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Coded Noncoherent Communication with
Amplitude/Phase Modulation:
From Shannon Theory to Practical Architectures

Noah Jacobsen, Member, IEEE, and Upamanyu Madhow, Fellow, IEEE

Abstract—We develop bandwidth efficient radio transceivers,
using amplitude/phase modulations, for frequency non-selective
channels whose time variations are typical of outdoor mobile
wireless systems. The transceiver is noncoherent, neither requir-
ing pilots for channel estimation and tracking nor assuming prior
channel knowledge on the part of the receiver. Serial concate-
nation of a binary outer channel code with an inner differential
modulation code provides a turbo structure that, along with the
channel memory, is exploited for joint iterative channel and data
estimation. While prior work on noncoherent communication
mainly focuses on PSK alphabets, we consider a moderate to high
SNR regime in which amplitude/phase constellations are more
efficient. First, the complexity of block noncoherent demodulation
is reduced to a level that is comparable to coherent receivers.
Then, a tool for choosing the constellation and bit-to-symbol
mapping is developed by adapting Extrinsic Information Transfer
(EXIT) charts for noncoherent demodulation. The recommended
constellations differ significantly from standard coherent channel
constellations, and from prior recommendations for uncoded
noncoherent systems. The analysis shows that standard convo-
lutional codes are nearly optimal when paired with differential
amplitude/phase modulation.

Index Terms—Wireless communications, fading channels, non-
coherent detection, coding, capacity.

I. INTRODUCTION

E consider time-varying channels with memory, such

as those encountered in high data-rate outdoor mobile
wireless systems. Methods for the design and analysis of
turbo-like coded modulation schemes which approach the
information-theoretic limits for such channels are explored.
We employ a block fading frequency non-selective channel
model, in which the channel scales the transmitted signal
by a scalar complex gain which is constant over a block
of symbols (referred to as the channel coherence length for
the length of the block), with the gain chosen independently
from block to block. This model facilitates the development of
low-complexity noncoherent block demodulation techniques,
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which implicitly estimate the channel gain and phase on
each block, while being amenable to information-theoretic
comparisons. More importantly, the block fading model pro-
vides a useful framework for transceiver design for existing
and projected cellular systems. Such designs can be adapted
efficiently to continuous fading channels in which the symbol
rate is much greater than the Doppler frequency or residual
frequency offset. The frequency non-selective model not only
applies to narrowband systems, but also to each subcarrier
in a wideband Orthogonal Frequency Division Multiplexed
(OFDM) system. In a typical OFDM system, the channel
gain can be well modeled as constant over a time-frequency
block whose size depends on the channel coherence time and
coherence bandwidth.

Summary of Results: In order to control the implementation
complexity, we restrict attention to serial concatenation of a
binary convolutional code with differential modulation over a
two-dimensional constellation. The main steps in our design
approach are as follows:

(a) Independent and identically distributed (i.i.d.) inputs cho-
sen from an appropriate two-dimensional constellation are
shown to approach the Shannon capacity of the (input power
constrained) block fading channel. As expected, at moderately
large Signal-to-Noise Ratio (SNR), Phase Shift Keying (PSK)
cannot attain Shannon capacity and amplitude/phase modula-
tion, also termed QAM,! is required. However, the capacity is
insensitive to the constellation shape. For example, offset PSK
rings, rectangular QAM, and aligned PSK rings are close to
capacity, as long as their shape parameters are optimized as a
function of the SNR.

(b) We employ differential modulation over amplitude and
phase, with Gray-like bit-maps, in a straightforward gener-
alization of differential PSK. An approximate Maximum A
Posteriori (MAP) block noncoherent demodulation scheme,
with complexity comparable to coherent demodulation, is used
to provide soft information to the outer decoder. Block demod-
ulation is necessary because standard two-symbol differential
demodulation incurs a loss for two-dimensional constellations.
However, brute force approaches to block noncoherent demod-
ulation have exponential complexity in the block length, while
our soft decision scheme has linear complexity.

(c) Standard turbo iterations between the outer decoder and

'We use the term QAM for any amplitude/phase constellation, even though
the constellations we ultimately recommend differ in shape from QAM
alphabets used in coherent systems.
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Fig. 1. Transmitter structure and channel model.

the inner noncoherent demodulator work well, as expected.
However, unlike the Shannon capacity, the performance is
sensitive to constellation shape. For example, aligned PSK
rings constellations perform much better than offset PSK rings
constellations for the differential bit maps that we use.

(d) An EXIT analysis, modified to account for non-Gaussian
soft output from the noncoherent demodulator, is employed
to explain the simulation results. In particular, it is shown
that aligned PSK rings have an EXIT curve that completely
dominates that of offset PSK rings, assuming a differential bit
map in phase and amplitude.

