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Abstract-ln personal communications applications, users com- 
municate via wireless with a wireline network. The wireline 
network tracks the current location of the user, and can therefore 
route messages to a user regardless of the user’s location. In 
addition to its impact on signaling within the wirebe network, 
mobility tracking requires the expenditure of wireless resources 
as well, including the power consumption of the portable units 
carried by the users and the radio bandwidth used for registration 
and paging. Ideally, the mobility tracking scheme used for each 
user should depend on the user’s call and mobility pattern, 
so the standard approach, in which all cells in a registration 
area are paged when a call arrives, may be wasteful of wireless 
resources. In order to conserve these resonrces, the network 
must have the capability to page selectively within a registration 
area, and the user must announce his or her location more 
frequently. In this paper, we propose and analyze a simple model 
that captures this additional flexibility. Dynamic programming is 
used to determine an optimal announcing strategy for each user. 
Numerical results for a simple one-dimensional mobility modef 
show that the optimal scheme may provide signiticant savings 
when compared to the standard approach even when the latter 
i s  optimized by suitably choosing the registration area size on a 
per-user basis. Ongoing research includes computing numerical 
results for more complicated mobility models and determining 
how existing system designs might be modified to heorprate 
our approach. 

I. INTRODUCTION 

HE BASIC features of personal communications may be 
abstracted as follows: 

1) Mobile subscribers carrying portables can communicate 
via wireless with fixed radio ports connected to a con- 
ventional wireline network. 

2) The wireline network keeps track of the user’s location, 
and can therefore route messages to a user regardless of 
his or her current location. 

The subject of this paper is mobility tracking, which we 
define as the process by which the network keeps track of a 
user’s location between two successive calls to the user. (The 
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term caZl may refer to either voice or data communications.) 
Tracking a user’s movements during a call is a separat 
involving handoffs or automatic link transfers, and 
considered in this paper. The conventional, or regis 
area approach, for mobility tracking is as follows: The 
geographical area in which a user may roam IS divided into 
registration areas containing a number of cells, where a 
cell is the coverage area of a single radio port. The network 
tracks the user’s registration area, not the user’s cell. When 
a laser changes registration area, he or she announces the 
new location to the network. The user does not alert the 
network of location changes within a registration area. When 
a call arrives €or the user, the network pages all cells in the 
registration area via wireless broadcast. The user receives the 
paging message and responds, and the call is set up. 

The cost of mobility tracking depends on the expenditure 
of the following resources: 

1) The network uses wireless resources (downlink band- 
width) for paging users. 

2) The user’s portable unit uses power for listening to 
beacons broadcast by the radio ports (to detect changes 
in his or her own location) and for alerting the network 
of a location change. 

The latter typically has higher power requirements in addi- 
tion to requiring uplink bandwidth. 

If a user is not very mobile and gets frequent calls of short 
duration, paging dl cells in the registration area for each call 
is likely to be wasteful of expensive wireless resources of 
Type 1. Such a situation may arise with the advent of wireless 
computing, in which case the “calls” may actually be bursts 
of data. On the other hand, keeping closer track of the user’s 
location involves additional expenditures of Type 2, since the 
user must listen more frequently to detect smaller changes in 
location, and must alert the network accordingly. This paper 
provides a mathematical formulation enabling the optimiza- 
tion, using dynamic programming, of the trade-off between 
resources of Type 1 and Type 2 on a per-user basis. In other 
words, the location strategy for each user depends on his or 
her individual mobility pattern and the frequency with which 
he or she is called. The mobility model considered is a Markov 
random walk, and the optimal policy is for the user to alert 
the network of his or her location based on a threshold rule. 

Mobility tracking also imposes a significant burden in terms 
of signaling within the wireline network (see [l] and the 
references therein), and changing user location strategies to 
optimize power and bandwidth influences the design of the 
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wireless signaling scheme as well. For simplicity, however, 
we ignore this problem in this paper. 

We have recently become aware of an approach similar 
to ours [3], in which the mobility model is a random walk, 
and users alert the network of their position according to a 
threshold rule based on knowledge of position, number of 
moves, or time. The threshold rule is assumed to determine 
a steady-state distribution of the position of each user, that is 
then used to evaluate the paging cost for a Poisson call arrival 
model. The key difference between our work and that in [3] 
is that we consider mobility tracking between calls (the user’s 
position must be tracked perfectly during a call, hence, there 
is no scope for optimization there), and therefore, do not make 
the simplifying assumption that the user’s position evolves to 
a steady-state by the time the next call arrives. Our dynamic 
program therefore tracks the position of the user throughout 
an inter-call interval. 

