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Abstract—

Information-theoretic analysis for data hiding prescribe
embedding the hidden data in the choice of gquantizer for
the host data. In this paper, we consider a suboptimal im-
plementation of this prescription, with a view to hiding high
volumes of data in images with low perceptual degradation.
The three main findings are as follows:

(i) Scalar quantization based data hiding schemes incur
about 2 dB penalty from the optimal embedding strategy,
which involves vector quantization of the host.

(ii) In order to limit perceivable distortion while hiding large
amounts of data, hiding schemes must use local perceptual
criteria in addition to information-theoretic guidelines.

(iii) Powerful erasure and error correcting codes provide
a flexible framework that allows the data-hider freedom of
choice of where to embed without requiring synchronization
between encoder and decoder.

I. INTRODUCTION

Our objective is to obtain technigues for embedding high
volumes of data in images, in a manner that causes minimal
perceptual degradation, and is robust to “benign” JPEG
compression as well as more malicious Additive White
Gaussian Noise (AWGN) attacks. Information-theoretic
treatments [1], [2] of the data hiding problem typically fo-
cus on hiding in independent and identically distributed
(i.i.d.) Gaussian host samples. The hider is allowed to in-
duce a mean squared error of at most Dy, while an attacker
operating on the host with the hidden data is allowed to
induce a mean squared error of at most Dy. Information-
theoretic prescriptions in this context translate, roughly
speaking, to hiding data by means of the choice of vector
quantizer for the host data, with the AWGN attack being
the worst-case under certain assumptions.

The main contributions of the present paper are as fol-
lows. First, we motivate the use of scalar quantization
based methods by providing an information-theoretic anal-
ysis that shows that scalar quantization based strategies
come within about 2 dB (in terms of the ratio of Dy /D3 re-
quired to attain a given hiding capacity) of the optimal vec-
tor quantization based strategy for AWGN attacks. Such
strategies, in which each host symbol is quantized using a
gcalar quantizer, whose choice is dictated by the message
symbol, were first proposed by Chen and Wornell (3], but
the capacity penalty due to the suboptimal embedding was
not previously known. Next, we propose practical strate-
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gies for embedding high volumes of data in images with low
perceptual degradation. As in many recent papers, the in-
formation is embedded in the low and mid frequency bands
of the Discrete Cosine Transform (DCT) coefficients of the
image, which have higher variance, and can therefore bet-
ter tolerate the additional distortion due to the embedding.
The novelty of our approach lies, however, in that it allows
the flexibility of embedding data in designated areas of the
image where it would be less noticeable, without requiring
any additional side information to be sent to the decoder
regarding the location of the embedded message.

Our embedding approach is as follows. Both the encoder
and decoder know the set of DCT coefficients in the low
and mid frequency bands that are possible candidates for
embedding. In addition, the encoder uses local criteria to
decide which subset of the coefficients it will actually embed
data in. The decoder employs the same criteria to guess
where the encoder has embedded data. The distortion due
to attacks may now lead to insertion errors (the decoder
guessing that a coefficient has embedded data, when it ac-
tually does not) and deletion errors (the decoder guessing
that a coefficient does not have embedded data, when it ac-
tually does). However. unlike the insertion-deletion chan-
nel in which the length of the overall symbol sequence can
vary [4], in our situation, the set of candidate coefficients
for embedding is the same, and is known to both encoder
and decoder. This enables an elegant solution to the prob-
lem of synchronizing the encoder and decoder. Use a code
on the hidden data that spans the entire set of candidate
embedding coefficients, and that can correct both errors
and erasures. The subset of these coefficients in which the
encoder does not embed can be treated as erasures at the
encoder. The decoder guesses the erasure locations using
the same criteria as the encoder. Insertions now become
errors, and deletions become additional erasures. Thus,
the use of a suitable error correction code simultaneously
yields robustness to attack and solves the synchronization
problem between encoder and decoder.

The above coding framework is applied to two embed-
ding strategies that we proposed in earlier work on un-
coded image-adaptive embedding [5]. The first is the block-
level Entropy Thresholding (ET) method, which decides
whether or not to embed data in each 8x8 block of DCT
coefficients, depending on the entropy, or energy, within
that block. The second is the Selectively Embedding in
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Coefficients (SEC) method, which decides whether or not
to embed data based on the magnitude of the coefficient.
Reed-Solomon codes are a natural choice for the block-
based ET scheme, while turbo-like codes are employed for
the SEC scheme. We are able to hide high volumes of
data under both JPEG and AWGN attacks. Due to the
suboptimality of our embedding strategy and the decod-
ing algorithm. our results are not directly comparable with
information-theoretic estimates of the hiding capacity of
the image [6]. However, the amount of hidden data is of
the same order of magnitude as these estimates.