Relation to Prior Work: The standard approach to wireless
transceiver design is to estimate the channel using pilots,
and to then employ coherent demodulation assuming that the
channel estimates are perfect. There are two main drawbacks
of this approach: the overhead required for pilots to accurately
track rapid channel variations is a significant fraction of the
available bandwidth; and channel estimates based solely on
the pilots are suboptimal, since they do not exploit the bulk
of the transmitted energy, which is in the data. A number of
recent papers [1], [2], [3], [4] consider the alternative of turbo
noncoherent communication, with iterative joint estimation of
the channel and data (which does not need pilots, but can
exploit them if available).? This body of work, especially [4],
is the starting point for this paper, which adopts the same
basic transceiver architecture: an outer binary code, serially
concatenated with a modulation code amenable to noncoherent
demodulation. However, while prior work focuses on lower
SNR regimes and employs PSK constellations, we are able to
approach capacity for larger SNRs by using amplitude/phase
modulation. The key to accomplishing this is developing
a low-complexity implementable technique for noncoherent
block demodulation with soft decisions. While recent re-
sults [5] have shown the surprising result that ML or MAP
demodulation can be achieved with polynomial complexity,
these methods are still too computationally demanding for
typical applications, in contrast to the linear complexity of
coherent demodulation. In past work on block noncoherent
demodulation with PSK alphabets [4], [6], [7], joint channel
and data estimation is accomplished by quantizing the channel
phase into bins, in conjunction with a simple energy-based
amplitude estimator, and then using parallel coherent demod-
ulators for each bin. However, the amplitude estimator in [4]
does not work when the signal amplitude varies due to the use
of Quadrature Amplitude Modulation (QAM) constellations.
Furthermore, maintaining a large number of phase bins implies
that the complexity of block noncoherent demodulation is
still significantly larger (@) times larger, where @ is the

2See [5] for pilot-aided systems in which feedback from the decoder is
employed to refine pilot-based channel estimates.

number of phase bins) than that of coherent demodulation.
These shortcomings are addressed in this paper by providing
a more sophisticated amplitude estimator that is bootstrapped
with conventional two-symbol differential detection, and by
reducing the number of phase bins to two based on feedback
from the outer decoder after the first iteration.

The capacity of the block fading channel was computed by
Marzetta and Hochwald [8]. Their result can be interpreted
to indicate that, for moderate and low SNRs, and reason-
able channel coherence lengths, independent and identically
distributed (i.i.d.) Gaussian inputs are near-optimal. Chen et
al. [4] provide information-theoretic computations showing
that this capacity can be approached by the use of standard
PSK and QAM constellations (see also [9] for capacity com-
putations for the block phase noisy channel). Our capacity
computations are based on the techniques of [4], [8].
QOutline: The remainder of the paper is organized as follows.
The guidance from Shannon-theoretic computations is summa-
rized in Section II. Receiver processing is described in Section
III. Section IV describes the EXIT analysis for our scheme.
This, together with simulations of coded performance, is used
to guide constellation design in Section V and code choice in
Section VI. Finally, Section VII provides discussion supported
by further numerical results.

II. CHANNEL MODEL AND ENCODING STRATEGY

Figure 1 depicts the complex baseband transmitter and
channel model. The code block length is much larger than the
channel coherence length, which provides the time diversity
required to approach the ergodic capacity of the block fading
channel. The information sequence u is mapped to codeword
c of the binary channel code C and pseudo-randomly permuted
to the code-symbol sequence ¢ = {c¢[n|}. With the cardinality
of the modulation alphabet, A, equal to M, the code symbol
c[n] represents m = log,(M) permuted code-bits which
modulate the nth channel symbol, z[n]. Codewords in the
modulation code, x € M, belong in the T-fold product of
the symbol alphabet A7

Block fading model: The channel is modeled as constant over
disjoint blocks of T" symbols, where 7" is the coherence length.
Channel gains for different blocks are modeled as i.i.d. Letting
x denote a block of T transmitted symbols, the block of
received symbols is given by

y =hx+w, )]

where the channel gain h = ae’?? is a zero-mean, unit-
variance proper complex Gaussian random variable, denoted,
h ~ CN(0,1). This is the Rayleigh fading model, where
the channel amplitude, a, is Rayleigh, and channel phase, 6,
is uniform over [0,27]; and a and 6 are independent. The
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(a) 8-QAM: Offset PSK rings (b) 16-QAM: Lattice

Fig. 2. Conventional AWGN constellations with differential Gray-like bit-
mappings.

(a) 8-QAM: Aligned rings (b) 16-QAM: Aligned rings

Fig. 3. QAM constellations based on aligned concentric PSK rings and Gray-
like bit-mappings outperform conventional AWGN constellations in coded
noncoherent systems.

additive noise vector, w, is Gaussian, CA(0,20%Ir), where
Ip stands for the T x T identity matrix. The Rayleigh fading
model is equivalently defined by the conditional probability
density function (PDF) of the received symbols given the
transmitted symbols [8]:

exp{— tr([ZUQIT + xxﬂ}flyyﬂ) }
7T det (2021T + xxH)

The ergodic capacity of the block fading channel under various
input constraints can be computed using the model (2).

flylx) = (2)

