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Abstract- 
Information-theoretic analysis for data hiding prescribe 

embedding the hidden data in the choice of quantizer for 
the host data. In this paper, we consider a suboptimal im- 
plementation of this prescription, with a view to hiding high 
volumes of data in images with low perceptual degradation. 
The three main findings are as follows: 
( i )  Scalar quantization based data hiding schemes incur 
about 2 dB penalty from the optimal embedding strategy, 
which involves vector quantization of the host. 
(i i)  In order to limit perceivable distortion while hiding large 
amounts of data, hiding schemes must use local perceptual 
criteria in addition to information-theoretic guidelines. 
(iii) Powerful erasure and error correcting codes provide 
a flexible framework that allows the data-hider freedom of 
choice of where to embed without requiring synchronization 
between encoder and decoder. 

I. INTRODUCTION 

Our objective is to obt,ain techniques for ernbedding high 
volumes of data in images; in a manner t.hat. causes minimal 
percephal degradation, and is robust to "benign" JPEG 
compression as well as more malicious Additive Whit,e 
Gaussian Noise ( AWGN) attacks. 1nforniat.ion-bheoretic 
treatments [l], [2] of the data hicling problem typically fo- 
cus on hiding in independent and identically distributed 
(i.i.d.) Gaussian host samples. The hider is allowed to in- 
duce a mean squared error of a t  most D1, while an attacker 
operating on t,he host. with the hidden data is allowed to 
induce a mean squared error of at. most Dz. 1nformat)ioii- 
theoretic prescriptions in this context, translate, roughly 
speaking, t o  hiding data by means of the c1ioic.e of vector 
quantizer for the host data., with the AWGN att,ack being 
the worst-case under cert,ain assuniptions. 

The main contributions of the present. paper are as fol- 
lows. First, we motivate the use of scalar quaritizat,ion 
based met.liods by providing an informatmion- theoretic nnal- 
ysis that, shows that scalar quantization based strategies 
come within about 2 dB (in terms of the ratio of D1/& re- 
quired to at,ta.in a. given hicling capacity) of the optimal vec- 
tor qua.iit.ization based strategy for AWGK attacks. Such 
strategies, in which each host synibol is quantized using a 
scalar quantizer, whose choice is dictated by the message 
symbol: were first proposed by Chen and Wornell [3];  but 
t.he capacity penalty due to the subopt.ima1 embedding was 
not previously known. Next, we propose practical strat.e- 
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gies for embedding high volnnies of data in images wit,li low 
percept,ual degra.datioii. As in many recent papers: the in- 
forniat.ion is enibedded in the low a id  mid frequency ba,nds 
oftlie Discrete Cosine Transform (DCT) coefficients of the 
image! which have higher variance: and can thereFore bet- 
ter t.olera.te the additioria.1 distortion due to the embedding. 
The novelty of our approach lies, however, in t.liat. it. allows 
the flesibi1it.y of einbeddiiig d a h  in desigriat,ed areas of t.lie 
image where it would be less noticeable: without requiring 
any addit,ioiial side information t.o be sent. to the decoder 
regarding t,he location of the embedded message. 

Our embedding approach is as follows. Bot,h the encoder 
aiid decoder know the set of DCT coefficients in the low 
and mid frequency bands t,hat are possible ca,iididates for 
embedding. In addit.ion, the encoder uses 1oca.l criteria to 
decide which subset of the coefficients it. will actually embed 
data in. The decoder employs the same criteria to guess 
where the encoder ha.s embedded data. The distortion due 
to attacks may now lead to insertion errors (the decoder 
guessing that, a coefficient lias embedded dah, when it. ac- 
tually does not) and deletion errors (the decoder guessing 
that a. coefficient does not have embedded dat.a, when it a.c- 
tually does). However. iinlike the insertion-deletion chan- 
nel in tvliich the length of the overall symbol sequence can 
vary [4], in our situation, the set of candidate coefficients 
for eiiibedding is t,he same, and is known to both encoder 
and decoder. This enables an elegant solution to the prob- 
lem of synchronizing the encoder and decoder. Use a code 
on the hidden d a h  that spans the entire set, of candidate 
embedding coefficients, aiid that can correct both errors 
and erasures. The subset of these coefficients in which the 
encoder does not embed can be t,reated as erasures at the 
encoder. The decoder guesses the erasure locat,ioiis using 
the same crit.eria as the encoder. Insertions now become 
errors, and deletions become additional erasures. Thus: 
the use of a. suitable error correction code simultaneously 
yields robustness to attack and solves the synchronization 
problem bet,ween encoder and decoder. 