II. QUANTIZATION BASED DATA HIDING
A. Embedding data in choice of quantizer

As in [3], data is embedded in the host medium through
the choice of scalar quantizer. For example, consider a uni-
form quantizer of step size A, used on the host’s coefficients
in some transform domain. Let odd reconstruction points
represent a hidden data bit ‘1°. Likewise, even multiples of
A are used to embed ‘0°. Thus, depending on the bit value
to be embedded, one of two uniform quantizers of step size
2A is chosen.

Hard decision decoding in this context is performed by
quantizing the received coefficient to the nearest recon-
struction point of all quantizers. An even reconstruction
point decodes to a hidden ‘0’ and an odd point to a ’1°.
If more information regarding the statistics of the attack
is available, soft decisions can be used to further improve
performance. In Section II-B, we compute the capacity
of scalar quantization based hiding for the specific case of
AWGN attacks. Implicit in our formulation is the use of
soft decisions that account for both the quantization noise

and the AWGN.

B. Capacity of scalar quantization based data hiding

While our scalar quantization based scheme is well
matched to JPEG compression attacks, we now show that
it incurs roughly a 2 dB penalty for the worst-case AWGN
attack. Letting D; and Ds denote the mean squared em-
bedding induced distortion and mean squared attack dis-
tortion, the hiding capacity with AWGN attack is given
by [1], [2] C = %bg(l + g—;), in the small D;, Dy regime
that typical data hiding systems operate. We compare this
“vector capacity” (termed thus because the optimal strat-
egy involves vector quantization of the host) to the mu-
tual information attained by a scalar quantizer embedding
scheme with soft decision decoding.

Consider a data hiding system where the information
symbol to be embedded is taken from an alphabet X'. The
host’s original uniform quantizer is divided into M uni-
form sub-quantizers (each with quantization interval MA),
where M = |X|, a power of two. Thus, we have that logs M
bits are hidden per host symbol.

We consider the distortion-compensated quantization
embedding scheme of [3] with soft decision decoding. Here,
the uniform quantizer is scaled by o € (0, 1), increasing the
quantization interval to A/«. As such, the robustness is in-

creased by a factor 1/a? (in the squared minimum distance
sense), and embedding induced distortion is increased by
the same factor. Encoding the information symbol as a
linear combination of the host symbol and its quantized
value, as in the following, compensates for the additional
distortion. Denoting the host symbol by H, and the hidden
message symbol by X, the decoder receives the following
symbol:

Y agx(H)+(1—a)H +W

ax(H) + (1 —o)(H —gx(H))+ W (1)

where ¢, (-) the scaled uniform quantizer used to embed the
information symbol z (with quantization interval MA/«),
and W the AWGN attack (i.e. W ~ N(0, D3)). The pa-
rameter « achieves a tradeoff between uniform quantization
noise and AWGN. The optimal value for a for maximizing
the signal-to-noise ratio (SNR) at the decoder , which we
have found numerically also to maximize the mutual infor-
mation I[(X;Y), is 3]

Dy
Dy + Do
The probability density function of the combined additive
interferers, N = (1 —«)Z + W, where Z = H — gx(H) is
the uniform quantization noise, is given by convolving the
uniform and Gaussian densities:

Qopt =

(I—c)MA

L a(2rDg)"2 Za o (x-1)?
fta) = g2 | s O ) (2)
We compute the mutual information I{X;Y) = H(X) -~

H(X|Y) for X uniform over its M-ary alphabet as an esti-
mate of the capacity with scalar quantization based embed-
ding. Thus, H(X) = log, M. To find, H(X|Y), we now
compute px|y, the conditional probability mass function
of X given Y, and fy, the probability density function of
Y.

Consider the quantization interval in which the received
symbol Y appears, and define its midpoint as the origin.
Letting y denote the abscissa, the nearest quantizers ap-
pear at y = 5 A Conditioned on the input X = 2 and
host coefficient H = h, the dxstnbutxon of Y is given by
frix.u(ylz,h) = fn(y — m,,z— — kp, MA)1 with fy as in
(2). Here, m; € M = {£1,43,...,£2M — 1} is uniquely
determined by the information symbol x, ky € Z by the
host coefficient &, and the hidden quantized host coefficient
g..(h) by the pair (m,, k;,). Thus we have

Frixl) = [ Frixaule.h) fulh)n
x éfN —-ml—-k%é) (3)
hy) = ;}f}"[x(y|$)JPx($)
o X S iwly—mae —kmS) @)
meM KEZ
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where we have assumed that the host H and message X are
statistically independent, and that the host’s density fy is
roughly constant on an interval around Y, an assumption
that is reasonable in the low distortion regime, where the
quantization interval is small with respect to variations in
the host’s distribution.