Block fading approximation to continuously varying channel:
Since there is no absolute amplitude and phase reference
within a block, the signals over a block of length T' live
in a (T — 1)-dimensional manifold [10], which costs a rate
penalty of 1/7'. This can be intuitively interpreted as resulting
from the use of one symbol in the block as a amplitude/phase
reference, or pilot (whether or not this is explicitly done).
However, in practice, this rate loss can be avoided when
applying the block fading model to a continuously varying
channel, by overlapping successive blocks by one symbol.
Thus, by including the last symbol of the previous block as the
first symbol of the current block, we have 7' — 1 new channel
uses required for signaling in a (7' — 1)-dimensional manifold.
Of course, when applying the block fading approximation
to a continuously varying model, there are two sources of
performance loss: first, the approximation error in modeling
the channel gain as constant over a block, and second, the
loss due to not exploiting the continuity of the channel in
adjacent blocks explicitly for channel estimation. However,
these losses are expected to be small if the block length T is
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Fig. 4. Noncoherent capacity of 8- and 16-QAM constellations.

chosen appropriately, and the operating SNR is not extremely
high.

A. Differential Modulation for Amplitude/Phase Constella-
tions

The bits from the outer binary code are interleaved, and
fed to a differential modulator, using a generalization of
differential PSK to amplitude/phase modulation. As depicted
in Figures 2 and 3, we consider amplitude/phase constellations
of three basic shapes: offset PSK rings, aligned PSK rings,
and lattice QAM. Offset PSK rings consist of concentric rings
such that signal points are placed with even spacing around
each ring, but the placement is offset across rings. In aligned
PSK rings, the placement of signal points in different rings is
aligned along rays emanating from the origin. Lattice QAM
refers to rectangular point placement, which is a common
choice for coherent communication.

Figure 4 shows the results of Shannon capacity computa-
tions using the techniques of [8], [4], based on the channel
model (2). These show that both lattice QAM and aligned PSK
rings (with ratio of radii optimized) approach the capacity of
the block fading channel for moderately high SNR. For exam-
ple, in our coded simulations, an information rate of 1.8 bits
per channel symbol is achieved using 16-QAM constellations.
At this rate, the 16-QAM capacity as measured in Figure 4 is
within 0.5 dB of the unconstrained capacity reported in [4].
On the other hand, simulations show that aligned PSK rings
perform much better for our coded modulation scheme. Thus,
Shannon theory provides only rough guidance on constellation
choice, and design techniques that provide guidance on con-
stellation optimization for a specific coded modulation strategy
are required. We demonstrate that a suitable adaptation of
EXIT chart analysis is useful for this purpose.

III. NONCOHERENT RECEIVER PROCESSING

We first provide an overview of the receiver iterative pro-
cessing which involves soft information exchange between the
outer binary decoder and an inner block noncoherent demod-
ulator. The outer decoder employs a Soft-Input, Soft-Output
(SISO) BCIJR algorithm [11] as a building block. This section
is mainly devoted to describing the SISO noncoherent demod-
ulator, which has to handle the unknown channel. The key
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challenge is the reduction of complexity to levels comparable
with that of symbol-by-symbol coherent demodulation. Block
noncoherent demodulation can be viewed as joint estimation
of the data and the channel (which in our case is a complex
scalar modeled as constant over each block). We estimate the
channel amplitude for a block using a bootstrap phase which
employs classical two-symbol differential demodulation. The
uncertainty regarding channel phase is handled by quantizing
the unknown phase into a discrete set of hypotheses. For
each such phase bin, the BCJR algorithm (that accounts for
the memory due to inner differential modulator) can perform
coherent demodulation using the channel amplitude and phase
estimate. The final soft outputs are obtained by averaging over
the phase bins. After the first iteration, the number of phase
bins is reduced to two by exploiting the information from
the decoder, thus reducing the complexity of the noncoherent
demodulator to twice that of coherent demodulation.

A. Bootstrap amplitude estimation

An amplitude estimator, whose complexity is linear in the
product of the number of amplitude levels and size of the
modulation alphabet, is described. An amplitude/phase con-
stellation based on concentric PSK rings is assumed, but the
estimate is readily generalized. The polar representation of the
nth transmitted symbol is defined as z[n] = r[n] exp(jw[n]),
where 7[n] € R denotes the amplitude level of the nth symbol,
and w(n] is the phase. Conventional two-symbol likelihoods
do not require channel knowledge, and are used to obtain a
posterior distribution on r[n]. These amplitude posteriors are
then used to compute an energy based estimate of a. Note
that this bootstrap phase is not required of constant-amplitude
PSK signals.

The vector of two received symbols is

_lyln—1]] _ r[n — 1] wln — 1]
o= [ = Legeten] + [
= hx[n] + w(n].
Note that the phase of the (n — 1)th symbol is factored into

the channel without changing the density function. The two-
symbol conditional log-likelihood is given by

log  (y[n]|x[n]) =
I
202 HX[?”L]||2—|—202 1 g(H [ ]H +2 )+ )

where a is a constant that does not depend on x[n]. Defining
the posterior probability of the nth symbol amplitude 7[n] as
Un, We have
pin(r) = Pr(r[n] = rly[n +1]) o
.+ 1] =2).
TERXA:r[n]=r

The energy based channel amplitude estimate, @, is computed
with (3), where T denotes the coherence length of the channel
and y is a length T" block of symbols.

