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Abstract—The concept of distributed transmit beamforming
is implicit in many key results of network information theory.
However, its implementation in a wireless network involves the
fundamental challenge of ensuring phase coherence of the radio
frequency signals from the different transmitters in the presence
of unknown phase offsets between the transmitters and unknown
channel gains from the transmitters to the receiver. In this paper,
it is shown that such phase alignment can be achieved using
distributed adaptation by the transmitters with minimal feedback
from the receiver. Specifically, each transmitter independently
makes a small random adjustment to its phase at each iteration,
while the receiver broadcasts a single bit of feedback, indicating
whether the signal-to-noise ratio (SNR) improved or worsened
after the current iteration. The transmitters keep the “good”
phase adjustments and discard the “bad” ones, thus implementing
a distributed ascent algorithm. It is shown that, for a broad class
of distributions for the random phase adjustments, this procedure
leads to asymptotic phase coherence with probability one. A simple
analytical model, borrowing ideas from statistical mechanics, is
used to characterize the progress of the algorithm, and to provide
guidance on parameter choices. This analytical model is based
on a conjecture on the distribution of the received phases when
the number of transmitters becomes large. Finally, the proposed
system is shown to be scalable: the random phase perturbations
can be chosen such that the convergence time is linear in the
number of collaborating nodes.

Index Terms—Distributed beamforming, sensor networks,
space–time communication, synchronization.

I. INTRODUCTION

D ISTRIBUTED transmit beamforming refers to a form of
cooperative communication in which transmitters agree

upon a common message, and then transmit it such that their
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signals add up coherently at the receiver. Such constructive in-
terference leads to a factor of gain in power efficiency, where

is the number of collaborating transmitters. Thus, if the power
of each transmitter is fixed, then distributed beamforming leads
to an gain in received signal-to-noise ratio (SNR): a factor
of gain due to increase in total transmit power, and a factor
of gain in power efficiency due to increased directivity from
beamforming. In essence, the transmitters organize themselves
as a virtual antenna array, and cooperate with each other to focus
their transmission towards the intended receiver.

Distributed beamforming using virtual arrays is at the heart of
both classical and recent results in network information theory.
For instance, the communication model for the Gaussian relay
channel [1], [2], and some of the optimal coding schemes for
the large-scale ad-hoc network [3] are all implicitly based on
distributed beamforming, since they assume that the transmitted
signals add up coherently at the receiver. However the technical
feasibility of this assumption has received little attention until
relatively recently. This has perhaps been the most important
barrier to the implementation of information-theoretic schemes
in wireless networks.

To achieve beamforming with distributed transmitters, it is
necessary to compensate for unknown channel gains from each
transmitter to the receiver as well as unknown phase offsets be-
tween the transmitters. The latter offsets arise from the fact that
each transmitter generates its carrier signal from a separate local
oscillator, and therefore has no fixed phase relationship with the
others. It is possible to obtain carrier signals that are synchro-
nized in frequency [4], using a master-slave architecture, where
the slave transmitters use phase locked loops (PLLs) to lock to a
reference carrier signal broadcast by a master transmitter. How-
ever this process still leaves unknown phase offsets between
the carrier signals because of unknown propagation delays in
the master-slave channels. Furthermore the accuracy of con-
ventional timing synchronization techniques e.g., using GPS,
is adequate only for beamforming at very low frequencies (on
the order of 10 MHz), and makes such methods inapplicable to
communication at the higher RF frequencies GHz used
in most wireless systems. Without first correcting for these un-
known offsets, it is fundamentally impossible [5], [6] to use mul-
tiple-input multiple-output (MIMO)-like methods to measure
the channel gains (e.g., using reciprocity). This is, perhaps, the
most important difference between centralized and distributed
beamforming.

In this paper, we investigate a simple iterative procedure,
based on feedback from the receiver, for achieving phase coher-
ence, and show that this procedure provides a powerful method
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to satisfy the requirements for distributed beamforming. The
basic idea behind the feedback algorithm is as follows: each
transmitter adjusts its phase randomly at each iteration and the
receiver broadcasts one bit of feedback per iteration indicating
whether its net SNR is better or worse than before. If it is better,
all transmitters keep their latest phase perturbations, otherwise
they all undo the phase perturbation. This randomized ascent
procedure is repeated until the transmitters converge to phase
coherence. This procedure is especially appealing because
it avoids the previously mentioned difficulties in channel
estimation due to the unknown phase offsets; by using SNR
measurements, it completely removes the need for any explicit
channel estimation procedure.

The preceding algorithm was first introduced in our earlier
work [7], and the present paper focuses on developing a fun-
damental understanding of this algorithm in an idealized set-
ting, in which the RF carrier signals of the different transmitters
are assumed to be synchronized in frequency, with constant (but
unknown) relative phase offsets between transmitters, constant
(but unknown) channel gains to the receiver and error-free esti-
mation of SNR at the receiver. Our main results are as follows.