Another paper with a similar motivation is [6], that attempts 
to choose the registration area size on a per-user basis. How- 
ever, the fluid flow model of mobility used in that paper (often 
used for aggregate vehicular traffic in cellular applications) 
may not be accurate on a per-user basis, especially for personal 
communications applications in which most users are likely 
to be pedestrians. We believe the random walk mobility 
model considered here and in [31 is more realistic for such 
applications. In Section IV, we discuss the approach of [6] in 
the context of our random walk model, and indicate how the 
performance of this approach can be evaluated by using our 
dynamic programming formulation. The performance of this 
scheme is then compared to the performance of the expanding 
search scheme, in which the cost incurred due to network 
paging is assumed to be proportional to the distance from the 
user’s last known location. In contrast, the approach in [6] as- 
sumes all cells in a registration area are paged when attempting 
to locate a user, even if the user has not moved far from his last 
known position. Consequently, the expanding search scheme 
yields substantial performance improvements (at the expense 
of greater complexity). A random walk mobility model is also 
considered in [4], but the optimization of the user location 
strategy i s  not linked to the expected frequency of calls. 

Finally, an aggregate user location strategy independent of 
user parameters is the reporting center approach proposed in 
[2]. A number of cells are designated as reporting centers, and 
a user alerts the network whenever he or she visits one of these 
cells. When a call arrives, the network pages the vicinity of the 
reporting center from which the user reported most recently. 
While optimizing the choice of reporting centers may lead to 
improvement over the current approach, the scheme in [2] is 
still a static scheme that does not exploit the possibly different 
call and mobility patterns for different users. 

The model used for optimizing the user location strategy 
is presented in Section 11. We give properties of the opti- 
mal strategy, including a procedure for numerically computing 
it by iterating the dynamic programming equation. For sim- 
plicity, the results are stated for a one-dimensional random 
walk model of mobility. As shown in the appendix, however, 
the results of Section 11 generalize easily to higher dimen- 
sions and more complicated mobility models. In Section 111 

we present, for our one-dimensional example, an alternative 
method for obtaining the optimal strategy based on explicitly 
solving an appropriate difference equation. Numerical results 
showing the dependence of the optimal strategy and associated 
performance on call and mobility parameters are given in 
Section IV. As previously mentioned, the performance of the 
expanding search scheme is also compared to the registration 
area approach presented in [61. Our conclusions are given in 
Section V. 

11. SYSTEM MODEL AND DYNAMIC 
PROGRAMMING EQUATIONS 

Since our purpose is to devise per-user location strategies, 
we consider a single mobile user. The user moves according 
to a discrete-time model specified later. At each time, the user 
makes a decision whether or not to announce his or her current 
location to the network. The cost of each announcement is 
A ,  and may represent an expenditure of power or bandwidth. 
The location X ( t )  E RM of the user at time t refers to the 
coordinates of the current position of the user relative to the 
position at the most recent announcement, and is assumed to 
be known to the user. If a call arrives at time t ,  the paging 
cost incurred by the network is assumed to be a nonnegative 
function of the user’s location, and is given by f ( X ( t ) ) ,  
where this cost would typically represent the expenditure of 
bandwidth. The form of the cost function is based on the 
assumption that the network starts its search for the user from 
the position at which the user last announced. 

Since the network must track the user’s location perfectly 
during a call, we may assume the user’s location is known 
to the network when a call terminates. Starting from such a 
state (X(0)  = 0, where 0 denotes the origin), we want to 
devise an announcing policy such that the expectation of the 
sum of the announcing costs and the paging cost of the next 
call is minimized. We formulate this as a dynamic program 
terminating at the (random) time of arrival of the next call. At 
each discrete time, the probability of call arrival is given by A, 
so that the duration of the dynamic program is a geometrically 
distributed random variable. 

The position at time t of the user is incremented by a random 
vector Y( t )  E RM to obtain the position at time t + 1, where 
the Y (t)  are independent and identically distributed random 
vectors. This is a mobility model without memory, since the 
increments in position are independent of the previous motion 
of the user. If there is no call by time t ,  the user takes the 
action u t ( X ( t ) )  E (0, l}, where u t ( X ( t ) )  = 0 denotes not 
announcing, and U( t )  = 1 denotes announcing. If ut ( X  ( t ) )  = 
0, then X ( t + )  = X ( t ) ,  and if u t ( X ( t ) )  = 1, X ( t + )  = 0, 
where X ( t + )  denotes the user’s location immediately after 
the decision. Thus, 

Given the user’s location at time zero, if the next call arrives 
at time T ,  the expectation of the sum of the announcing and 
paging costs is given by 

T 

VU(X(0))  = E { C  A’1Lt(X(t)) + f ( X ( T ) ) )  (2)  
t=1 
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where U = (ul, u2, . . .) is a collection of functions ut, each 
mapping R" to the action space {O,l}. Since the mobility 
tracking is assumed to start after the termination of a call, we 
are primarily interested in minimizing V,(O), since X(0)  = 
0. However, the optimal policy actually minimizes V(r) for 
all r E I R ~ .  