2 2
- 2T
42 = max {O, THYH g }
Zn:l ZTGR }Ln(T)T‘2

3
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B. Phase quantization

We first repeat an argument from [4] (and prior references
therein) to illustrate how to minimize the complexity entailed
by phase quantization. Consider a PSK constellation with
differential modulation. The absolute phase of a noiseless
received symbol is the sum of an initial phase and the phase
change corresponding to the bits indexing the transition. The
initial phase is the sum of the channel phase and the phase of
the previous symbol. If ¢ is the smallest angle by which the
constellation can be rotated while maintaining the same signal
points (e.g., ¢ = 5 for QPSK), we can synthesize any initial
phase by choosing the channel phase in the interval [0, ¢|, and
choosing the previous symbol appropriately. Thus, for block
differential demodulation, instead of quantizing the channel
phase over the entire interval [0, 27|, we can quantize it over
an interval [0, ¢], simply by allowing the first symbol in the
block to take arbitrary values.

The preceding argument generalizes to differential mod-
ulation with amplitude/phase constellations, as long as they
satisfy the following ¢-rotational invariance property.
¢-rotational invariance: Rotational invariance applies to am-
plitude/phase constellations that are rotationally symmetric
in the following sense: There exists an angle, ¢, for which
eIk y e A, forall z € Aand k € Z. If, further, the differential
bit-to-symbol mapping, v : {0,1}™ x A — A, satisfies the
condition v(c[n], e’**x[n—1]) = e/**v(cn], x[n—1]), k € Z,
the modulation code is referred to as ¢-rotationally invariant.

All of the examples considered in this paper satisfy the
preceding property with nontrivial ¢ (i.e., for ¢ < 2m). The
16-QAM lattice constellation has ¢ = 7/2, while 16-QAM
with aligned PSK rings has ¢ = /4.

By o¢-rotational invariance, the APPs averaged over the
unknown channel phase can be approximated by a discrete
average of the APPs produced by coherent demodulation over
(@) phase bins quantizing the interval [0, ¢], as follows:

[
Pr(cln]ly,a=a) = %/0 df Pr(c[n“y, h= dexp(j&))

I
-

1Q

T Q

q

Pr(c[n]ly,h = aexp(jdq/Q)). )

Il
=

where L = 27/ ¢.

Maps that do not have the rotational invariance property
(e.g. Block-DPSK [4]) require quantization over the full unit
circle, and thus an L-fold increase in complexity.

The BCJR algorithm used for coherent demodulation on
each phase bin views the differential bit map v as a unit-
rate/memory recursive convolutional code. To each trellis
edge, e, corresponds an initial and final state, s?(e) and s'(e),
input code bits, ¢(e), and output channel symbol, x(e). The co-
herent posteriori probability, p, (c|h) = log Pr(c[n] = cly, h),
of the code symbol, c[n], is computed in the logarithmic
domain, using

palclh) = max® (an—1(s"(€)) +n(e) + Bu(s"(€))) -

e:c(e)=c

The forwards/backwards recursions for o, and (3,, are defined
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as follows (h denotes the channel):
an(z) = max* (%(6) + an_l(sl(e))) ,

e:sF(e)=x
ai(z) = o P Ry[1], ha), =€ A
/Bn(x) = e:l'g}?e})(:a; (’Vn-i—l(e) + 5n+1(SF(6))) s
Br(z) = —logy(M), =z €A

The max-star function above is the usual logarithmic summa-
tion, defined as follows:

max*(2) = log( Y _ €?).

ZeF
ZeF

The branch metric 7, (e) of edge e is given by:
yn(€) = ma(c(e)) + 072 R(y[n], ha(e)),

where prior probabilities of the code-symbols, maq = {m,},
7 (c) = log Pr(c[n] = c¢), are initially uniform and then set
by the outer decoder through turbo processing.

Extrinsic posteriors, Aypy = {A,}, are then computed via
(4), which in the log-domain translates to

Aa(€) = log (Pr(cn] = cly,a = &)) — ma(c)
~ max” (pa(claexp(joa/Q) ) - ().

This yields extrinsic APPs for the outer decoder.

C. Phase branch pruning

Noncoherent demodulation implemented using coherent de-
modulation over () phase bins incurs a (-fold complexity
increase relative to coherent systems. Simulations show, how-
ever, that a genie-based system, which uses only the phase bin
which is closest to the true channel phase, yields comparable
performance to Q-fold averaging. We therefore investigate a
reduced complexity implementation, which prunes the number
of phase branches, especially in later iterations when we have
soft information from the outer decoder. For this purpose, a
generalized likelihood ratio test (GLRT) approach for phase
branch selection is introduced, where the observation is the
received signal and extrinsic information from the decoder,
and the parameters to be estimated are the channel and the
transmitted data.

The GLRT operates with the joint likelihood function,
f(T|x, h), of the “observation” T' = {y, 7w}, given x and
h. Phase estimation with the GLRT involves maximization of
the likelihood function first over transmitted symbol vectors
and then over the quantized channel phase (5). The GLRT is
is thus viewed as a joint maximum likelihood estimate of 6
and x based on the observation TI'.