1) We show that for a broad class of distributions for the
random phase perturbations used by the transmitters, the
distributed adaptation converges to phase coherence with
probability one.

2) We develop an analytical framework for characterizing the
dynamics of the algorithm which provides excellent agree-
ment with simulation results, and allows for optimization
of algorithm parameters. The key steps are as follows.

a) We use a version of the Central Limit Theorem to
show that when the number of transmitters becomes
large, the effect of the random phase perturbations
is an additive Gaussian perturbation to the received
signal amplitude.

b) We then use the Gibbs conditioning principle of sta-
tistical mechanics to derive a probability distribution
that we conjecture applies to the received phases
under the feedback algorithm. While we are unable
to prove the conjecture, we present theoretical argu-
ments as well as extensive numerical simulations to
show its plausibility.

c) Using 2a) and 2b), we derive a simple expression for
the expected convergence rate of the algorithm. Using
this expression, we show that the convergence time of
the algorithm is linear in the number of transmitters,
so that the procedure scales well for large networks.
For an optimized (time-varying) choice for the distri-
bution of the phase perturbations, we also show that
convergence is locally exponential, with a time con-
stant smaller than .

While the above idealized assumptions allow us to obtain an-
alytical insights on the convergence behavior of the algorithm, it
is worth noting that the algorithm itself can be easily adapted to
be robust to noise, phase jitter, quantization and estimation er-
rors and is also capable of tracking a time-varying channel. This
robustness was experimentally demonstrated in a proof-of-con-
cept prototype [8], where transmitters using separate PLLs to
obtain a local oscillator signal from a common clock signal,

and implement a slightly modified version of the feedback al-
gorithm to beamform towards the receiver which estimates the
received signal strength and periodically broadcasts a 1-bit feed-
back signal to the transmitters. In the modified algorithm, the re-
ceiver measures the SNR averaged over a large number of sym-
bols to minimize the effect of noise, and also checks if its SNR
estimate is greater than previous estimates over a finite window
of time, unlike the idealized algorithm where the present SNR
estimate is compared against the entire past. In this case, even
in the presence of noise, phase jitter, estimation error and quan-
tization errors both in phase as well as in SNR estimation, the
algorithm achieved more than 90% of the maximum possible
beamforming gains. Another variant of the feedback algorithm
was demonstrated in [9], where the receiver feedback was used
to synchronize the carrier frequencies in addition to the phases.

Furthermore, simulation results show that for low levels of
noise, estimation errors and channel variations, the analytical
model derived using idealized assumptions accurately predicts
the initial convergence of the algorithm. It is only when the
algorithm gets close to convergence that these impairments
become important: whereas the idealized algorithm asymptoti-
cally converges to full coherence, the robust version, in general,
may reach a steady state where the beamforming gains fluctuate
around a level less than the idealized maximum. While the
analytical methods developed in this paper can be extended
to model this steady-state, and preliminary results along these
lines were reported in [8], we defer a complete analytical
treatment to future work.

It is worth noting that beamforming with a centralized an-
tenna array of elements, requires bits or training sym-
bols [10] to learn unknown channel gains. Surprisingly, for
our 1-bit feedback algorithm with optimized phase perturba-
tions the average time to convergence (and consequently the
number of bits) also scales as . While such linear scaling
can also be achieved using a scheme where the receiver esti-
mates and feeds back the phase of the transmitters one at a time,
the feedback algorithm offers some key advantages over this al-
ternative approach as follows.

1) It avoids the need for coordination among the transmitters
for training which can be very difficult for a large number
of transmitters.

2) When the signal from individual transmitters is too weak,
it is difficult for the receiver to obtain the phase estimates.
Under the feedback algorithm, the receiver only needs to
estimate the strength of the aggregate signal which is usu-
ally much stronger.

3) The feedback algorithm does not require a dedicated
training phase; thus the transmitters can send data to
the receiver during the beamforming process and the
receiver can easily perform SNR estimation using the
data-carrying signal. This is especially important for large
networks where the training phase can be quite long.

Related work. As mentioned previously, many results [2],
[3] in network information theory are implicitly based on dis-
tributed beamforming. However, it is only recently that the im-
portance of the synchronization problem for beamforming has
been recognized, and the effects of synchronization errors been
systematically studied. It was shown in [11] that even partial
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Fig. 1. Phase synchronization using receiver feedback.

phase synchronization leads to significant increase in power
efficiency in wireless ad hoc networks. In our own previous
work [4], we proposed a master-slave architecture for frequency
synchronization, and analyzed the effect of phase noise on the
beamforming gain. We also showed that the SNR gains are sub-
stantial even with imperfect synchronization [5]. A method of
phase synchronization for beamforming with two transmitters is
presented in [12]. While most work on distributed beamforming
focuses on the directivity gains from beamforming, the authors
in [13] adopt a different approach and examine the statistics of
the side-lobes of the resulting beam patterns because of random
node placement. Thus, the results in [13] provide insight not
only into the SNR at the intended receiver, but also the interfer-
ence at other locations.