The above coding framework is applied t.o tu70 ernbed- 
ding strategies that we proposed in earlier work on un- 
coded inmge-adaptive emnbedding 151. The first, is the block- 
level Entropy Thresholding (ET) inet.liod. which decides 
whether or not t o  embed data in each 8 x 8  block of DCT 
coefficients, depending on the entropy, or energ>-, within 
that block. The second is t,he Selectively Embedding in 
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Coefficients (SEC) method. which decides whether or not 
to enibed data based on the magnitude of the coefficient. 
Reed-Solonion codes are a natural choice for the block- 
based ET scheme. while turbo-like codes aie employed for 
the SEC scheme. We are able to hide high volumes of 
data under both JPEG and AJYGK attacks. Due to the 
suboptiniality of our enibedding strategy and the decod- 
ing algorithm. our results are not directly comparable with 
information-theoretic estimates of the hiding capacity of 
the iniage [GI. However. the amount of hidden data is of 
the saiiie order of magnitude as these estimates. 

11. QUANTIZATION BASED D K W  HIDING 

A. Embedding data in choice of quantizei- 

-4s in [3], data is emhedded iii the host medium through 
the choice of scalar quantizer. For example: consider a uni- 
form quantizer of step size A: used on the host's coefficients 
in some tra,nsforni domain. Let odd reconst,ruction points 
represent a, liidden data bit '1'. Likewise, even multiples of 
A are used to embed '0'. Tlius. depending on the bit value 
t.o be embedded, one of t.mo uniform quantizers of step size 
2A is chosen. 

Ha,rd decision decoding in t,his context is performed by 
quantizing t.lie received coefficient to the nearest recon- 
stmction point of all quantizers. An even reconstruction 
point. decodes to a hidden '0' and an odd point tro a '1'. 
If more information regarding the statistics of t,lie atstack 
is availa.ble, soft decisions can be used to  further improve 
performance. In Sect,ion 11-B, we compute the capa,city 
of scalar quant,izat.ion based hiding for t.he specific case of' 
AWGN attacks. Iniplicit. in our formulation is the use of 
soft clecisioiis that. account for both the quantization noise 
and the -4WGN. 

B. Capacity of scalar quantization based data hiding 

While our scalar quantization based scheme is well 
matched to JPEG compression at,t,acks, we now show t,hat 
it incurs roughly a 2 dB penaky for the worsbcase AWGN 
attack. Let,tiiig D1 and 0 2  (1enot.e t.he ineaii squared em- 
bedding induced dist.ortion and mean squared attack dis- 
tortion, the hiding mpacity wit,h AWGN att,ack is given 
by [I], [2] C = log(l + g), in t.he small D1, Dz regime 
t,hat typical dat.a hiding systems operabe. We compare this 
'vector capacity" (termed thus beca.iise the optimal strat- 
egy- involves vector qua.ntization of the host) to the niu- 
tual information attained by a scalar quantizer embedding 
scheme wit.h soft decision decoding. 

Consider a data hiding syst.em where the information 
symbol to  be embedded is taken from an alphabet X .  The 
host's original uniform quant.izer is divided int,o M uni- 
form sub-quantizers (each with quantization interval MA),  
where AJ = 1x1; n power of t.wo. Tlius. we have that log2nd 
bits are hidden per host, symbol. 

We consider the dist,ortion-compensated quaiitization 
enibedding scheme of [3] with soft. decision decoding. Here, 
the uniform quaiit,izer is scaled by a: E (0, l ) :  increasing the 
quantization interval to A/a.  As such, tlie robustness is in- 

creased by a fact,or l/a' (in the squared inininiuni dist.a,nce 
sense)! and embedding induced tlist.ortioii is increased by 
the same factor. Encoding the infomia.tion symhol as a. 
linear coinbination of the host symbol and it,s quantized 
value. a.s in the following, compensates for t,he additional 
distortion. Denoting the host synibol by H ,  and tlie hidden 
message synibol by X: tlie decoder receives t,lie following 
symbol: 

