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ABSTRACT

Our recently introduced JPEG steganographic method called
Yet Another Steganographic Scheme (YASS) can resist blind
steganalysis by embedding data in the discrete cosine trans-
form (DCT) domain in randomly chosen image blocks. To
maximize the embedding rate for a given image and a speci-
fied attack channel, the redundancy factor used by the repeat-
accumulate (RA) code based error correction framework in
YASS is optimally chosen by the encoder. An efficient method
is suggested for the decoder to accurately compute this redun-
dancy factor. We also show experimentally which DCT coeffi-
cients are better suited for hiding and detection under various
attacks. The effectiveness of YASS for robust steganography
is demonstrated for certain attacks.

Index Terms— randomized hiding, steganography, ste-

ganalysis, repeat-accumulate code, redundancy factor

1. INTRODUCTION

Steganography is the art of secure communication and is

aimed at resisting steganalysis, which is the art of detect-

ing the existence of the secret communication. Many pop-

ular steganographic methods (such as F5[1], model-based

steganography[2], OutGuess [3]) can now be detected using

blind steganalysis schemes (such as [4, 5]). These detection

schemes are blind in the sense that they are applicable to a

variety of steganographic methods. The detection methods

use feature vectors that incorporate higher-order joint statis-

tics - the most successful method being the self-calibration
process [4] that can reliably estimate the cover statistics from

the available stego signal.

Our recently proposed steganographic method called Yet
Another Steganographic Scheme (YASS) [6] resists the above

mentioned blind steganalysis schemes, albeit with a relatively

low hiding capacity. The importance of YASS for secure

steganography was independently verified in [7]. In YASS,

a grid of bigger blocks (of size B>8 where B is called the
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big-block size) is formed from which an 8×8 block is cho-

sen randomly to hide data. The steganalyst computes the

image features (self-calibration process) assuming a regular

8×8 grid and hence gets out-of-sync with the randomly cho-

sen blocks used for hiding, resulting in stego features that do

not directly capture the modifications done to the image af-

ter hiding. Since the embedding grid does not coincide with

the JPEG grid, the JPEG compression after hiding introduces

many errors - the embedded data can still be recovered us-

ing error correction codes of suitable redundancy. Due to the

high rate of erasures in our data hiding framework [8], repeat-

accumulate (RA) codes [9] are used.

An active adversary is considered here who, after intercept-

ing the signal in a channel, may introduce some mild distor-

tion, while maintaining the signal’s perceptual transparency.

For the active steganographic framework, the embedded data

has to be perfectly decoded even after these attacks - therein

lies the utility of the RA coding framework in YASS.

2. PROBLEM MOTIVATION AND CONTRIBUTIONS

Maximizing the Hiding Rate Using Optimum Coding Re-
dundancy at the Encoder and the Decoder

With an increased redundancy factor (q) in the RA

framework, the hiding rate decreases while the robustness to

channel distortions increases. The hiding rate is maximized

if the encoder uses the minimum q that guarantees zero

bit error rate (BER) for a given image, a known attack
channel and hiding parameters that ensure statistical security.

This redundancy factor is referred to as qopt in subsequent

discussions. The decoder knows the embedding method and

the error correction code (RA) used, but not the q used at

the encoder. We present an efficient method by which the

decoder can correctly estimate the q used by the encoder.

Frequency Domain Analysis of Hiding and Detection
for Different Attacks

The channel distortions can be due to a variety of attacks,

apart from just JPEG compression. The hiding rates com-

puted for the different classes of attacks, with varying attack
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levels, indicate the robustness of YASS to these attacks. We

also study how the detection accuracy and the embedding rate

vary with the choice of the frequency band used for hiding.

Thus, the frequency domain analysis helps the steganographer

and the steganalyst to decide on the best bands for hiding and

detection, respectively, for a given attack.

3. FINDING THE OPTIMUM CODING
REDUNDANCY FACTOR AT ENCODER AND

ESTIMATING IT ACCURATELY AT DECODER

The serial concatenated turbo (RA) code based error correc-

tion is used in our data hiding setup - Fig. 1 shows the whole

framework except for the iterative decoding part at the RA

decoder. Let the total number of possible hiding locations in

the image be �. Using a redundancy factor of q, the maximum

number of embeddable databits, denoted by N , equals ��/q�.