Our feedback algorithm can be considered as a distributed
version of a stochastic approximation algorithm such as the
classical Robbins–Monro algorithm [14]. Even though we use
a different analytical technique based on statistical mechanics,
our model for convergence is partly motivated by the “mean
ODE” method from the literature on stochastic approximation
[15]. Recently, other authors have proposed some interesting
variations to our feedback algorithm that are also motivated
by the relationship with stochastic approximation [16]. A
stochastic beamforming algorithm for the (centralized) MIMO
downlink channel was proposed in [17]. Extensions of our
feedback algorithm to distributed spatial multiplexing [18] and
wireless relay networks [19] have also been recently proposed.
In addition, other authors [20], [21] have independently derived
analytical proofs for the convergence and scaling properties of
the feedback algorithm. As already mentioned, the algorithm in
this paper has been prototyped in [8], [9]. Finally, [6] provides a
tutorial survey of the state of art and open issues for distributed
transmit beamforming.

The rest of this paper is organized as follows. The feedback
control algorithm for distributed beamforming is described in
Section II-A and its asymptotic convergence is established in
Section II-B. Section III presents an analytical model for the al-
gorithm dynamics based on statistical ideas. This model is mo-
tivated by the predictable behavior of the algorithm when the
number of transmitters is large. In Section III-A, it is shown
that a version of the Central Limit Theorem applies to the varia-
tions in the received signal as a result of the phase perturbations.
This leads to a simple formula for the average convergence rate
derived in Section III-B. The statistical analysis depends on an

“Exp-Cosine” conjecture on the phase distributions which is dis-
cussed in Section III-C. Simulation results are presented to show
that the Exp-Cosine distribution closely matches the empirical
histogram of the received phases, and also that the convergence
rate of the algorithm is accurately predicted by the statistical
model. Section IV uses this model to establish that the conver-
gence time of the algorithm is linear on the number of transmit-
ters, and to find an optimized distribution for the phase pertur-
bations. Section V concludes the paper with a short discussion
of open issues.

II. FEEDBACK CONTROL PROTOCOL

As shown in Fig. 1, we consider a system of transmitters
transmitting a common narrowband message signal to a
Base Station receiver. Specifically, all the transmitters simulta-
neously send RF signals, each obtained by modulating a carrier
with a scaled version of the message. The transmitters are or-
ganized in a master-slave architecture that assures the carrier
signals are synchronized in frequency. The baseband signal of
transmitter can be written as . Our goal is
to adjust the complex gains so as to achieve phase coher-
ence at the receiver. We ignore distortions in the message due to
small timing mismatches1 between the transmitters, which al-
lows us to ignore the presence of the message in what follows.

We can assume that each transmitter sends at a fixed power
determined by a power constraint, which we normalize to unity
i.e., . We note that because the transmitters obtain their RF
carrier from different local oscillators, their carrier signals have
unknown phase offsets between them. As discussed earlier, this
is true even though carrier frequency synchronization among the
transmitters is established using the master-slave architecture.
The effect of this phase offset is that the phase of the base-band
signal transmitted from transmitter gets rotated by an unknown
amount .

We denote the complex channel gain of transmitter to the
receiver as , where represents the atten-
uation and the phase response of the wireless channel. The
received signal due to transmitter is given by

, with the overall received signal at the re-
ceiver resulting from the superposition of the signals received
from each transmitter.

The net complex gain at the receiver is therefore given by

where is the amplitude, or received signal strength
(RSS), and is the phase at the receiver corre-
sponding to the signal from transmitter . Note that the RSS only
depends on the unknowns and through the sum ;
nevertheless we write them separately to emphasize their dif-
ferent physical origins.

1This requirement of time synchronization is unrelated to the phase synchro-
nization required for beamforming; timing errors cause some inter-symbol inter-
ference and message signal distortion, but do not affect the beamforming gain.
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Our objective is to adapt the transmitter phases so as to
maximize . This happens if the received carrier phases are
all equal

with equality if and only if (1)

The purpose of the feedback control algorithm is to allow trans-
mitter to dynamically compute the optimal value of in (1),
without requiring knowledge of either or .