Y = q y ( H )  + (1 - a)H + TV 
= qx(F1) + (1 - a)(H - q x ( H ) )  + 1.7' (1) 

where g:,; (.) t,he scaled uniforin quantizer used t,o enibed t.he 
information symbol 5 (with quantization interva.1 MA/a)  ~ 

a.nd I.I,' the AWGN attack (i.e. IV N N ( 0 ,  0 2 ) ) .  The pa- 
rameter Q achieves a tradeoff between uniform quantizat,ion 
noise and .4WGK. The optimal value for a for masiniizing 
t.he signal-to-noise ratio (SNR.) at, the decoder , wliich we 
ha.ve found numerically also to nittxiniize the niutual infor- 
mation I ( X :  1'); is [3] 

The probability density function of the coinbined additive 
interferers. N = (1 - o)Z  + MT. where 2 5 H - q,y(H) is 
the uniform quantization noise. i:; given by convolving the 
uniform and Gaussiari densities: 

We compute the mutual inforina.tion I ( X ;  Y )  = H ( X )  - 
H ( X I Y )  for X uniform over it,s Ad-a.ry alphabet as ai1 esti- 
mat,e of the capacity with scalar q'uantizat.ioii based einbed- 
ding. Thus, H ( X )  = log, Ad. To find. H ( X I Y ) ]  we now 
compute p x l l - .  t,he conditional probability mass function 
of X given Y ,  and f y *  t.lie probability density function of 
Y .  

Consider the quantization interval in which the received 
symbol Y appears, and define its midpoint as the origin. 
Letting g denote t,lie abscissa, the nearest quantizers ap- 
pear at. y = +rg. Condit,ioned on the input X = 2 and 
host coefficient. H = h: the distribution of Y is given by 
fyjAY,H(ylz,h) = f,v(y - 7 n Z &  -- lib?)! wit.11 fN as in 
(2). Here, 'vi, E M = {fl: k3, ...: f 2 i M  - 1) is uniquely 
determined by the information s,ynibol IC: kh E Z by the 
host, coefficient. h, and the hidden quantized host. coefficient 
q,(lr) by the pair (mz, IC,?,). Thus we have 

f Y i X ( Y l 4  = s, fY,X.H(YlZ: h) fH(h , )dh  

A A d a  
2a 

3: j N ( y  -- ,mz- - /cT) ( 3 )  
kEZ 

TE'Y 
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where we haw assumed that t.he host. H and message X are 
statistically independent. aiid that the hosts's density fH is 
roughly constant, on an interval around Y ., an assuniption 
t.hat is reasonable in the low distortion regime, where tlie 
quantization interval is small with respect t.o val-iat.ions in 
tlie host's distribution. 

Since the density of 1'- is &periodic, it suffices t.o rest,rict 
attent,ion to the interval [-&. &]; mit,li fy normalized ac- 
cordingly. Applying Bayes' theoreni, tlie distribution of X 
given I' is 

so that we can now conipute 

a.id hence I ( X :  Y). 
Due to the exponeiit,ial clecaq- of the Gaussian density; 

the smniiiation in (3) is well approximated with only t,lie 
k = 0 tern1 (a  near one): i.e. the nearest. quantization 
point, explaining a tra.nsmit ted z. Figure 1 plots t,he mut.ual 
inforrnat,ioii obtained wit,li 2! 4 aiid 8-ary signaling. as well 
as vector capacity. We observe roiighly R 2 dB loss due to 
the suboptinial scalar quantization encoding strategy. 

We conclude our analysis by iiot.irig t.hat the soft decision 
statistic, used by an iterative decoder, is the log likelihood 
rat8io (LLR.)! given in the following for the case of binary 
signaling. 

When Q' = 1 aiid (3) approximated as above: the LLR 
reduces to 

(7 )  

I 
- 5  - 2 . 5  ' 2 . 5  5 7 . 5  1 0  12.5 15 

Fig. 1. Gap between scalar [binary: dot, 4-ary: dash-dot. 8-ary: 
dash] and vector [solid] quantizer data hiding systems. Capacity is in 
bits per source symbol. DNR 111 dB. 