The encoder repeats the N -bit data sequence u, as a whole,

q-times (1), instead of repeating each bit q times. As is shown

later, this makes it easier to compute q at the decoder using

the auto-correlation (8) of the RA-encoded sequence.

Steps involved in mapping from u to y at the encoder
[r(i−1)N+1r(i−1)N+2. . .riN ] = [u1u2. . .uN ], 1 ≤ i ≤ q (1)

x = π(r), where π is the interleaver function (2)

y1 = x1, yn = yn−1 ⊕ xn, 2 ≤ n ≤ Nq (3)

After data embedding, we get a ternary sequence z of {0, 1, e}
based on what is actually embedded, where e denotes an era-

sure (Fig. 1). When a quantized discrete cosine transform

(DCT) term in the image lies in the range [-0.5,0.5], an era-

sure occurs - this maintains perceptual transparency [8]. For

DCT terms of higher magnitude, every DCT term is quantized

to the nearest odd/even integer to embed 1/0, respectively.

The ternary sequence obtained from the hiding locations in

the noisy received image, decoded using the same principles

used while embedding by the encoder, is called ŷ.

At the encoder side, the sender transmits a sequence u, em-

beds the RA-encoded sequence y in the image, subjects it to

known attacks and finally obtains ŷ from the image. Thus, by

simulating the exact attack channel, the 2×3 transition prob-

ability matrix, p(ŷ|y) can be computed. The capacity C, for

the channel that maps y to ŷ, is obtained by maximizing the

mutual information I(Y, Ŷ ) between the sequences y and ŷ
(4) - a discrete memoryless channel is assumed here.

C = max
p(y)

I(Y, Ŷ ) = max
p(y)

∑
y

∑
ŷ

p(y, ŷ) log
{

p(y|ŷ)
p(y)

}
(4)

From a capacity perspective, the minimum redundancy factor

needed for perfect data recovery, assuming an ideal channel
code, is qmin = � 1

C �. Thus, the minimum possible value of

qopt (q needed for perfect data recovery even after channel

distortions) for the RA code is qmin. The sender simulates

the decoder and attempts to recover the embedded databits by

varying q. An upper limit (qmax) is set on the maximum re-

dundancy factor to be used. Thus, the search for qopt, needs

to be done in the range [qmin, qmax] - it will need at most

log2(qmax − qmin) searches. It is assumed here that the en-
coder knows the exact attack, allowing it to compute qopt pre-

cisely. In practice, the range of attacks may be known - the

encoder can then design qopt based on the worst-case attack.
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Fig. 1. The data hiding system using RA-code based error

correction, where q is efficiently estimated at the decoder

In (5) and also later in (7), it is assumed that the output of

⊕ is an erasure if any of the input bits is erased.

Steps involved in mapping from ŷ to r̂ at the decoder
x̂1 = ŷ1, x̂n = ŷn ⊕ ŷn−1, 2 ≤ n ≤ Nq (5)

r̂ = π−1(x̂), where π−1 is the deinterleaver function (6)

Since the decoder knows the hiding method and assuming that

the image size is not altered by the attacks, it can compute �
- the total number of possible hiding locations. Let the ac-

tual q value used by the encoder be qact. If the decoder as-

sumes q=q′, the number of databits equals ��/q′�. In an ideal

case, the sequence r̂ will be exactly equal to r, where r con-

sists of the input message sequence u, repeated as a whole.

Thus, if r̂ is circularly shifted by the assumed input message

length ��/q′�, the normalized correlation between the origi-

nal and the shifted sequences Rr̂,r̂(q′) (8) will be very high

if q′=qact. In (7), b(q′) is the sequence obtained after per-

forming element-wise ⊕ between the original and shifted se-

quences, where shift k = ��/q′�. Rr̂,r̂(q′) (8) is the fraction

of 0’s in b(q′) (matches in two corresponding bits after ⊕ re-

sult in 0’s), without considering the erasures.

b(q′) = ({r̂1. . .r̂kq′} ⊕ {r̂kq′−k+1. . .r̂kq′ r̂1. . .r̂kq′−k}) (7)

and shift k = ��/q′� is the assumed number of databits

Rr̂,r̂(q′) =
Number of 0’s in b(q′)

Number of 0’s and 1’s in b(q′)
(8)

Qtop =
{

q′ : Rr̂,r̂(q′) >= 0.9×( max
q′≤qmax

Rr̂,r̂(q′))
}

(9)
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The correlation is also high when the shift equals a multiple

of the actual message length, i.e. q′=qact/m, m ∈ Z
+.