A. Description of Algorithm

The adaptation is performed in time-slotted fashion, with
each transmitter adapting its phase in a timeslot in response
to feedback from the receiver. At the beginning of slot , let

denote the best known carrier phase at transmitter . At
each timeslot , each transmitter applies a random phase
perturbation to in order to probe for a potentially
better phase. The transmitted “probe” phase in slot is then
given by

The corresponding RSS is given by ,
where . The receiver measures ,
and broadcasts one bit of feedback indicating whether is
bigger or smaller than its record of the highest observed signal
strength so far, which we denote by

If the feedback from the receiver indicates an improvement in
RSS, then the transmitters keep their random phase perturba-
tions, otherwise they undo their perturbations. Thus, the best
known phases at the transmitters are updated as follows:

otherwise.
(2)

Simultaneously, the receiver also updates its record of the
highest RSS so far as follows:

(3)

The preceding procedure is repeated over multiple timeslots.
Equations (2) and (3) ensure that we retain phase perturbations
that increase RSS, while discarding unfavorable ones. This
distributed ascent procedure eventually converges to a set of
transmit phases that satisfy (1) and achieve distributed beam-
forming. Fig. 2 shows the convergence to beamforming with

transmitters.
The random perturbations are chosen independently

across transmitters from a symmetric probability distribution
, where the density function is a param-

eter of the protocol. We show in Section IV that the behavior
of the algorithm is mostly characterized by the variance of
the distribution and depends only weakly on the actual
distribution. In general, the distribution can be adapted
dynamically in time to optimize the speed of convergence (cf.
Section IV-A).

Fig. 2. Convergence of feedback control algorithm.

It follows from (2) that if the algorithm were to be terminated
at timeslot , the best achievable signal strength using the feed-
back information received so far, is equal to , which cor-
responds to transmitter transmitting with the phase

where (4)

B. Asymptotic Coherence

We now show that the feedback control protocol outlined in
Section II-A asymptotically achieves phase coherence for any
initial values of the phases . We define some notation first.

Let denote the -vector of the received phase angles .
We define the function RSS to be the received signal strength
corresponding to received phase :

RSS (5)

Phase coherence means , , for some arbitrary
phase constant . In order to remove this ambiguity, it is
convenient to work with a vector of rotated phase values:

(6)

where is a constant chosen such that the phase of the total
received signal is zero. This is just a convenient shift of the re-
ceiver’s phase reference and as (5) shows, such a shift has no
impact on the received signal strength, i.e., RSS RSS ,

. This phase shift permits two simple expressions for the
RSS which will be useful in the sequel: for every vector of
rotated phase values and every vector of phase perturbations,
we have that

(7)

where can be any constant.
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We interpret the feedback control algorithm as a discrete-time
vector random process , where is a -dimensional
vector of phases constrained by the condition that the
total phase of the received signal is zero as defined in (6). This
random process is a Markov process because the phase pertur-
bations are chosen independently at each timeslot .

We now provide an argument that (under appropriate con-
ditions on the probability density function ), shows that

converges almost surely to the constant for ar-
bitrary initial phases . (Note that is equiv-
alent to .) The following proposition will be needed to
establish convergence. Roughly speaking, it states that as long
as the received phases are not fully coherent, there is al-
ways a finite probability of obtaining a finite increase in RSS in
every timeslot.

Proposition 1: Suppose that the density is bounded
away from zero over an interval , where .
Then, for any , there exist positive constants , for
which

RSS

Proof of Proposition 1: See Appendix A.

Theorem 1: For the class of distributions considered
in Proposition 1, starting from an arbitrary , the feedback al-
gorithm converges to perfect coherence of the received signals
almost surely, i.e., or equivalently
(i.e., , ) with probability 1.

Proof of Theorem 1: Pick some and define the
random variable to be the first integer for which
the monotone nondecreasing sequence becomes strictly
larger than . Proposition 1 shows that there exists some

such that

RSS

since we can take . Since by the definition of ,
RSS , , we conclude that

From this and the fact that is bounded above by ,
, and with probability

one, we have that

from which we conclude that

It then follows that

(8)

where the first equality is due to the monotonicity of .
From (8), we finally conclude that with prob-
ability one (cf. [22, Theorem 1, p. 253]).

III. DYNAMICS OF THE RSS

Although Theorem 1 guarantees that converges to
the optimum RSS , this result sheds little light on how long
this will take. We now present an analytical model for the con-
vergence rate that allows us to choose the distribution of the
perturbations for fast convergence, and to study the scala-
bility of the algorithm with the number of transmitters . Since
the RSS at convergence, , scales linearly with , it is con-
venient to work with the normalized RSS, .

The key steps in our argument are as follows.
1) We use a version of the central limit theorem to charac-

terize (for large ) the conditional distribution of
, conditioned on the value of .

2) Noting that the normalized RSS is tightly clustered around
its mean, we introduce a “mean ODE” style equation to
define a deterministic sequence which tracks the evolution
of the average normalized RSS, .