~ 
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111. IMAGE ADAPTIVE DATA HIDING 

Most. prior iiiiage-ba.sed data hiding schemes use global 
criteria regarding where to hide the data, such as st.atist,i- 
cal crit,eria independent of t.he iniage (e.g. embedding in 
mid-frequency bands) or crit,eria nia,tched to a particular 
iiiia.ge (e.g. embedding in high-variance bands). These are 
consistent with information theoretic guidelines [GI. which 
call for hiding in "cha,nnels" in which tlie host coefficients 
have high variance. However ~ wlieii hiding lavge volume of 
data,, liicling based on such global st.atist.ica1 criteria can 
lead to  significant perceptual degrada,tion. We present ex- 
amples of such effects a.t. 171. This motivates the novel hid- 
ing framework presented here, wliicli affords tzhe flexibility 
of adapting to local c1iaract.eristics within a particular im- 
age. thus significaiitly reducing tlie perceptual degradation 
due to  the hidden data. While we use specific criteria. for 
such local adaptat.ion, our coding framework, which ob- 
viates tlie need for synchronization between encoder and 
decoder, applies for any other scheme for locally adaptive 
hiding. 

We now describe arid extend two image-adaptive hiding 
techniques. whicli we had first, proposed for uiicoded hidden 
data in [SI. 

A. Entropy Th,reshold&g ( E T )  .&erne 

The entropy tliresholding scheme uses the energy (or 2- 
iiorin entropy) of an 8x8  block to decide whether to embed 
in the block or not. Tlie entropy is computed as follows. 

Only those blocks whose entropy exceeds a predetermined 
threshold are used to hide data. Likewise. the decoder 
checks the entropy of each 8x8 block to  decide whether 
data  has been hidden. 

The embedding procedure is based on JPEG. The image 
is divided into 8 x 8 non-overlapping blocks. the energy of 
the blocks is evaluated, and an 8x8 DCT of the qualifying 
blocks is takeii. Tlie coefficient blocks are divided by tlie 
.JPEG quantization matrix according to the design quality 
factor, and finally, bits are hidden using choice of scalar 
quantizer. Low frequency coefficients are used to einbcd in 
qualifying blocks. Embedding in these coefficients induces 
minimal distortion due to JPEG's finer quantization in this 
range. Thus. this scheme employs a statistical criterion by 
hiding in the frequency subbands of large variance. while 
satisfying a local perceptual criterion via the block entropy 
threshold. 

B. Selectiiiely Embedding an Coeficien,ts (SEC) scheme 

Now, instead of deciding where to ernbed at the block 
level, we do a coefficient-by-coefficient selection, wit,h the 
god of embedding in those coefficients that cause minimal 
percept,ual distortion. 

Here t.oo. an 8 x 8 DCT of non-overlapping blocks is t,akeii 
and t,he coefficients are divided by t,he JPEG quantization 
ma.trix at design quality fa.ctor. These coefficieiit. values 



are qnant.izec1 to tlie nearest integer for further process- 
ing. We embed iii a. given coefficient only if the magnit,ude 
exceeds a positive integer threshold. As t,liis threshold iii- 
creases, fewer coefficients qualify for embedding, and hence 
less data can be hidden, which provides a tradeoff bet,ween 
hiding rate and percept,ual qualit,y. For thresholds beyond 
2: it, gets difficult for a hunitui observer to distiiigiiisli be- 
tween the original a,nd coniposit,e image. while achieving 
embedding rates of - 0.014 bits/pix;el (about. 3500 bit.s in 
512x512 iniage) with perfect decoding. 

The simplest SEC sclieriie is the zero-threshold SEC 
scheme, where t.lie coefficients that. are not quantized to 
zero: are used t,o enibed infornmtion. In the uiicodcd ver- 
sion of the sclieine 151, quantizat,ioii embedding is performed 
as usual when enibedding A ‘1.. If a ’0’ is to be embedded, 
the coefficieiits are qiiantizetl to even reconstruction values. 
However, if this results in quantization t.o zero? we leave it 
as such and t.lie s a n e  ‘0’ is embedded in t.he next, coeffi- 
cient, sat,isfying the non-zero criterion. The decoder siinply 
disregards all coefficients that quantize to zero. Other- 
wise, decoding is performed as usual. Such a procedure (of 
embedding sitme ‘0‘ in next coefficient) becomes unneces- 
sary when SEC scheme is used with a coding framework, 
wherein a synibol is erased at the encoder if it does not, 
nieet. tlie threshold criteria (Section IV). 