Apart from the correlation peaks at qact and its sub-multiples,

other peaks may occur due to errors and erasures. In the

experiments, the set of q values, Qtop (9), at which the corre-

lation exceeds 90% of the maximum Rr̂,r̂ value, are selected

- the 90% cutoff was empirically determined. The turbo

decoder is then run for these q values and the log-likelihood

ratios (LLR) are computed for the extracted databits in each

case. It is seen that due to a noisy channel, decoding may

converge (two consecutive iterations produce the same output

sequence) at values other than qact/m, m ∈ Z
+. However,

the LLR value, averaged over the databits, is high only when

perfect decoding occurs. It is seen that the maximum average

LLR values occur only at qact and its sub-multiples. Thus,

the solution is to consider the maximum of these q values as

qact, as shown in Fig. 1. This method of estimating q for RA

encoding is found to work even at high erasure rates (≥ 95%).

Observations about the q-estimation method
• The use of auto-correlation based peaks reduces the search

space for q while the average LLR-based measure, followed

by taking the maximum, helps to identify the actual q.

• For our experiments, the search range for q was [2, 50].
• Though the correlation in r̂ is used for q-estimation, this

correlation is not detectable by an adversary; r̂ is obtained

from ŷ only after applying the deinterleaver (π−1) - the key

to generate π−1 is not known to an adversary.

• The q-estimation method is generic enough to be used for

any hiding scheme which uses RA-q based error correction.

4. FREQUENCY DOMAIN ANALYSIS FOR
VARYING ATTACKS AND ATTACK LEVELS

4.1. Capacity Estimation Along Individual Coefficients

For different attacks and attack levels, hiding is performed

along individual bands and the respective hiding capacities

are computed using (4). A big-block size [6] B=9 and a design

quality factor QFh of 70 are used for hiding. For capacity

estimation, we use 500 images, from the MM270K database1.

The average hiding rate is reported in terms of the bpnc (bits

per non-zero coefficient) in Table 1.

In natural images, the lower frequencies are generally

larger in magnitude than the mid frequencies and have more

coefficients eligible for hiding. From Fig. 2(a), DCT co-

efficients {1, 6} are nearest to the DC term, followed by

{2, 7, 11}, and then {3, 8, 12, 15}. Hence, the hiding capacity

is generally maximum for {6, 1}, followed by {2, 7, 11}, as

seen from Fig. 2(b)-(h).

Since YASS is a JPEG steganographic method, the images,

after the various attacks as shown in Fig. 2(b)-(h), are JPEG-

compressed at an output quality factor of QF o. To study the

1downloaded from http://www-2.cs.cmu.edu/yke/retrieval

effect of just the JPEG-2000 based compression (Fig. 2(b)), a

QF o of 99 is used along with it to minimize the JPEG-based

distortion. For JPEG2000, the ratio between the number of

bits representing the compressed and original images is de-

noted by CR - higher CR denotes less severe compression.

For more severe JPEG and AWGN attacks (Fig. 2(c)-(d)),

{6, 11} have higher capacity, followed by {1, 7, 15, 2} . For

more severe gamma variation (|γ − 1| ≥ 0.05), the differ-

ent bands have almost the same capacity with {6, 11} doing

marginally better than {7, 1, 2, 12} (Fig. 2(h)). The individ-

ual hiding capacities are much lower for the averaging, me-

dian filtering and Gaussian blur based attacks, compared to

the others (Fig. 2(e)-(g)). A mild attack using any of these

methods can make secure hiding at practical rates impossible

using YASS. Hence, for the hiding rate comparison in Table 1,

these attacks are not considered.