3) We then present a statistical characterization of the phases
; specializing to a system with equal gains, we

observe that these phases are interchangeable random
variables. Using a statistical argument, we then derive a
simple single-parameter “Exp-Cosine” probability distri-
bution that we conjecture applies universally to the phases

under the feedback algorithm.
4) Using this conjectured conditional distribution for ,

we derive an analytical expression for the average normal-
ized RSS. This expression is the main result in this section,
and will be used to obtain insights on the convergence rate
of the algorithm and to optimize it.

We start by considering the variations in the RSS due to the
phase perturbations when is large.

A. Central Limit Theorem Based Characterization

Consider the received signal . We
begin by using (7) with , to express the effect of the
phase perturbations as an increase or decrease in the RSS,
combined with a rotation of the complex received signal (see
Fig. 3) as shown in (9)–(11) at the bottom of the next page.
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Fig. 3. Effect of phase perturbations on the total received signal.

Proposition 2: Conditioned on , the random
variables and tend in distribution to zero mean
Gaussian random variables as with the following
variances:

(12)

(13)

where the subscript in indicates conditioning on
.

Proof of Proposition 2: The terms in all the summations
that define and in (10)–(11) are of the form
where the are sines or cosines of (not necessarily inde-
pendent) and the only depend on the . Since the are
chosen i.i.d. from a symmetric distribution, all the have zero
mean and are independent of each other and of all the . This
means that the sequence is a uniformly bounded martin-
gale difference, i.e.,

(14)
We can therefore apply the CLT for sums of dependent vari-
ables in [22, Theorem 1, p. 541] to and . Equations (12)
and (13) then follow from straightforward trigonometric algebra
(see Appendix C).

We now define the conditional expectation of the increment
in normalized RSS as

(15)

Here, and in the sequel, we use the subscripted notation
as a shorthand for the conditioning on . With this
definition, we have

(16)

where the last approximation is based on the observation that
is highly concentrated around its expected value when

is large. A rigorous proof of this concentration property is left
as an open problem, however we provide a heuristic justification
at the end of Section III-B. Equation (16) suggests that we can
model the evolution of the normalized RSS by the sequence
defined by the recursion:

with the initialization (17)

Using (16), we see that if , then it follows
that . The initialization condition in
(17) follows from the assumption that the initial phases are
independent and random in which gives

. Equation (17) is analogous to the “mean-ODE” that is
commonly used for convergence analysis in stochastic-approx-
imation theory [15].

We emphasize that while the RSS sequence is a sto-
chastic process, is a deterministic sequence that models the

RSS (9)

where

(10)

(11)
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average convergence rate of the normalized RSS as indicated
by (16).

We now present the main result of the analytical model that
provides an explicit expression for .

B. Computation of RSS Increment

Given , we have seen in (9) that the normalized
RSS is given by

RSS (18)

Consider the inequality , . Letting

, we get

(19)

Therefore we have the following bounds:

RSS

(20)
We have observed that the variances and are

. This implies that the last term in (20) can be neglected
compared to the second term . Specifically we can rewrite
(20) as

RSS

(21)

where is a zero-mean random variable whose variance
is independent of , and the last term

is a nonnegative random variable whose mean van-
ishes for large , and therefore converges to zero in probability.
The preceding argument leads to the following equality in the
limit of large (conditioned on )

RSS (22)

where the limit indicates that
RSS converges in

probability to .

Theorem 2: In the limit of large , the expected increment
of the normalized RSS is given by

where (23)

In the above denotes the complemen-
tary cumulative distribution function of a standard Gaussian

random variable, and represents the mean deviation in the
RSS because of the random perturbations and is given by

(24)

and the parameters , and
are functions of the distribution .

Proof of Theorem 2: Using (15), (22), and Proposition 2, we
have

RSS

(25)

Carrying out the integration in (25) gives (23).

Similarly we can also show that

with

(26)

where is defined as in (23).
Remark. Since and are both bounded, and de-

creases to zero as becomes large, it follows from (23) and
(26), that both the (normalized) mean RSS increment , and
its variance decrease to zero as becomes large. Therefore it
takes a large number of timeslots for the normalized mean
RSS to increase from to , where is a small
increment.

Since the perturbations in each timeslot are chosen in-
dependently, the expected value and the variance of the RSS
increments both add up over time. Assuming that does
not change significantly over the timeslots under consid-
eration, the total expected increment in the normalized RSS is
roughly and the variance of the total in-
crement over the same timeslots is roughly

.

The ratio depends on how the distribution is
chosen for each . As we show in Section IV, when is
optimally chosen to maximize the expected RSS increment for
a given value of , the ratio . Since decreases
to zero for large , the variance of the total RSS increments
decreases to zero as becomes large. Simulation results
indicate that the same is true when some fixed distributions

are used over a range of values of .
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Fig. 4. Functions ���� such that � � fig:eta and ���� � with � such that � � (b). For � � ���, ���� � � . (a) ����. (b) ����.