Since the call arrival process and the mobility model are 
both without memory, and since the paging cost function f 
depends only on the location X ( t )  (and not on the time t), 
it suffices to consider stationary policies that depend only 
on the user's location, that is, u t ( X ( t ) )  = u ( X ( t ) ) ,  and 

The preceding model is fairly general, in that the dimension 
of X (t  ) and Y ( t )  , the distribution of Y ( t )  , and the dependence 
of the paging cost f on X ( t ) ,  may be arbitrary. Under 
these general assumptions, we show in the appendix that an 
optimal policy exists and that it can be computed via an 
iterative algorithm. A similar iterative algorithm may be used 
to compute the cost of any stationary policy as well. For 
simplicity of presentation, however, we consider a discrete- 
space, one-dimensional random-walk mobility model for the 
remainder of this section, and reword some of the general 
results of the appendix in this context. The remaining sections 
of this paper also focus exclusively on this simple mobility 
model. 

U = (u,u,.. .). 

A. One-Dimensional Mobility Model 
We assume that the user moves according to a symmetric 

one-dimensional random walk. That is, letting Y denote a 
random variable with the same distribution as Y(t) ,  we have 

0, with probability p 

- 1, with probability q 
+l, with probability q ( 3 )  

where p + 2y = 1. Proposition 1 supplies a characterization 
of the optimal policy and its cost, while Proposition 2 gives an 
iterative method for computing it. The proofs of these propo- 
sitions are given in a more general setting in the appendix. We 
denote the one-dimensional position X ( t )  by T. 

Proposition 1: For the preceding model, the optimal policy 
u*(r) and the cost V*(r) are unique, and are given by 

0, V*(r) < A + V*(O) 
1, V*(T) = A + V*(O) u*(r) = 

v * ( T )  =min (X[pf(r) + y f ( r  - 1) + y f ( r  + I)] 
+ (1 - X)lpV*(r) + yV*(r - 1) + YV*(T + I)], 
A + V*(O)} (4b) 

where r = 0, & 1, f 2, .... 
For T = 0, the minimum is achieved by the first term on 

the right-hand side, so that u*(O) = 0 and 
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Proposition 2: The optimal cost can be computed using the 
iteration 

V"+'(r) =min {X[pf(r) + q f ( r  - I) + qf(r + I)] 
t (1 - A>[pV"(r) + qV"(r - 1) + qV"(r + l)], 
A + Vn(0)} (5)  

where r = 0, f 1, f 2, ..., and where the initial condition 
V0(r)  may be any bounded function of r. Convergence is 
geometric and uniform in r.  That is, 

IIV* - ~ ~ + ~ l l ~  5 (1 - x ) ~ ~ ] v *  - ~ ~ 1 1 ,  4 O, as n -+ 00 

where Ilallm = A sup,la(r)l denotes the L,  norm of a. 

An immediate consequence of Proposition 2 is the following 
result. 

Corollary: If f ( r )  is nondecreasing in r for r 2 0 and 
in -r for r 5 0, then the optimal policy is a threshold rule 
of the form 

O,RL < r < R U  c 1, otherwise, u*(r) = 

where RL < 0 < Ru. We allow the values RL = -00 and 
RU = 00 (these correspond to never announcing). If f ( r )  is 
symetr ic  in r ,  then RL = -Ru. 

Pro03 Let V'(T) = O for all T in Proposition 2. Using 
induction in n, it is easy to see that for each n, V" is non- 
decreasing in r for r 2 0 and nonincreasing in r for r < 0. 
Since V" --f V*, the optimal cost V* is also non-decreasing 
in r for r 2 0 and non-increasing in r for r 5 0. From (4), 

17 the optimal rule must be a threshold rule. 
We consider now the special case 

f ( r )  = ClT l  (6) 

where c > 0. For this symmetric cost function, we can simplify 
the iteration (5) by exploiting the symmetry of the mobility 
model (3), and deduce that V* must be symmetric in r. The 
iteration (5)  need only be considered for nonnegative values of 
r in this case. In order to obtain a practical iterative algorithm, 
however, it is necessary to limit the range of r over which the 
iteration (5) is executed as follows: Assuming an upper bound 
V(0) for V*(O) is available, let R,, be the minimal value 
of r such that 

Xfs(?) > A + v(0) 2 A + V*(O), for all Irl L R,,,, 

where f S ( r )  = p f ( r )  + q f ( r  - 1) + y f ( r  + 1). The existence 
of a finite Rm, is guaranteed for f as in (6), since f s ( r )  -+ 00 
as T --j cy). From (4), we see that V * ( r )  = A + V*(O) for 
1.1 2 R,,, so that u*(r) = 1 for all such r. It is necessary, 
therefore, only to consider Irl < Rm, in the iteration (9, 
setting Vn(-R,,) = Vn(Rmax) = A + V" for all n. This 
numerical method for computing the optimal policy applies CO 

more general models, as shown in the appendix. Numerical 
results for the cost function (6) are presented in Section IV. 