In [6], it is shown that for QFo=75, YASS-based hiding us-

ing B=9 and QFh=70 is statistically undetectable. In Table 1,

the effective attack consists of a (JPEG2000/AWGN/gamma

variation) based attack, followed by JPEG compression at

QFo=75. It is seen that the reduction in bpnc over just

the JPEG attack is about 10% for a JPEG2000 attack with

CR=0.15, AWGN with SNR=45dB, and gamma variations

with |γ − 1| = 0.02.

Table 1. Hiding rate comparison for various attacks - each

attack is followed by JPEG compression using QFo=75. The

bpnc using only the JPEG attack at QFo=75 is 0.1087.

JPEG2000 AWGN Gamma:γ < 1 Gamma:γ > 1
CR bpnc SNR(dB) bpnc γ bpnc γ bpnc

0.10 0.0698 40 0.0741 0.95 0.0686 1.05 0.0675

0.15 0.0978 45 0.0958 0.98 0.0959 1.02 0.0942

0.20 0.1073 50 0.1042 0.99 0.1028 1.01 0.1027

4.2. Detection Results for Individual DCT Coefficients

We conduct the steganalysis experiments on 4500 JPEG im-

ages, from the MM270K database, compressed using QF=75.

Half of the images are used for training and the other half for

testing. We use a support vector machine (SVM) based clas-

sifier for steganalysis, where the SVM is trained using Pevny

and Fridrich’s 274-dimensional feature that merges Markov

and DCT features [4]. The probability of classifying a test

image correctly as cover or stego - the detection accuracy Pd

(Pd ≈ 0.5 implies undetectable hiding, and as the detectabil-

ity improves, Pd increases towards 1) is obtained for different

attacks and using different frequency bands. Both the cover

and stego images suffer the same attacks and hiding occurs

in the same band for the training and test sets. For hiding,

B=9 and QFh=50 are used - a lower design QF is used to

magnify the difference in the detection accuracy, across the

various bands. For AWGN, Pd ≈ 0.5 for all the individual

bands - hence, it is not included as an attack in Fig. 3.

In general, the bands that are able to hide more ({6, 1})

should also be better for detection. From Fig. 3, this holds true
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for JPEG, JPEG2000, and gamma variation attacks. How-

ever, for averaging ({7, 3}), unsharp masking({8, 3}), me-

dian filtering ({3, 7}) and Gaussian blur({3, 15}) - some mid-

frequencies are more detectable than the {6, 1} coefficients.

In the future, we shall consider frequency-based noise mod-

els for the various attacks to explain these detection results.

5. CONCLUSION

In this paper, we have shown a method to maximize the hid-

ing rate, by optimally choosing the RA-code redundancy fac-

tor at the encoder, followed by independently computing this

parameter at the decoder, exploiting the structure of repeat-

accumulate encoded sequences. The robustness of YASS to a

variety of attacks has been studied and insight is gained into

the proper choice of frequency bands, for these attacks, from

both the hider and the detector’s perspective. Future work

shall focus on making YASS more effective against a wider

variety of attacks through proper choice of the hiding bands.
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Fig. 2. Capacity results for hiding in individual frequency

bands for varying attacks and attack levels - the DCT coeffi-

cient indices (1-19) are explained in the 8×8 grid (Fig. 2(a)).

After each attack, the images are JPEG compressed at QFo.

0.5

0.6

0.7

0.5
0.6
0.7

0.6

0.65

0.6

0.7

0.8

6   1   7   11   2   8  12  15  3

6   1   7   11   2   8  12  15  3

6   1   7   11   2   8  12  15  3

6   1   7   11   2   8  12  15  3

JPEG

JPEG2000: CR=0.25

Averaging:(3x3)

Unsharp masking

    
0.6

0.65
0.7

    
0.6

0.65
0.7

    0.5

0.6

    
0.55
0.6

0.65

6   1    7  11   2    8  12  15  3

6   1    7  11   2    8  12  15  3

6   1    7  11   2    8  12  15  3

6   1    7  11   2    8  12  15  3

Median filtering (3x3)

Gaussian blur (3x3)

Gamma: = 0.95

Gamma: = 1.05

Fig. 3. The detection accuracy (Pd: y-axis) is plotted for in-

dividual frequency bands (x-axis) for various attacks - the im-

ages are JPEG compressed at QFo=75 after an attack.

1295