Since the density of Y is %fperiodic, it suffices to restrict
attention to the interval {——% 21, with fy normalized ac-
cordingly. Applying Bayes® theorem, the distribution of X
given Y is

frix (yl2)px (@)

Iy () )

pX|Y(1‘ly) =
so that we can now compute

HIY) = |3 pxiv (alo) g (o) ()i
Y reX

and hence I(X;Y).

Due to the exponential decay of the Gaussian density,
the summation in (3) is well approximated with only the
k = 0 term (o near one), i.e. the nearest quantization
point explaining a transmitted z. Figure 1 plots the mutual
information obtained with 2, 4 and 8-ary signaling. as well
as vector capacity. We observe roughly a 2 dB loss due to
the suboptimal scalar quantization encoding strategy.

We conclude our analysis by noting that the soft decision
statistic, used by an iterative decoder, is the log likelihood
ratio (LLR), given in the following for the case of binary
signaling.

fyx (yl0)
frix (wll)

pxy(0ly)
A = | = 10
) = log pxy (1y) g

(6)

When a = 1 and (3) approximated as above, the LLR
reduces to

fwly—%) yA
Aly) = log W= 2) _ v ™)
fwly+35) D2
3
-5 -2.5 2.5 5 7.5 10 12.5 15

Fig. 1. Gap between scalar [binary: dot, 4-ary: dash-dot, &ary:
dash] and vector [solid] quantizer data hiding systems. Capacity is in
bits per source symbol, DNR in dB.

III. IMAGE ADAPTIVE DATA HIDING

Most prior image-based data hiding schemes use global
criteria regarding where to hide the data, such as statisti-
cal criteria independent of the image (e.g. embedding in
mid-frequency bands), or criteria matched to a particular
image (e.g. embedding in high-variance bands). These are
consistent with information theoretic guidelines [6], which
call for hiding in “channels” in which the host coefficients
have high variance. However, when hiding large volume of
data, hiding based on such global statistical criteria can
lead to significant perceptual degradation. We present ex-
amples of such effects at [7]. This motivates the novel hid-
ing framework presented here, which affords the flexibility
of adapting to local characteristics within a particular im-
age, thus significantly reducing the perceptual degradation
due to the hidden data. While we use specific criteria for
such local adaptation, our coding framework, which ob-
viates the need for synchronization between encoder and
decoder, applies for any other scheme for locally adaptive
hiding.

We now describe and extend two image-adaptive hiding
techniques, which we had first proposed for uncoded hidden
data in [5].

A. Entropy Thresholding (ET) scheme

The entropy thresholding scheme uses the energy (or 2-
norm entropy) of an 8x8 block to decide whether to embed
in the block or not. The entropy is computed as follows.

E=)Y ;2 (i,4) # (0,0) (8)
i3

Only those blocks whose entropy exceeds a predetermined
threshold are used to hide data. Likewise, the decoder
checks the entropy of each 8x8 block to decide whether
data has been hidden.

The embedding procedure is based on JPEG. The image
is divided into 8x8 non-overlapping blocks, the energy of
the blocks is evaluated, and an 8x8 DCT of the qualifying
blocks is taken. The coefficient blocks are divided by the
JPEG quantization matrix according to the design quality
factor, and finally, bits are hidden using choice of scalar
quantizer. Low frequency coefficients are used to embed in
qualifying blocks. Embedding in these coefficients induces
minimal distortion due to JPEG’s finer quantization in this
range. Thus, this scheme employs a statistical criterion by
hiding in the frequency subbands of large variance, while
satisfying a local perceptual criterion via the block entropy
threshold.

B. Selectively Embedding in Coefficients (SEC) scheme

Now, instead of deciding where to embed at the block
level, we do a coefficient-by-coefficient selection, with the
goal of embedding in those coefficients that cause minimal
perceptual distortion.