It remains, to obtain an upper bound v(0). Consider 
policy 

- 
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in which the user announces immediately upon moving. We 
take the cost of this policy as our upper bound, and compute 
it as follows: 

111. SOLUTION TO DYNAMIC mOGRAMMnVG EQUATIONS 

The results of the previous section imply that, for the 
mobility model (3) and for any symmetric cost function f 
[e.g., f given by (6)], the optimal policy must lie in the class 
of symmetric threshold rules given by 

(8) 

A specialization of Fact A1 in the appendix implies that the 
cost function VR(T) for the rule U R  is given by 

VR(T) =Xbf(r) + 4 f ( T  - 1) + 4 f ( r  + 1)1 
+ (1 - X)IpVR(T) + qvR(T - 1) + QVR(T + 111, 
0 5 Irl < R (9a) 

VR(T) = A + VR(O), IT1 2 R. (9b) 

The cost function VR(T) is therefore a solution to the 
second-order difference equation (9a) with boundary condition 
(9b) (the latter actually gives two boundary conditions, at 
T = -R and T = R). This provides the following alterna- 
tive method for computing the optimal policy: solve (9) for 
arbitrary R, and compute the optimal threshold R* as 

R* = arg min v ~ ( 0 ) .  (10) 
R>O 

While the optimal solution minimizes VR(T) for all T ,  it 
suffices to consider T = 0 for computing the threshold. 

The remainder of this section is devoted to finding an 
explicit solution to (9). The cases R < 00 and R = 00 are 
handled separately (this corresponds to the policy of never 
announcing), since the boundary conditions (9b) are not useful 
for R = CO. We notice in some of our numerical computations 
that the function v ~ ( 0 )  is nearly constant in the region around 
its minimal, which implies that using (10) to find R* can be 
very sensitive to round off error, but shows as well that the 
optimal expected cost in these cases is insensitive to exact 
choice of R*. For X > 0, considering R < 00 suffices for 
characterizing the optimal policy via (lo), since it is easily seen 
that, if f ( v )  4 00 as IcI 00 (as it does for f as in (6)), then 
the cost function Vm(r) also tends to 00 as Irl -+ 00. This 
shows that the policy of never announcing cannot be optimal. 
Nevertheless, the performance of this policy serves as a useful 
benchmark to which the performance of the optimal policy 
can be compared. In our numerical results in Section JV, the 

performance measure is taken to be the announcing gain in 
using the optimal policy compared to using the policy of never 
announcing, defined as V, (O)/V* (0). 

A. Solution for a Finite Threshold 

Fix R < 00, and replace VR with V for notational simplic- 
ity. For I T [  5 R - 1, the solution to (9a) can be obtained 
in terms of V(0) and V(1). These latter quantities are then 
determined by the appropriate boundary conditions. Since 
f ( r ) ,  and therefore V(T), are symmetric in T ,  we obtain V(l) 
in terms of V(0) by substituting T = 0 in (9a): 

V(1) = 1 - (1 - X)p V(0) - - X (f(1) + $p). (11) 
2(1 - X)q 1 - X  

Now define the one-sided z-transform 
M 

V ( 2 )  = 2-kv(k) 
k=O 

and note that 

and 
00 

x-'V(k - 1) = z- 'V(z )  + V(1). (12b) 
k=O 

The z-transform of the paging function, f(z), is defined in 
the analogous way, and satisfies the analogous properties. 
Multiplying both sides of (9a) by z - ~ ,  summing from T = 0 
to 00, and rearranging gives 

where 

and where we have assumed that f(0) = 0. The sequence 
{ V( T )  } is easily obtained from (1 3) by using the relationships 
(12), and the fact that the sequence corresponding to the 
z-transform i ( z )  is 

(15) 

where 

are the roots of the denominator polynomial in $ ( z ) ,  and 
satisfy 0 < z- < 1 < z+. The result is 

(17) 
1 

V(T) = XQ(T) + ZV(0) (zl; + 211) 
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where 
r 

Q ( r )  =qf(l)g(r)  + - i )  
a=1 

( p f ( i )  + Y f ( i  + 1) + Y f ( i  - I)). (18) 

We now must detennine V(0). Substituting r = R* - 1 
in (9a) shows that V ( R * )  is determined by V(R* - 1) and 
V(R* - 2 ) .  Since the solution to (9a) is unique, gven V(0) 
and V(1), it follows that V ( P )  must also satisfy (17). 
Combining (17) for r = R" with (9b) gives 

XQ(R*) - A 
V(0) = 

l-;(z,..+z!?) 

which relates V(0) with the chosen threshold R*. Now the 
expression for V ( T ) ,  (17), is clearly monotonically increasing 
with V(0). Consequently, V ( r )  is minimized by choosing the 
integer threshold R* in (19) to minimize V(0). This completes 
the solution to the dynamic programming equations (9). 