Ocrrr(y) = arg max max f(7]x, dexp(jéq/Q))-  (5)

The inner maximization, f(y|X,,dexp(j¢q/Q)), represents
the conditional probability of the maximum likelihood se-
quence estimate (MLSE), %,, on the gth phase trellis. We
propose to estimate the likelihood of the MLSE sequence,
typically computed with the Viterbi algorithm, with the for-
ward recursion of BCJR algorithm, with max,e 4(ar(x)|h =
aexp(joq/Q)). This approximation is found to be accurate
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in numerical comparisons. Since {«r} are computed in the
trellis processing, they are a natural choice for measuring the
reliability of soft decisions output by each phase branch. This
metric, when used to choose the best two phase branches
after the first receiver iteration (this is found to provide much
better performance than simply choosing the best branch),
yields performance within 0.1 dB to that of averaging over all
phase bins. Thus, after the first iteration, noncoherent block
demodulation requires only twice as many BCJR computations
as coherent demodulation of the same code.

IV. EXIT FUNCTIONS OF NONCOHERENT CODES

We study the convergence behavior of iterative noncoherent
demodulation and decoding via extrinsic information transfer
(EXIT) charts [12], [13]. The EXIT chart of a noncoherent
code is a graphical description of iterative noncoherent de-
modulation and decoding, portraying the mutual information
between decoder messages communicated and code-symbols
estimated, as evolved through turbo-processing. Consider first
the inner modulation code, that maps the code bits, ¢ = {¢x },
to channel symbols. The noncoherent block demodulator com-
putes posterior probabilities, Ay = {Ax},

Pr(cy =0l {y})
Pr(cy = 1T, {y})

where IInq = {II;} denotes the code-bit priors, with I, =
lo %. The EXIT function A, for modulation code
M, describes the mutual information of the code-bits and
APPs, a°® = I(c;Apq), as a function of the input mutual
information (of the code bits and priors), a"* = I(c; ), and
channel SNR, according to a°** = A(a", SNR). Conditional
probability density functions of decoder priors are often well-
modeled as i.i.d., with a single-parameter family of Gaussian

densities [13]:

Ak = log — Hk,

), ~ N (£27,47), v € [0,00). (6)

This model for the code-bit priors can be interpreted as log-
likelihoods that arise from BPSK transmission, {(—1)°*}, of
codeword {c}, over an AWGN channel at SNR ~. In this
case, a’™ can be computed with the simplified estimate (see

[13]),
a"=FE [1 - log(l + exp(Hk))|Ck = 1] : @

With M discrete, we have A : [0,1] — [0,1], and the
parameter -y is varied to generate a'™ over the support of A.
The output mutual information, a®**, is computed empirically
by measuring conditional probability density functions of A
that are generated by the decoder fed with Il as in (6).
‘We next consider the EXIT function, B, of the outer channel
code, C. The APP decoder for C computes posterior proba-
bilities of the code-bits, A¢, with the priors Il¢ (permuted
extrinsics from APP demodulation). Letting b* = I(c,Il¢)
and »°“* = I(c,A¢) denote input and output decoder mu-
tual information, the decoder EXIT function is given by
bout = B(b'™). In many cases, log-APPs produced by the
outer channel decoder, e.g. the convolutional decoder, are well
modeled as Gaussian. Then, a°“!, the demodulator output
mutual information, is accurate when computed empirically
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from demodulator APPs that are generated from the priors
(6). However, we find that the extrinsic information, A,
produced with block noncoherent demodulation does not fit a
Gaussian model, due to the relatively short channel coherence
length, so that estimates of the decoder EXIT function based
on Gaussian priors do not accurately model density evolution
for the noncoherent demodulator.

The following modified EXIT chart technique is used to
compute the decoder EXIT function. Since decoder priors are
de-interleaved code-symbol posteriors from the demodulator,
the following two-stage approach is proposed: First, Gaussian
code-bit priors are noncoherently demodulated; demodulator
input mutual information, a’”, is computed with (7) and output
mutual information, a®“¢, is estimated empirically. Then, the
resulting extrinsic (de-interleaved) code-bit APPs are sent
to the decoder as priors, II¢, now accurately modeling the
priors observed from noncoherent processing. Decoder output
mutual information is computed empirically from the resulting
decoder extrinsics, A¢. The parameter «y is varied to generate
a range of priors through the demodulator as described.

The sequences of output mutual information values that
are realized through iterative demodulation and decoding are
denoted {ag"'}, {b3“*}, respectively. The following properties
of EXIT charts are relevant to the code and constellation
design problem.

Property 1: The information Bit Error Rate (BER) ap-
proaches zero if and only if the decoder output sequence
{b3“'} converges to one. An equivalent condition for code
convergence is given by B! < A. Final decoder output
mutual information values less than one give rise to an error
floor.

Property 2: Channel SNR provides an ordering of demod-
ulator EXIT functions such that if A and A’ are measured at
SNRs 7 and 7/, respectively, with 7 < 7/, then A < A’. The
convergence threshold of a code is the SNR threshold, 7, for
which the output mutual information converges to one if and
only if SNR> 7.