High embedding rat.es are achieved using t,his zero- 
t,hreshold SEC scheme with very low percephal degrada- 
tion. To iinderstancl this intuitively, it should be noted 
tha.t t,here are many iinage coefficients tha.t are very close 
to zero once divided by the JPEG yuantizat.ion matrix, and 
would be quantized to  zero upon JPEG compression. Em- 
bedding ’1 ’ in such coefficieiits iiit,roduces a large amount, 
of distortion relative t.o t,he origiiia.1 coefficient size, a factor 
t.h& seems to be perceptually important. This is a,voided 
by choosing not. to use zeros for embedding. 

IV. CODING FOR INSERTIONS AND DELETIONS 

In the previous section: it was not,ed that use of image 
adaptive crit,eria is necessary when hiding high volumes of 
da.ta into images. As discussed in Section 1: any embedding 
scheme t.hat employs local perceptual criterioii could suffer 
froin insertion/deletioii problems: causing the catastrophic 
loss of synchronization between encoder and decoder. In 
the ET scheme. insertions aiid deletions are observed wlien 
tlie attack qualit,y factor is misniat.ched with the design 
quality factor for JPEG att,ack. In the SEC scheme: very 
few images have insert,ions/deletions under matched or mis- 
mat.ched JPE,G a.ttacks. However, both the schemes have 
insertions/deletioiis under -4WGN a.t tacks. 

A. Coding Framework 
The bit stream to be hidden is coded: using a low rate 

uining that all host coefficients that meet tlie 
global criterion will act,ually be employed for hiding. A 
code symbol is erased at  the encoder if the local percep- 
tual criterioii for the block or coefficient. is not met. Since 
we code over entire spa.ce; long codewords can be coii- 
strucked to achieve very good correction ability. A min- 

iiiiuin distance sepa,rable (MDS) code. like Reed Solomon 
(RS) code: does not incur any pena,lt,y for erasures at t.lie 
encoder. Turbo-like codes, w1iicl:i operate very close t,o ca- 
pacity. incur only a minor overhcd due to erasures a.t. t.he 
encoder. It. should be noted that a tlelet,ion, which causes 
ail erasure, is lialf as cost.ly a.s ail insertion, which causes 
an error. Hence, it. is desirable that tlie data-hiding schenie 
be adjusted ill snch a ina.iiner t,l:iat, there are very few (or 
no) insertions. 

Tli~is: using a good era.sure correcting code. one can deal 
witzh insertioiis/deletioiis without, significant decline in orig- 
inal embedding rate. R.eed Solomon codes [8] have been 
used for ET scheme and R.epeat ilccuniulate codes [9] ha.ve 
been used for the SEC scheme as described in following 
sect ions. 

B. Reed-Solomon (RS) coding for  ET scheme 

Reed Soloiiioii codes [8] are AIDS codes. such that any k 
coordinates of an (n,k) RS code can be treated as message 
positions. In other words. the k niessagt’ synibols can be 
decoded even if any k synibols out of total 11 synibols sent 
are received at tlie decoder. The code can correct (11-k) 

erasures. or half as many erroIs. The block length ri of a 
Reed-Solomon code must be sni,tller than the symbol d -  
phabet. Thus. the Reed-Solomon code opeiates over large 
nonbinary alphabets (each symbol can be interpreted as a 
block of bits). which matches the ldock-based ET scheme. 
where an entire block gets inserted or deleted. The code 
symbols should be interleaved in such a way that at least 
k of the n code symbols of a codeword are received at  the 
decoder with high probability, uiider the erasures-only as- 
sumption. For example. if one whole codeword were placed 
in a siiiooth area of the image. all or most of the symbols 
would be erased, and it would be inipossible to decode this 
particular codeword at the receiver. 

Reed-Solomon codes are not well matched to AWGIL’ 
channels. but are ideal for the purpose of illustrating how 
to deal with the erasures caused by application of local crj- 
teria at tlie encoder and decoder We now turn to the SEC 
scheme. where we consider powerful biliary codes that are 
well-matched to AWGN channels. as well as close to opti- 
mal for dealing with erasures. 