B. Solution with No Announcing 

The cost function V,(r) for this policy satisfies (9a), 
for all T ,  so that V,(r) is again determined by (17). To 
determine VCO(0) in this case, we must examine the behavior 
of Vm(r) as r ---f 00. Consider the following problem, that 
is somewhat different than that posed in Section I. If a call 
arrives when the user is at r ,  where r > 0, paging cost f ( r )  is 
incurred. Otherwise, the user always moves to r + 1. Clearly, 
the expected paging cost for this system is greater than the 
expected paging cost for the original system. We therefore 
have the upper bound 

CO 

Vm(.) I ED(f ( .  + D)) = X ( 1 -  A)"(. + 2) (20) 
Z=O 

where D is the random variable representing the distance the 
user moves before a call arrives. If 

00 

(I - X ) " ( i )  < 00 
Z=O 

then (20) gives a finite bound on V,(T) for all T that is 
independent of V,(0). Now examining the solution (17), we 
see that since z+ > 1, V, ( T )  increases as O (z;) for general 
V,(0). Since z+ > 1/(1 - A), this is inconsistent with (20) 
and (21) unless V,(O) is selected to eliminate the zI; terms 
in (17). Equivalently, V(0) in (13) must be selected to cancel 
the pole at z+. Specifically, we must have 

(22) 

From (21), it follows that f(z) converges for IzI > 1/(1 - A), 
so that combining (13) with (22) gives 

(2 - z+)Voo(z)Iz=a+ = 0. 

2 X ( P  + 42y1 + qz+).f(z+) 
(23) VCO(0) = - 

[l - (1 - X)p] - 2 ( l -  X)qz+' 

Using the fact that z+z- = 1, this simplifies to 

(24) 
2X fk+) VCO(0) = - 

1 - X .JX[X + 4q(l - A)] ' 

Finally, we note that for the cost function f ( ~ )  = c ( T ( ,  f (x)  = 
z / ( z  - 1y. 

Because we want to compare the scheme discussed in 
Section II to the one introduced in [6], we first describe this 
latter scheme in our context. The set of announcing strategies 
is assumed to contain only threshold rules, as specified by (8). 
In the approach of 161, the network pages all nodes within 
a previously specified distance R from the user's last known 
location. In the one-dimensional mobility model (3) considered 
here, this area is an interval. Rather than assume the cost 
function f ( r )  = clrl, assuming the network pages according 
to an expanding search around the last announced location, the 
approach of [6] assumes a cost function for paging given by 

In the optimization framework of the previous sections, UR 

(see (8)) is clearly the optimal policy for the cost function 
fR and the expected cost u ~ ( r ) ,  for this policy satisfies the 
following equation: 

UR(r) =XcR + (I - X)[PUR(T) 

+quR(r - 1) + quR(r + 1)], 
0 5 Irl < R 

U R ( ~ )  = A + UR(O), (TI  2 R. 

We can easily solve for UR(+)  using either value iteration 
or the difference equation method. We can then define the 
optimd cost between calls for the alternate approach by 
U*(O) = minRUR(0). h our numerical results, we compare 
the gains 6' = V,(O)/U*(O) with G = V,(O)/V*(O). The 
first quantity gives a measure of how much gain is obtained by 
optimizing the registration area method compared to a simple 
never-announce scheme using expanding search. The quantity 
G is a measure of the gain obtained by optimizing our scheme, 
again compared to the never-announce scheme. Clearly, G' 
may be less than or greater than one, depending on the range 
of parameters. However, we always have G > 1 (due to the 
optimization) and G > G' (optimized expanding search must 
be better than an optimized scheme paging all cells in the 
uncertainty region). 

We now present some typical numerical results, using the 
iterative algorithm to compute V*(0) and (24) to compute 
V,(O). We start with the case when the cost of paging is 
a linear function of distance r ,  as in (6). Since the announcing 
gain is a function of the ratio c/A, there are three independent 
parameters to consider: c/A (cost of paging relative to an- 
nouncing), X (probability of call arrival), and 2q = pmoving 
(the probability of the user moving in one time interval). 
To get some insight into the shape of this function of three 
independent variables, we will show three plots with each of 
the parameters as independent variables. 

Fig. 1 shows the announcing $ain V,(O)/V*(O) versus 
relative cost of paging c/A. The behavior for low and high 
values of paging costs is in accordance with intuition. When 
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lamwa = 0.01, p_movhg = 0.05 

- - - 
--- I I I I I l l ,  

10.' 1 oo 
dA. nonnallzed mat of paging 

Fig. 1. Announcing gain and critical threshold versus normalized cost of 
paging, for the case of linear paging cost. 

....... E ........................... .-.--. 
.......... 

