phase, and N ( J / 3  + l / 2 )  otherwise. These 
observations follow from the assumption that the carrier phase 
4 for the desired signal, and the interference carrier phases 
8,’ 1 5 j 5 J ,  are independent random variables uniformly 

distributed over [O, 27r]. Application of the central limit the- 
orem conditioned on the carrier phases and relative delays, 
and subsequent simplification calculations by averaging over 
these quantities, implies that Y , / f i  and Y,/m tend to 
independent Gaussian random variables with mean zero and 
variance p2 where p2 = 5 / 3  when the target phase equals the 
current phase, and p2 = 513 + 1/2 otherwise. 

The precedicg analysis implies that the normalized decision 
statistic D = W / f l  can be approximately represented as 

D = [xf + 
_ -  

where A,, As are independent Gaussian random variables with 
mean rricosqh, ms ind ,  and variance p2. Thus, D is a Rician 
random variable with probability density 

P D ( T )  = ( r / p 2 )  exp [-(m2 + 7 - 2 ) / 2 ~ 2 1 ~ o ( 7 - / ~ 2 ) ,  r 2 0, 

so that P [ D  > R] = & n f ( m / p ,  R/,LL). For rri = 0, the deci- 
sion statistic is Rayleigh and P [ D  > R] = exp(-R2/2p2).  
Replacing N by C in the preceding analysis, these results 
apply to the decision statistic V for the second stage as 
well. The following observations now lead immediately to the 
formulas (15)-( 16) for the transition probabilities: 

1) @ f l  = P [ D  > of i ]  for vi = 0 and p2 = J / 3  + 1/2, 
2) ljml = P [ D  5 a f i ]  for m = fi and p2 = J / 3 ,  
3) j f 2  = P [ D  > for m = 0 and p2 = J / 3  + 1/2, 
4) jTn2 = P [ D  5 p a ]  for m = v‘?? and p2 = 5 / 3 .  
It remains to comment on some independence approxima- 

tions made in this paper. In the context of our two-stage 
scheme, consider the contributions of the net interference to the 
matched filter output for different states of the renewal process; 
these are the random variables Yl . . . . . YT. While application 
of the central limit theorem to the individual Y, yields (A. l) ,  i t  
is easy to show also that the Y,, are uncorrelated random vari- 
ables. Application of a multidimensional central limit theorem 
thus implies that a suitably normalized version of the random 
vector (Yl. . . . . YT) tends to a mean zero Gaussian random 
vector with covariance matrix diag (a2 + 1. .’. . . a* + 1, a*),  
so that the Y,, are asymptotically independent. This, together 
with the argument in Section 111-A that the independence 
assumption is actually pessimistic, leads to (3) and (4) for 
the state transition probabilities. A similar reasoning leads to 
(20) for Ps.k(pass). The preceding arguments are seen to apply 
to systems with noncoherent processing as well. 
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