Here too, an 8x8 DCT of non-overlapping blocks is taken
and the coefficients are divided by the JPEG quantization
matrix at design quality factor. These coefficient values
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are quantized to the nearest integer for further process-
ing. We embed in a given coefficient only if the magnitude
exceeds a positive integer threshold. As this threshold in-
creases, fewer coefficients qualify for embedding, and hence
less data can be hidden, which provides a tradeoff between
hiding rate and perceptual quality. For thresholds beyond
2, it gets difficult for a human observer to distinguish be-
tween the original and composite image, while achieving
embedding rates of ~ 0.014 bits/pixel (about 3500 bits in
512x512 image) with perfect decoding.

The simplest SEC scheme is the zero-threshold SEC
scheme, where the coefficients that are not quantized to
zero, are used to embed information. In the uncoded ver-
sion of the scheme [5}, quantization embedding is performed
as usual when embedding a ‘1°. If a ‘0’ is to be embedded,
the coeflicients are quantized to even reconstruction values.
However, if this results in quantization to zero, we leave it
as such and the same ‘0’ is embedded in the next coeffi-
cient satisfying the non-zero criterion. The decoder simply
disregards all coeflicients that quantize to zero. Other-
wise, decoding is performed as usual. Such a procedure (of
embedding same 0" in next coefficient) becomes unneces-
sary when SEC scheme is used with a coding framework,
wherein a symbol is erased at the encoder if it does not
meet the threshold criteria (Section IV).

High embedding rates are achieved using this zero-
threshold SEC scheme with very low perceptual degrada-
tion. To understand this intuitively, it should be noted
that there are many image coefficients that are very close
to zero once divided by the JPEG quantization matrix, and
would be quantized to zero upon JPEG compression. Em-
bedding ‘1’ in such coefficients introduces a large amount
of distortion relative to the original coefficient size, a factor
that seems to be perceptually important. This is avoided
by choosing not to use zeros for embedding.

IV. CODING FOR INSERTIONS AND DELETIONS

In the previous section, it was noted that use of image
adaptive criteria is necessary when hiding high volumes of
data into images. As discussed in Section I, any embedding
scheme that employs local perceptual criterion could suffer
from insertion/deletion problems, causing the catastrophic
loss of synchronization between encoder and decoder. In
the ET scheme, insertions and deletions are observed when
the attack quality factor is mismatched with the design
quality factor for JPEG attack. In the SEC scheme, very
few images have insertions/deletions under matched or mis-
matched JPEG attacks. However, both the schemes have
insertions/deletions under AWGN attacks.

A. Coding Framework

The bit stream to be hidden is coded, using a low rate
code, assuming that all host coefficients that meet the
global criterion will actually be employed for hiding. A
code symbol is erased at the encoder if the local percep-
tual criterion for the block or coefficient is not met. Since
we code over entire space, long codewords can be con-
structed to achieve very good correction ability. A min-

imum distance separable (MDS) code, like Reed Solomon
(RS) code, does not incur any penalty for erasures at the
encoder. Turbo-like codes, which operate very close to ca-
pacity, incur only a minor overhead due to erasures at the
encoder. It should be noted that a deletion, which causes
an erasure, is half as costly as an insertion, which causes
an error. Hence, it is desirable that the data-hiding scheme
be adjusted in such a manner that there are very few (or
no) insertions.

Thus, using a good erasure correcting code, one can deal
with insertions/deletions without significant decline in orig-
inal embedding rate. Reed Solomon codes [8] have been
used for ET scheme and Repeat Accumulate codes [9] have
been used for the SEC scheme as described in following
sections.

B. Reed-Solomon (RS) coding for ET scheme

Reed Solomon codes [8] are MDS codes, such that any k
coordinates of an (n,k) RS code can be treated as message
positions. In other words, the k message symbols can be
decoded even if any k symbols out of total n symbols sent
are received at the decoder. The code can correct (n-k)
erasures, or half as many errors. The block length n of a
Reed-Solomon code must be smaller than the symbol al-
phabet. Thus, the Reed-Solomon code operates over large
nonbinary alphabets (each symbol can be interpreted as a
block of bits), which matches the block-based ET scheme,
where an entire block gets inserted or deleted. The code
symbols should be interleaved in such a way that at least
k of the n code symbols of a codeword are received at the
decoder with high probability, under the erasures-only as-
sumption. For example, if one whole codeword were placed
in a smooth area of the image, all or most of the symbols
would be erased, and it would be impossible to decode this
particular codeword at the receiver.