--.a.-._.- I 

l . O b , T  --- -1 
1 o - ~  10-2 16' 

~mb.  atrival, lambda 

Fig. 2. Announcing gain versus probability of arrival A, for the case of 
linear paging cost. 

the cost of paging is small, the announcing threshold is large 
because there is no great penalty for being caught far away 
from the last known position. At the same time, there is little 
relative advantage to announcing over never announcing, so 
the announcing gain falls to unity as the relative paging cost 
approaches zero. At the other extreme, when the cost of paging 
is high relative to announcing, the threshold drops to one, and 
the announcing gain increases to large values, in this case 
reaching 5.09 when c / A  is 20. The shape of the announcing 
gain curve has clear discontinuities in its derivative, occurring 
at the points where the discrete threshold parameter jumps. 
The curve can be viewed as the maximal over a family of 
curves, one for each possible threshold value. 

Fig. 2 shows a set of curves of announcing gain versus A, 
for five different values of c ( A  is fixed at unity with no loss 
of generality). As above, the curve has discontinuities in slope 
where the threshold changes, and each curve can be thought 
of as the upper envelope of a family. one for each choice 
of announcing threshold. It is interesting to note that high 
announcing gains for fixed probability of moving occur at both 
small and large A, a fact that does not have an easy intuitive 
explanation. As expected, the optimal announcing gain always 
increases with increasing paging cost c. 

1 I 1 I I I l l  I I I I 1 1 1 1 ,  

1 6  1 1-2 16' 
prob. moving, p-mving 

Fig. 3. Announcing gain versus probability of moving, for the case of linear 
paging cost. 

lambda = 0.001, p_moVirg = 0.5 

Fig. 4. Optimal expected cost versus normalized cost of paging, for the case 
of a paging cost with a step. 

Fig. 3, the final plot for the case of linear paging cost, 
shows a similar family of curves of announcing gain versus 
probability of moving, for the same five values of c. The 
behavior of announcing gain versus the probability of moving- 
is similar, except the gains are considerably larger for small 
probabilities of moving than for large. The announcing strategy 
can result in large savings when the user is not very mobile. 

We next consider a paging cost with a step in cost: 

representing the situation where a fixed cost C1 is incurred by 
paging within a certain radius ro, that then jumps to C2 beyond 
ro. Fig. 4 shows the optimal expected cost V*(O) versus C2, 
for the value Cl = 10, a plot analogous to Fig. 1 for linear 
cost. It is interesting to observe that the results are qualitatively 
similar, with the same general pattern of decreasing critical T 

as the paging cost (in this case C2) increases. As Cz decreases 
toward C1 = 10, the cost of being paged far from the most 
recently known r decreases, the critical r increases without 
limit, and the expected cost decreases. The plot also exhibits 
points of discontinuity in the derivative of the expected cost 
as the threshold distance changes. 
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To summarize these numerical results, using the optimal 
announcing strategy can result in large gains in resource 
utilization, especially when  the^ cost of paging relative to 
announcing is large and the probability of moving is small. 
However, dependence of announcing gain on the parameters 
c/A,  A, and pmoving is complex, and the relative advantage 
of the optimal per-user strategy in particular situations is 
difficult to predict without numerical solution of the dynamic 
programming equations. 

The convergence criterion used for generating all the dab  
in the figures was that the normalized root-sum-square differ- 
ence in V between two successive iterations be less than a 
prescribed E. That is, if V 3 ( r )  is the expected cost at location 
r and iteration j ,  the criterion is 

All the computations reported above used E = an array 
of length 300, and the final solution was checked to verify it 
was of the predicted form; the announcing decision "no" to 
the left of a critical T and "yes" to the right. 

Computational experience with the iterative algorithm has 
shown it to be very reliable and stable. The number of 
iterations is quite predictable from point to point, changing 
slowly as the independent parameter changes. For example, 
the 33 points in the range between c/A = 13 and 20 
in Fig. 1, all took precisely 2372 iterations to converge. In 
general, the number of iterations to convergence is only very 
weakly dependent on the parameters c/A and pmoving, but is 
very strongly dependent on A. When X = 0.1 in Fig. 2, the 
algorithm required only 190 iterations to converge, while when 
X = 0.001, it required 20 715 iterations. 

The strong dependence of convergence time on X is pre- 
dicted by the convergence analysis in the appendix. It is shown 
there that the method is an iterative contraction mapping, with 
norm decreasing as (1 - A)k ,  where k is the iteration number. 
The number of iterations to converge to a fixed E is therefore 
inversely proportional to I log (1 - A) I M X when X is small. 
For example, in the case of Fig. 2 cited above, the ratio of 
maximal to minimal X is 100 while the corresponding ratio 
of actual number of iterations to convergence is 109, which 
checks quite well. 

Finally, Fig. 5 shows a comparison between the gain of the 
registration area method in [6] and the gain corresponding to 
the expanding search scheme, plotted versus the probability of 
arrival A, for two values of the paging cost coefficient e. The 
results show the benefits of expanding search relative to the 
registration area approach increase with c. It also illustrates 
that the registration area method can achieve a gain geater 
than one relative to the never-announce strategy. 