C. Repeat-accumulate (RA) coding for SEC schem.e 
Any Durbo-like code tha.t operates close t,o Shannon limit, 

could be used with SEC scheme. We used RA codes [9] in 
our experin1ent.s because of their simplicity of decoding and 
near-capacit.y perforniance for erasure channels [ IO] .  A rat,e 
l /q  RA encoder involves q-fold repetition, pseudorandom 
int,erleaving and accumulation of the result,aiit: bit-st.reani. 
Decoding is performed iteratively using the suin-product 
algorithm [ 111. 

The zero-threshold SEC scheme was used for embedding 
where dat,a was hidden in the coefficients lying within a 
designat,ed low frequency band that. meet tlie t,lireshold cri- 
t.eria. The size of this band determines the length of RA 
code. Typica,lly, it consists of 14 to 35 coefficients (out of 
a t.otal of 64, scanned in zigzag fashion as in JPEG) de- 
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pending on the design quality factor used (e.g. 20 for QF 
= 25 and 35 for QF = 75). 

V. RESULTS 
The use of perceptual criterion enables us to  hide large 

volume of data without significant perceptual degradation. 
Due to the poor reproduction of images on paper, the 
reader is referred to our home page [7] for various exam- 
ples of images with hidden data. We also compare images 
with same amount of data hidden using local and statistical 
criteria in [7] so as to demonstrate that hiding techniques 
must use local criteria in order to hide large volume of data 
in a robust and transparent manner. 

Attack 
power (dB) 

10.0 

A.  JPEG attacks 
The decoder estimates the location of the embedded 

data, and uses hard decisions on the embedded bits in 
these locations. The bits in the remaining locations (out of 
the set of candidate frequencies) are set to erasures. Since 
the embedding procedure of both ET and SEC scheme is 
tuned to JPEG, the decoding of embedded data is perfect 
for all the attacks lesser than or equal to the design quality 
factor (QF). Table I shows the number of bits embedded 
(with perfect recovery) in uncoded and coded ET and SEC 
schemes at various design QFs, under JPEG attacks for 
512x512 Lena image. 

SEC scheme 

# of bits 
ET Scheme I SEC Scheme 

7.040 I 7.447 

TABLE I 
PERFOR~IANCE OF CODED AND UNCODED ET AND SEC SCHEMES 

UNDER JPEG ATTACKS AT I’ARIOUS QUALITY FACTORS 

12.5 
15.0 

B. A WGN attacks 

Table I1 summarizes the results for the ET scheme with 
RS coding and SEC scheme with RA coding against AWGN 
attack. The number of bits embedded is listed for the 
512x512 Lena image and noise is added to the image in spa- 
tial domain. Although the RS code is not the best choice 
for AWGN, it is adequate for mild attacks. RA-coded SEC 
scheme uses soft decision statistic of the AWGN for decod- 
ing (as in (7) in Section 11-B), and hence performs better 
at  higher attack powers. 

VI. CONCLUSIONS 

The information theoretic analysis of scalar quantization 
based hiding reveals only about a 2 dB penalty from the 
optimal embedding scheme. Furthermore, Figure 1 indi- 
cates that binary signaling is sufficient to achieve capacity 
in the low D N R  region our embedding schemes operate 
in. A by-product of the information-theoretic analysis is 

6,528 6,826 
3,584 6,301 

T-4BLE I1 
PERFORNANCE OF E T  SCHEME WITH RS CODING AND SEC SCHEME 

KITH RA CODING UNDER AIVGN ATTACI~. DESIGN QF=25 

the log likelihood ratio for AWGN attacks, which can be 
employed to generate soft information to be passed to  the 
outer decoder. In previous work on iterative decoding for 
data hiding in a Gaussian host, the soft decisions were gen- 
erated by approximating the sum of the quantization noise 
and AWGN as Gaussian [12]. 

A significant practical contribution of the paper is a pow- 
erful coding framework that allows flexibility in terms of 
the application of local criteria for determining where to 
embed data. The use of errors and erasures codes enables 
an elegant solution to the synchronization problem between 
the encoder and decoder which arises due to locally a d a p  
tive embedding. We are able to hide large volumes of data, 
of the same order as the capacity estimates in [GI. How- 
ever, a careful comparison with such information-theoretic 
estimates‘ is not the focus of the present paper, and will be 
undertaken in future work after further refinement of the 
encoding and decoding strategies. 
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