These observations indicate that the RSS increments, when
averaged over many timeslots become almost deterministic; this
justifies the approximation (16), and hence the definition (17)
where is modeled by a conditional expectation.
A rigorous analysis of this concentration result is beyond our
scope here. We leave this as an open problem.

The variances in (12)–(13) can be computed given the
marginal distribution of the phases , conditioned on

. One possible approach for doing this is to keep
track of the distribution of all phases as they evolve over
timeslots. However, the problem can be greatly simplified by
exploiting symmetry. In particular, let us specialize to a system
with equal channel gains, . All transmitters begin with
uniformly distributed phases, and the symmetry is preserved
by the evolution of the algorithm, which depends only on the
RSS seen by the receiver. This implies that, conditioned on

, the phases are identically distributed,
interchangeable random variables. The variances in (12)–(13)
can then be rewritten as

and (27)

where

(28)

Note that . Intuitively, if the RSS is large,
then we expect the phases to be close to zero, and to be close
to one, whereas for small RSS, we expect the phases to exhibit a
large variation, with being close to zero. In order to complete
our description of the dynamics of the feedback algorithm, we
must provide a method for computing , which requires
characterization of the marginal distribution of the transmitter
phases conditioned on the RSS. This is addressed in Section IV.

C. The Exp-Cosine Distribution

The following Conjecture says that, for a large number of
transmitters the rotated phases follow an “Exp-Cosine” dis-
tribution, when conditioned on the RSS.

Conjecture 1 (Exp-Cosine): For a sufficiently large number
of transmitters, the marginal distribution of , condi-

tioned on is given by

(29)

with chosen such that , and is the modi-
fied Bessel function of the first kind and order

(30)

As we can see in Fig. 4, as , the constant
and the distribution (29) becomes increasingly concentrated
around and eventually converges to a Dirac-delta distri-
bution. This is consistent with the fact that to get ,
all phases must be perfectly aligned.

From (29) and (30) we have the following property for the
Exp-Cosine distribution

(31)

Using in (31) and (28) gives us the desired expression for
(based on our conjecture, depends only on and not

on , hence we drop the dependence on from the notation)

(32)

Fig. 4(b) shows the variation of with .
We now present the heuristic reasoning behind the Exp-Co-

sine conjecture. The argument is motivated by the Gibbs con-
ditioning principle (see [23] and the references therein) of sta-
tistical mechanics. However the version of the Gibbs principle
used in this derivation requires conditional independence of the

, which is not strictly satisfied under the feedback algo-
rithm. A rigorous derivation of the Exp-Cosine distribution ap-
pears to require a detailed, problem-specific, large deviations
analysis that is beyond the scope of this paper and that we leave
as an open problem.
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The Gibbs Conditioning Principle: Suppose that
are independent and identically distributed

(i.i.d.) real-valued random variables with marginal distribution
and and complex valued-function. Then, conditioned on

the are approximately identically dis-
tributed with the following marginal distribution:

subject to (33)

where denotes the expectation with
respect to the distribution and
denotes the divergence between the distributions and . The
“approximately identically distributed” property refers to con-
vergence in probability as . The variational problem
(33) can be rewritten using Lagrange multipliers as,

(34)

and its solution is given by

(35)

where , , and are normalizing constants, chosen so that

(36)

(cf. Appendix B). Suppose now that at a given iteration of
the algorithm, the rotated phases are i.i.d.
random variables and with conditional distribution
conditioned to the current and all the past normalized RSS

. Consequently, the perturbed
phases are also i.i.d. with marginal conditional
distribution , resulting from the circular convolu-
tion over between and the distribution of
the . Assuming that at this iteration the RSS increased to
some value , the perturbed phases
must satisfy

(37)

From an application of the Gibbs conditioning principle, we
conclude that, conditioned to all past RSS and (37), each per-
turbed phase is approximately distributed as

(38)

where , , are normalizing constants chosen so that (36) holds
for the distribution in (38). Upon rotating the perturbed phases

to obtain the new phases corre-
sponding to a total received signal with zero phase, the phase
shift of disappears from (38) and we conclude that each phase

is approximately distributed as

(39)

We shall see in Section IV, that it is beneficial to choose the
perturbations distribution much more concentrated than
the current distribution . In this case, and
(39) becomes

Iterating this equation from , we conclude that

where and are (redefined) normalization constants so that
(36) holds, or equivalently, so that

We thus arrive at the conclusion that, conditioned to the current
and past normalized RSS ,
the phases are approximately independently dis-
tributed with marginal conditional distribution

with such that . Since this distribution actu-
ally only depends on the current , we conclude
that only the conditioning to the current RSS matters.