Property 3: The area property of trellis decoders:
fol B~' = e, where rc denotes the code rate. This
property, proved only for erasures channels [14], is observed
empirically for a wide variety of channels and serves as
the basis for EXIT chart based optimization techniques. We
show that this property implies that convolutional outer codes
are near-optimal when the inner code is unit-rate differential
modulation code.

As a rule of thumb, the operating SNR does not affect
the shape of the demodulator transfer function but rather its
vertical offset. Since the channel decoder does not directly
observe channel output, its transfer function is unaffected by
SNR. Figure 5 illustrates Property 2 for 16-ary constellations.
EXIT chart analysis of noncoherent codes provides a quantita-
tive framework for comparing signal alphabets, outer channel
decoders, or complexity reducing techniques without having
to simulate BER performance. In particular, Figure 5 shows
that 16-QAM based on aligned PSK rings is superior to the
16-QAM lattice constellation over a wide range of SNR.
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Fig. 5. EXIT functions of 16-ary amplitude/phase constellations.

V. CONSTELLATION DESIGN FOR CODED NONCOHERENT
MODULATION

We consider the design of amplitude/phase constellations
and bit-to-symbol maps well-suited for turbo noncoherent
communication over the Rayleigh block fading channel. The
main tools for design and optimization of the modulation
codes are noncoherent capacity and modified EXIT chart
analysis, where we use the term “noncoherent capacity” for
the mutual information attained by various input distributions
for noncoherent communication over the block fading channel.
Marzetta and Hochwald [8] have shown that the unconstrained
noncoherent capacity is achieved by 7'-dimensional isotropi-
cally distributed vectors, with E[x"x] = T'. This is equivalent
to sending i.i.d. Gaussian symbols, with the energy over a
block of 7' symbols normalized to a constant. Intuitively,
therefore, suitable modifications of designs similar to those
employed for the AWGN channel, for which i.i.d. Gaussian
input is optimal, are expected to work for the noncoherent
Rayleigh block fading channel. In particular, QAM constel-
lations approximate Gaussian input distributions more closely
than PSK, especially for a large number of points. We first
consider 16-QAM lattice constellation with differential Gray-
like bit maps, as in Figure 2. The bit maps in this case
index transitions within and between QPSK sub-constellations
within the QAM constellation. However, in simulations of a
coded noncoherent system, such lattice QAM constellations,
at least in conjunction with the bit maps we have considered,
perform poorly, not delivering on the promised gains over
PSK. We therefore consider an alternative class of QAM
constellations, in the form of aligned PSK rings. These con-
stellations, along with Gray-like bit maps for encoding data
in the amplitude and phase transitions, are depicted in Figure
3. The ratios of the radii are optimized using capacity. As
discussed, these constellations are found to perform much
better than lattice based QAM.

Figure 6 compares the simulated BER of aligned PSK rings
constellations with lattice-based 16-QAM and 8-QAM. Stan-
dard convolutional codes [15], with a memory of four bits, are
employed for an overall data rate of 1.35 bits/channel symbol.
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Fig. 6. Coded performance of 8- and 16-QAM constellations.

The rate-1/2 code (with 8-QAM) has generator polynomial
G = [23 35] (octal representation). The rate-3/8 code (with 16-
QAM) is obtained by randomly puncturing a rate-1/3 mother
code with generator polynomial G = [25 33 37].

The figure shows the gain in using aligned PSK rings over
rectangular lattices: 1 dB for 16-ary constellations, and 0.2
dB for 8-ary constellations. It also displays the advantage
of constellation expansion with heavier coding: for the same
information rate, 16-QAM aligned PSK rings outperform
8-QAM aligned PSK rings by 0.5 dB. This advantage is
not realized for poor constellation and bit map choices: the
lattice 16-QAM performs significantly worse than the 8-ary
constellations at the same information rate.

The advantage of aligned PSK rings is understood via EXIT
analysis. Figure 5 shows that, at the same SNR, the EXIT
chart for aligned PSK rings 16-QAM is strictly greater than
that of lattice 16-QAM with noncoherent block demodula-
tion and Gray-like differential bit maps. This implies that
the convergence threshold of any outer code will be larger
for lattice 16-QAM. A possible intuitive explanation for the
superior performance of aligned rings is as follows. For blocks
suffering from poor SNR due to fading, the aligned PSK rings
effectively collapse to a more robust PSK constellation. Thus,
while the bits encoded in amplitude transitions are difficult
to recover, the bits encoded in phase transitions are relatively
better preserved. For lattice constellations, on the other hand,
all bits are affected adversely in a faded block. As SNR and the
coherence length increases, AWGN-like QAM constellations
are preferable, for their better nearest neighbor distances.
However, this is not the operating regime for the turbo-like
system considered here, where we expect a relatively high
uncoded BER. Thus, artful coupling of the constellation shape
and bit-to-symbol map is the key to designing bandwidth
efficient symbol alphabets for noncoherent systems.