Reed-Solomon codes are not well matched to AWGN
channels, but are ideal for the purpose of illustrating how
to deal with the erasures caused by application of local cri-
teria at the encoder and decoder. We now turn to the SEC
scheme, where we consider powerful binary codes that are
well-matched to AWGN channels, as well as close to opti-
mal for dealing with erasures.

C. Repeat-accumulate (RA) coding for SEC scheme

Any turbo-like code that operates close to Shannon limit
could be used with SEC scheme. We used RA codes [9] in
our experiments because of their simplicity of decoding and
near-capacity performance for erasure channels [10]. A rate
1/q RA encoder involves g-fold repetition, pseudorandom
interleaving and accumulation of the resultant bit-stream.
Decoding is performed iteratively using the sum-product
algorithm [11].

The zero-threshold SEC scheme was used for embedding
where data was hidden in the coefficients lying within a
designated low frequency band that meet the threshold cri-
teria. The size of this band determines the length of RA
code. Typically, it consists of 14 to 35 coefficients (out of
a total of 64, scanned in zig-zag fashion as in JPEG) de-
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pending on the design quality factor used (e.g. 20 for QF
= 25 and 35 for QF = 75).

V. RESULTS

The use of perceptual criterion enables us to hide large
volume of data without significant perceptual degradation.
Due to the poor reproduction of images on paper, the
reader is referred to our home page [7] for various exam-
ples of images with hidden data. We also compare images
with same amount of data hidden using local and statistical
criteria in [7] so as to demonstrate that hiding techniques
must use local criteria in order to hide large volume of data
in a robust and transparent manner.

A. JPEG attacks

The decoder estimates the location of the embedded
data, and uses hard decisions on the embedded bits in
these locations. The bits in the remaining locations (out of
the set of candidate frequencies) are set to erasures. Since
the embedding procedure of both ET and SEC scheme is
tuned to JPEG, the decoding of embedded data is perfect
for all the attacks lesser than or equal to the design quality
factor (QF). Table I shows the number of bits embedded
(with perfect recovery) in uncoded and coded ET and SEC
schemes at various design QFs, under JPEG attacks for
512x512 Lena image.

’7 T attack ET scheme SEC scheme
compr. # of bits # of bits
QF | (bpp) | uncoded | coded | uncoded | coded
25 0.42 6,240 4,608 11,117 7,168
50 0.66 15,652 | 12,096 19,346 | 13,824
75 1.04 | 34,880 | 30,560 | 32,117 | 23,803
TABLE I

PERFORMANCE OF CODED AND UNCODED ET AND SEC SCHEMES
UNDER JPEG ATTACKS AT VARIOUS QUALITY FACTORS

B. AWGN attacks

Table II summarizes the results for the ET scheme with
RS coding and SEC scheme with RA coding against AWGN
attack. The number of bits embedded is listed for the
512x512 Lena image and noise is added to the image in spa-
tial domain. Although the RS code is not the best choice
for AWGN, it is adequate for mild attacks. RA-coded SEC
scheme uses soft decision statistic of the AWGN for decod-
ing (as in (7) in Section II-B), and hence performs better
at higher attack powers.

VI. CONCLUSIONS

The information theoretic analysis of scalar quantization
based hiding reveals only about a 2 dB penalty from the
optimal embedding scheme. Furthermore, Figure 1 indi-
cates that binary signaling is sufficient to achieve capacity
in the low DNR region our embedding schemes operate
in. A by-product of the information-theoretic analysis is

Attack # of bits
power (dB) | ET Scheme | SEC Scheme
10.0 7,040 7.447
12.5 6,528 6,826
15.0 3.584 6,301
TABLE II

PERFORMANCE OF ET SCHEME WITH RS CODING AND SEC SCHEME
WITH RA CODING UNDER AWGN ATTACK, DESIGN QF=25

the log likelihood ratio for AWGN attacks, which can be
employed to generate soft information to be passed to the
outer decoder. In previous work on iterative decoding for
data hiding in a Gaussian host, the soft decisions were gen-
erated by approximating the sum of the quantization noise
and AWGN as Gaussian [12].

A significant practical contribution of the paper is a pow-
erful coding framework that allows flexibility in terms of
the application of local criteria for determining where to
embed data. The use of errors and erasures codes enables
an elegant solution to the synchronization problem between
the encoder and decoder which arises due to locally adap-
tive embedding. We are able to hide large volumes of data,
of the same order as the capacity estimates in [6]. How-
ever, a careful comparison with such information-theoretic
estimates is not the focus of the present paper, and will be
undertaken in future work after further refinement of the
encoding and decoding strategies.
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