We conclude that optimized expanding search offers signif- 
icant gains over the never-announce strategy, especially for 
large paging costs, but these gains are not obtainable with 
the registration area method, even if its threshold is chosen 
optimally. 
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Comparison between gains m the registraaon area and expanding 

V. CONCLUSIONS 

We proposed a model that captures the tradeoff between 
the costs of downlink paging and uplink position announcing 
for tracking mobile users. We showed that the optimal choice 
of strategy is determined by dynamic programming equations, 
and proved that the equations have a unique solution under 
general circumstances. Further, we showed the optimal policy 
is for the user to announce position when his or her distance 
from the previously established position exceeds a c 
threshold. 

Solution of the dynamic programming equations was studied 
in detail for a simple Markov mobility model in one dimension, 
although the results mentioned above apply in much more 
general cases. Two approaches were presented for finding 
the optimal threshold. The first is an iterative algorithm 
based on value iteration, and the second is based on explicit 
solution of the difference equation resulting in this case. We 
showed the iterative algorithm is a contraction and converges 
geometrically to the unique solution. 

We presented illustrative numerical results for the cases 
when the paging cost as a function of distance is linear and a 
step function. We also compared these results to those obtained 
&om the registration area approach in [6]. The results show 
that sipificant gains in power and bandwidth utilization can 
result from the optimal announcing strategy, especially when 
the cost of paging relative to announcing is large, and the user 
is not very mobile. Comparable gains are not obtainable with 
the registration area method. 

APPENDIX 

Our problem is one of optimal control until a desired target 
set (next call arrival) is reached. This topic has been treated 
in depth in chapter 4 of [SI. Due to the generality of the 
model considered in [Q, it is difficult to obtain results for 
the case of continuous space and unbounded costs. The main 
results in 151 therefore apply to a discrete-space, bounded- 
cost model. By exploiting the specific features of our problem, 
however, we can modify the results in [5] to obtain proofs of 
(the analogues of) Propositions 1 and 2 when the state X ( t )  
may be a continuous random vector, and the cost functi 
may be unbounded. Specialization of these results to the 
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dimensional model (3) yields Propositions 1 and 2 as stated 
in Section 111. 

Before proving the desired results, a number of definitions 
are needed. As in Section 11, we denote by X(t) the location 
of the user immediately prior to the decision at time t, and by 
X( t+)  the location immediately after the decision at time t, 
so that ~ ( t  + 1) = ~ ( t + )  + ~ ( t ) .  Letting ~ ( t ) ,  ~ ( t )  E R ~ ,  
denote by Fy (z) the cumulative distribution function (cdf) of 
Y( t ) ,  and, for r E RM, denote by F,(z) = F ( z  - r) the cdf 
of Y( t )  + r. For any function a with domain RM, define 

~ , a  5 ~ { a ( ~ ( t  + I>>Ix(~+) = r} 

where E{ .} denotes expectation with respect to the distribution 
of Y (t) .  For the discrete-space, one-dimensional model (3 ) ,  
we obtain 

S,a = pa(.) + qa(. - 1) + qa(r + 1). 

For any function a, and for any stationary policy U, define 
A R,a(r) = P[call does not arrive at t + 11 

Eu{a(X(t + 1))lX(t) = r )  (A.2) 

where E,{.} is expectation with respect to the controlled 
Markov chain defined by U and the distribution of Y (t) .  Using 
(1) and (A.l), the function R,a is obtained from a by the 
following linear transformation: 

A Letting llall, = sup,la(r)l denote the L,  norm of a, it is 
clear from (A.l) that S,a 5 IIall,. Thus 

ll%4l, L (1 - ~ > 1 1 ~ 1 1 ,  64.4) 

so that R, is a contraction mapping. 
Next, define the modified paging function fs(r) as the 

expectation of the paging cost if a call arrives at time t + 1, 
given that X ( t + )  = r after the decision u(X(t)). We have 

fs(r) e ~ { f ( ~ ( t  + l)lx(t+) = r) = S,f. 

Define a modified cost function K,(r) by 
A Ku(r) = P[call arrives at time t + 11 

. & { f ( X ( t  + l)lx(t) = r} 
fs ( r ) ,  4.1 = 0 

= { A+f,(O),u(r) = 1 
(A.5) 

The function K,(r) is potentially unbounded if the modified 
paging cost f s  (r) is unbounded. In the latter instance, we may, 
as in the example in Section 11, restrict r to a bounded region 
D by considering only stationary policies for which 

u(r) = 1 ,r  D 64.6) 

where D is chosen to be large enough to insure the optimal 
policy satisfies (Ah), and such that fs(r) is bounded for 

r E D. This implies, in turn, that the modified cost function 
K, is bounded for all r. The choice of D for a given cost 
function f is specified later (if f is bounded, we may take 
D = RM). For the one-dimensional example in Section 11, 
the region D was characterized as D = { r  : Irl < Rmax}. 

From (A.2) and (AS), it is clear that the expected cost-to-go 
Vu(.) for any stationary rule U is given by 

(-4.7) Vu = R,V, + K,. 