Thus far, we have only considered unit-rate rotationally-
invariant differential modulation. These simple modulation
codes are well-suited to block noncoherent processing for
their low-complexity demodulation and bootstrap function.
We now wish to quantify the performance penalty, if any,
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Fig. 7. The modulation code bound for unit-rate differential modulation with
aligned PSK rings 16-QAM is about 1 dB from capacity.

associated with this restriction (e.g., as opposed to using more
sophisticated trellis-based rotationally invariant modulation
codes) for a serially concatenated system with an outer binary
code. To this end, we apply the following theorem, which
provides an upper bound on the achievable rate as a function
of SNR for a given inner modulation code, as a function of
its EXIT curve.

Theorem 1: Modulation code bound. For a fixed inner mod-
ulation code with alphabet size M in a serially concatenated
noncoherent system with channel coherence length 7', the
mutual information is bounded by

IrM(SNR) zlogz(M)% / A(u, SNR)du, (8)

where A denotes the demodulator EXIT function for a given
SNR.

Proof: We apply the EXIT chart area property, which states
that the rate of the outer decoder equals the area under its
exit curve, B!, This implies that the best possible (typically
unrealizable) choice of outer code is when the decoder curve
perfectly matches the inner demodulator curve at convergence.
Thus, the highest possible rate of the outer code for conver-
gence at a given SNR is the area under the demodulator curve
at that SNR. OJ

Figure 7 compares the noncoherent capacity of 16-QAM
with the preceding upper bound on the achievable rate when
restricted to using a unit-rate differentially modulated inner
code with Gray-like bit maps. The result shows that there is
a 1 dB loss for this restriction for the case of an aligned PSK
rings alphabet. The loss for a lattice alphabet is around 1.8
dB, depending on the rate.

Finally, we comment on block differential modulation, a
unit-rate modulation scheme that is an alternative to standard
differential modulation. In block differential modulation, in-
formation is encoded in transitions in amplitude and phase
relative to a fixed symbol: in practice, the reference symbol
might be the first symbol of the current block, which would
be the same as the last symbol of the previous block, if
successive blocks overlap by a symbol. For turbo noncoherent
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Fig. 8. Rate-1/2 channel codes with 16-QAM and block noncoherent demodulation.

communication with QPSK alphabets [4], block differential
modulation was found to yield the same convergence threshold
when paired with a turbo-like code as standard differential
modulation paired with a convolutional code. However, as
mentioned earlier, demodulation for block differential mod-
ulation is significantly more complex, requiring phase quan-
tization over [0, 27|, compared to the much smaller interval
required for standard differential modulation. Furthermore, the
bootstrap mechanism that we employ for amplitude estimation
using standard differential modulation does not work well with
block differential modulation. A possible explanation is that
there is less averaging in the amplitude estimator for block
differential modulation, since the fixed reference symbol must
always be involved.

VI. CHANNEL CODING FOR NONCOHERENT MODULATION

Given the constellation and bit-mapping, modified EXIT
charts guide the appropriate choice of outer channel code.
Figure 8 compares the EXIT functions of aligned PSK rings
16-QAM at (a) 6.5 dB when paired with a standard rate-1/2
convolutional code with generator polynomial G = [23 35]
and (b) 7.9 dB when paired with rate-1/2 irregular LDPC
code optimized for the AWGN channel [16]. In both cases, the
information rate is 1.8 bits per channel symbol. The number
of LDPC decoder iterations used to generate a sample path is
10.

Figure 8 demonstrates that a standard convolutional code
is well-matched to unit-rate aligned-rings 16-QAM, yielding
at least 1 dB performance improvement from the irregular
LDPC code. Note that optimization of the LDPC degree
sequence for the specific context of noncoherent demodulation
with block fading channel can potentially close this gap. We
claim, however, that convolutional coding is near-optimal for
the noncoherent amplitude/phase modulation. Taking 6.5 dB
(Ep/Np) as the approximate convergence threshold, as shown
in Figure 8(a), and comparing to the modulation code bound
for aligned rings 16-QAM (Figure 7), I (1.8 bits/symbol) =
6.0 dB (E,/Ny), we observe that an optimized irregular code
could improve the convergence threshold by at most 0.5 dB.

Note that the gain for optimizing the LDPC code would be
the same (with respect to the depicted convolutional code).
Since achieving the modulation code bound requires infinitely
many demodulation and decoding iterations (by definition the
decoder transfer function is perfectly matched and coincident
with the demodulator function), we infer that the convolutional
code is is near-optimal for a unit-rate differential modulation
code.

VII. RESULTS AND DISCUSSION

We first consider simulated BER performance of the
aligned-rings 16-QAM constellation with unit-rate Gray-like
differential modulation and the standard rate-1/2 convolutional
code, shown in Figure 9. The angle of rotational invariance,
¢, is w/4 for aligned PSK rings 16-QAM constellation. The
full complexity noncoherent receiver and the first iteration
of the reduced complexity receiver employ () = 5 phase
quantization bins, {gbq/Q}qu_ol, which is found to closely
approximate the performance with an arbitrary number of
quantization levels. The overall codeword length is 64,000
bits. Accounting for a 1/7 rate-loss for differential modulation
with i.i.d. block fading, at a coherence length of T' = 10,
the corresponding data rate is 1.8 bits per channel symbol.
Noncoherent capacity computations, in Figure 4, show a 1.5
dB advantage for 16-ary amplitude/phase constellations over
16-PSK at this rate. The aligned PSK rings constellation
achieves this theoretical advantage. The system is operating
around 1.7 dB from capacity, as measured at a BER of 1074,
The gap to capacity is supported with the EXIT analysis of
Sections V and VI, which attributes roughly 1 dB for the use of
unit-rate modulation and 0.5 dB for non-ideal channel coding.
The EXIT chart based convergence threshold estimate is found
to be slightly optimistic due to the variability of block fading
channel realizations. Finally, there is a small loss of 0.1 dB
in the reduced complexity receiver for GLRT based selection
of the best two phase branches.