As noted earlier, the phases only approximately sat-
isfy the conditions for the Gibbs conditioning principle because
they are not completely independent. Nevertheless we conjec-
ture that the i.i.d. perturbations introduce sufficient ad-
ditional independence in the perturbed phases
that a version of the Gibbs principle still applies. As shown next,
the Exp-Cosine distribution provides an extremely good fit for
histograms obtained by simulations of the feedback algorithm.

Empirical Support for the Exp-Cosine Distribution: Conjec-
ture 1 has been validated through an extensive set of Monte Carlo
simulations, for several different values of the key parameters,
which include the number of transmitters and the distributions

for the perturbations . Fig. 5 shows typical results
from a set of Monte Carlo simulations. We can see that the Monte
Carlo results are perfectly consistent with Conjecture 1.

For comparison, Fig. 5 also shows predictions made as-
suming a Gaussian distribution. Clearly, the Exp-Cosine
distribution provides a better fit for both the tails and the
body of the distribution. This is despite the fact that we have
biased the comparison in favor of the Gaussian distribution by
adjusting it to match the Monte Carlo data by appropriate
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Fig. 5. Each histograms summarizes the results of a large number of Monte Carlo simulations of the distributed beamforming algorithm. The left, middle, and
right columns show the distributions of the phases �� ���� conditioned to � ��� � �, for � � ���, ���, and ���, respectively. The top row, middle, and
low rows correspond to simulations with � � ���, 	��, and 
��transmitters, respectively. Consistently with Conjecture 1, the three rows appear identical
since, although obtained for different numbers of transmitters, they correspond to precisely the same values of �. Superimposed on each histogram, we see the
Exp-Cosine distribution predicted by Conjecture 1 (solid line). For comparison, we also include a Normal distribution with the same mean and variance (dashed
line). In all simulations shown, the � ��� are uniformly distributed with the support of the distribution inversely proportional to

�
� , for consistency with the

results in Section IV-A.
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Fig. 6. Comparison between the theoretical prediction provided by (23) and Monte Carlo Simulation-based estimates of the evolution of receoved signal strength
for � � ���� ��������� transmitters. The dashed curve corresponds to (23), the solid curve is an estimate of � �� ���� based on Monte Carlo simulations,
and the dotted curves show one standard deviation of � �� ���� around its mean, also based on Monte Carlo simulations. In all simulations shown, the � ���

are uniformly distributed with the support of the distribution inversely proportional to
�
� , for consistency with the results in Section IV-A.

selection of its variance; in contrast, the Exp-Cosine distribu-
tion is computed using the formulas in Conjecture 1, without
attempting to match the Monte Carlo data.

Fig. 6 compares the results of Monte Carlo simulations with
predictions based on (17) over a wide range of values for . We
can see that even for fairly small , (17) provides a very good
match with Monte Carlo simulations. This figure also confirms
that the standard deviation of converges to zero as

increases.

IV. PERFORMANCE OPTIMIZATION AND

SCALABILITY ANALYSIS

In Theorem 2, we derived an analytical formula for the ex-
pected increase in RSS. We now use this result to determine the
optimum distribution of the phase perturbations for the fastest
rate of convergence at each timeslot. We also use the analyt-
ical model to establish the scalability of the feedback algorithm
when the number of transmitters becomes large. Finally we
show that the RSS increments vary exponentially in time when
the algorithm is close to convergence.

A. Performance Optimization

We consider the problem of choosing the distribution
for the perturbations that minimizes the convergence time.
Intuition suggests that it is best to choose larger perturbations
initially to speed up the convergence and make the distribution
narrower when the phase angles are closer to coherence; we now
make this intuition precise.

We start with the observation that the expected RSS in-
crement depends on the distribution of only
through the two parameters , and

. Therefore we can restrict our-
selves to any family of distributions that allows us to freely
choose these two parameters without losing optimality. Indeed,
when , we have

(40)

and (41)

Since we expect the phase perturbations to be relatively small,
the parameters and (and therefore the convergence rate)
are largely determined by the variance of , and are largely
independent of the precise form of the distribution.

Fig. 7(a) shows the convergence of when
uniform and is chosen numerically to max-
imize expected convergence rate as given by (23) at
every timeslot. The results confirm our intuition that at the
initial stages of the algorithm, it is preferable to use larger
perturbations (corresponding to large ), and when
gets closer to , it is optimum to use narrower distributions
(corresponding to smaller ). In general, we observe a near
linear increase in RSS in the initial stage, with the convergence
rate slowing with time.