Fact AI: The solution to (A.7) is finite and unique for any 
stationary rule U satisfying (A.6), and can be computed using 
value iteration as follows: 

V;ln+' = R,V;IL + K,  

where V: is an arbitrarily bounded function. 
Pro08 Iterating on (A.7), we obtain Vu = E,"=, RiK,; 

a sum which is easily seen to converge using (A.4) and the 
boundedness of K, as follows: 

M 00 

2=0 2=0 

Uniqueness also follows from (A.4). If V and V are solutions 
to (A.7), then V - V = R, V - V , so that I(V - VI[,  5 
(1 - X)llV - VI[,. The implication is that IIV - Vll, = 0 
or v = V .  

To prove convergence of the value iteration, we note that 

( - >  
n 

2=0 

Since IIRzV:ll, 5 (1 - X)"llV:ll, -+ 0 by (A.4), we have 

Fact A1 characterizes the performance of any stationary 
policy U in the class of interest. The optimal policy is now 
characterized as follows: 

Fact A2: The optimal solution is the unique solution of 

VG+' 4 RLK, as required. U 

V* = min,(R,V + K,) 

VnS1 = min,(R,V" + K,) 

(A.8) 

and can be computed using the value iteration 

64.9) 

where V o  is an arbitrarily bounded function. 
Specializing Fact A2 to the one-dimensional mobility model 

(3) yields Propositions 1 and 2. 
Pro08 To prove uniqueness, letting V and V denote two 

solutions to (A.8) corresponding to decision rules U and 6,  
respectively, we have 

V = R,V f K ,  5 RcV + Ki, 

V = R,V + K~ 5 R,V + K, 

so that 

R , ( V - V )  < V - V ' < R c  ( V - V  - >  
Using(A.4),thisimpliesthat llV-V\lw L (1 - ~ ) ~ ~ v - V ~ ~ , ,  
proving v = V .  
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To prove optimality, letting V*,  U* denote the solutions to 
(AA), for any policy U,  we have 

V* = R,*V* + Ku* 5 RuV* + K, =Vu 

where U = (U, U*, U*,  . . .), Iterating, we obtain that for 
U = (Ill,. . . ,U, ,  U*,  U*, ‘ .  .) 

“-1 

V* I V ~ = R u n . . . R  , , V * + K u I + C R u ~ . - . ~ ~ , , K u ~ .  

Since the first term on the extreme right-hand side tends to 
zero as n + 00 by (A.4), we have V* 5 Vu for any policy U. 

Finally, to prove the convergence of value iteration, let U” 

be the policy achieving the minimum in (A.9) at the nth 
iteration. Then 

z=1  

V”” 1 Run V” + Kun 5 &* V” + K,* 

V* = Ru*V* + Ku* 5 R,nV* + Kun. 

We obtain, therefore, that 

R,(V* - V”) 5 V* - V”” 5 R,n(V - V”). 

Iterating, we obtain 

RC(V* - V o )  5 V* - V”” < - &nRun-l . . . R,o (V - V o )  

so that 

proving convergence of the value iteration (A.9). 0 
It remains to specify the domain D in (Ah). For this, assume 

as in the one-dimensional example in Section II, an upper 
) for the optimal cost is available. Define D to be 

the smallest domain such that 

Xfs(r )  > A + v(0) 2 A + V*(O), for all r D. 

In order to satisfy (A.S), we must have u*(r)’ = 1 for r $? D, 
so that we may restrict attention to policies satisfying (Ah) 
without loss of generality. 

In order to obtain a finite upper bound v(0) for V*(O), 
consider the “always announce” policy, in which 

(A. 10) 

Under this rule, the user checks at each time t = 1,2,  . . . , 
whether X ( t )  = 0. If X ( t )  # 0, an announcing cost A 
is incurred, and the location is reset to 0. While an exact 
expression for the cost v(0) of this policy was obtained for 
the one-dimensional mobility model in Section II, in general, 
it suffices to consider the following upper bound on v(0) that 
applies regardless of the mobility model. 

- 
V(0)  i 4 1  - X)/X + f S ( 0 ) .  (A. 1 1) 

For X > 0, this provides a finite upper bound for V*(O) as 
) < ca. If the latter condition is not satisfied, 

clearly the optimal cost cannot be finite either (assuming X > 
0), since fs(0) is the minimum paging cost that can possibly 
be incurred when the next call arrives. If X = 0, the optimal 

policy is, of course, the “never announce” policy u(r) = 0 
for all r, since the next call never arrives, and the optimal 
cost v* = 0. 

To see why (A. 11) is true, let N be the number of announce- 
ments by the time the next call arrives, and let T be the time of 
arrival of the next call. By virtue of our discrete-time model, 
there is at most, one announcement in one time unit, so that 
N 5 T .  The cost of the policy (A.lO) is therefore bounded 
as follows: 
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