We further compare the performance to a coded coherent
transceiver with Gray-coded 16-QAM (lattice constellation)
and the block fading channel. For this purpose, one symbol
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TABLE I
INFORMATION RATES ATTAINED USING TURBO DESIGNS BASED ON ALIGNED PSK RINGS WITH GAP TO CAPACITY AND IMPROVEMENT OVER PSK

Bits/channel use | Constellation size | Outer code rate | Gap to capacity (dB) | Improvement over PSK (dB)
0.675 3 74 1.8 02
1.35 8 172 1.8 0.4
1.35 16 3/8 1.8 1
1.8 16 172 1.7 1.5
per T channel symbols is used as a pilot. The ratio of pilot o
energy to total energy over a block of symbols is optimized X
using the BER, and is found to be 25% for the case of | \
one pilot symbol and T" = 10. The case of multiple pilots \ B
with rate matched outer codes was also considered, but did o | !
. E \ E
not perform as well for the studied coherence length. The \ |
. . . \
irregular LDPC codes were constructed using a Progressive - \ p
Edge Growth (PEG) algorithm (see [17]) according to asymp- W \ |
totically optimal degree distributions for the AWGN channel | :
[18]. The codeword length is 64,000 bits and information ol " | |
rate is 1.8 bits/symbol. The BER curve corresponding to 100 :
LDPC iterations is depicted in Figure 9.. This comparison 16-QAM with full complexity
shows the advantage of noncoherent techniques for the SNR 16—0/?]'\/' 16-PS;1K - - - 16-QAM with phase selection
. . . . noncol noncol . .
regime considered. In particular, for large QAM constellations, capacity: capacity: | éG;IPSKtV‘I'_'ggUC" Codmz'?gt)bAM
where the SNR is large, the cost of channel estimation oL [51508B 6.65dB | ~Oneren coded 12~
5 55 7.5 8 8.5 9

significantly impacts performance in moderate-to-fast fading
channels. The simulation results provided, for idealized block
fading channels, show that practical noncoherent systems are
able to improve performance by 1 dB.

Table I summarizes the computer simulation results, and
indicates that serial concatenation of a convolutional code and
differential amplitude/phase modulation approaches Shannon
capacity for a block fading channel model, and performs
significantly better than DPSK for moderately high SNRs
and constellation sizes of 16 or larger. We have developed
modified EXIT analysis tools for constellation and bit mapping
choice, and for matching outer and inner codes. An important
potential application is to the design of OFDM-based fourth
generation wireless cellular systems: the complexity of our
turbo noncoherent system is comparable to that of coherent
systems with turbo-like coded modulation, so that noncoherent
architectures are now implementable. However, we are still
about 1.8 dB from capacity for an information rate of 1.8
bits/symbol, using a 16-ary amplitude/phase constellation.
Since the convolutional outer code appears to be near-optimal
if unit-rate differential modulation is used as the inner code,
one possible approach to close the gap may be to employ a
lower rate inner code, alleviating the 1 dB loss for unit-rate
modulation assigned by the modulation code bound (8). Other
approaches include suitably optimizing the degree distribution
of an LDPC outer code, with different possible choices of
inner modulation code. It is also important to quantify how
much of the gap to capacity can be closed simply by increasing
the code length, or by increasing the constellation size and
decreasing the outer code rate, while still employing a unit-
rate inner differential modulator.

In practice, the fading gain for a mobile channel varies
continuously with time. However, the block-wise constant
approximation for channel gains works well for the settings
found in current and projected commercial digital cellular
systems. For example, block fading models are well-suited

7
E/N, (dB)

Fig. 9. Performance of coded noncoherent 16-QAM receivers with Rayleigh
block fading, channel 7' = 10. Approximately 1.5 dB is gained over the
equivalent noncoherent 16-PSK system. Also shown is the performance of a
coherent LDPC coded 16-QAM transceiver in which the number and power
ratio of the pilots is optimized.

for channels that arise in frequency hopping or Hybrid-ARQ
systems. Further, we conjecture that, with appropriate choice
of coherence length, the capacity of the block fading model
should be close to that of a continuously varying channel for
SNRs typical of practical systems. It is of interest to give
precise shape to this intuition in the context of a specific
continuously varying channel model.

While we have considered relatively small normalized
Doppler frequencies (where the normalization is relative to
the symbol rate) typical of outdoor cellular wireless systems,
there are other situations in which the normalized Doppler
may be large enough that a block fading approximation
breaks down even at low SNR. It is of interest to explore
alternative structures for turbo noncoherent communication in
such settings, with preliminary work in this direction reported
in [19], [9].
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