We now derive a lower bound for the maximum achievable
convergence rate . This derivation also yields an analytical
estimate of the optimum variance of , which is accurate for
large . From the definition of and , we have:

(42)

where we used the Jensen’s inequality in (42). We now use this
inequality to rewrite (27) as:

(43)

Using (43) in (23) gives

(44)

where , and are de-
fined as in (23). We can now lower bound by maximizing
the RHS of (44). We note that the RHS of (44) depends on
through the term as well as through the term .
However the latter dependence is by far weaker, therefore we
focus on . We can show by differentiation that this func-
tion achieves its maximum value of for
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Fig. 7. Monte Carlo simulation of optimized beamforming algorithm with � � ���� transmitters, where the � ��� are chosen from a uniform distribution whose
support � at each timeslot is chosen by numerically maximizing the RSS increment given by (23). (a) The solid curve shows � ��� from a Monte Carlo
simulation using numerically optimized � ���. The dotted curve shows � computed using (17) and (23) with � ��� similarly optimized. (b) The solid curve shows
the numerically optimized � . The dotted curve shows the estimate � of the optimum from (48).

that satisfies . This corresponds
to a choice of given by

(45)

The optimum convergence rate is at least as large as that
achieved by (45), and therefore we have

with (46)

The RSS increments varies with roughly as ,
which leads to the intuitively obvious conclusion that the con-
vergence rate decreases as the algorithm approaches conver-
gence. We note that the convergence rate bound in (46) is achiev-
able, because it is possible to find a distribution that satisfies
(45).

Indeed when is large, we can use (45) and (40) to obtain
an approximate formula for the optimum variance of as

(47)

One distribution that achieves this variance is the uniform dis-
tribution with

(48)

Remark: In deriving (47), we used the approximation in (40).
In addition we made two suboptimum choices in deriving (45):
one by the use of the Jensen lower bound in (42), and the other

by ignoring the dependence of on through the
term in (44). However as (47) shows, the optimum
approaches zero as becomes large. In this regime (of large

), the effect of these suboptimal choices is quite small, and we
find that (47) provides an excellent estimate of the best .

The numerically computed optimum is plotted along with
from (48) in Fig. 7(b). As seen from the figure, (48) provides

a good approximation for the optimal distribution, but generally
overestimates the optimal .

B. Scalability and Rate of Convergence

Let denote the number of timeslots required
for to reach a given level of convergence i.e.,

. Roughly speaking, for ,
is the number of timeslots required for the expected

RSS to reach 50% of .

Theorem 3: Under an optimum choice of the distribution
of the perturbations , the time needed for

to reach satisfies

(49)

for any given , where is a constant that depends on
but is independent of .

Proof of Theorem 3: For this proof it is convenient to con-
sider continuous-time function , that linearly
interpolates the discrete-time function , :

where we used (17).
Since the discrete-time function is monotone strictly in-

creasing, the continuous-time function is also strictly in-
creasing and therefore it has an inverse function . To find
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Fig. 8. Time to convergence for unoptimized and optimized phase distributions. (a) Time to convergence for � � ���, ���, and ���when the phase perturbations
are chosen from a fixed distribution, � ��� � uniform��	 � 	 
. (b) Time to convergence for � � ���, ����, and ��� when the phase perturbations are chosen
to numerically optimize the RSS increments in (23).

the time instant at which reaches , it suffices to compute
, which can be done using

(50)

Since is differentiable almost everywhere, is also
differentiable almost everywhere. Further

(51)

where we used (46) and the fact that the function is mono-
tone decreasing. We also note from (46) that does not de-
pend on . Using (51) and the inverse function theorem we have

(52)

Using (52) in (50), we conclude that

from which (49) follows with .

Fig. 8 shows the convergence time of the algorithm with un-
optimized and optimized phase distributions. The linear varia-
tion with provides numerical confirmation of Theorem 3.

From (46), we observed earlier that the convergence becomes
slower in time roughly as . We now show that the rate of
RSS increase is exponential in time, when the algorithm is near
convergence.

Theorem 4: Suppose that the variance for the perturbations
satisfies (47). Then, for any choice of distribution

that satisfies (46), we have local exponential convergence of
, with a time constant equal to .

One possible choice for is the uniform distribution as
in (48). Fig. 9 confirms that this choice does result in exponential
convergence over a wide range of values for .

Proof of Theorem 4: To prove local convergence, we need
to analyze the dynamics of around . Near the point

, (cf., Fig. 4(b)), from which we can,
from the comparison Lemma [24], conclude that near this point
we have

which in view of (17) leads to

Close to the equilibrium point , the linear term in
dominates and we conclude that

V. CONCLUSION

The results of this paper indicate that distributed transmit
beamforming can be effectively realized by utilizing only one
bit of feedback per iteration from the receiver. The technique is
scalable, in that convergence time grows only linearly with the
number of participating nodes. The basic algorithm presented
here can be easily adapted for implementation in practical set-
tings [8], and can be extended to achieve frequency as well as
phase synchronization [9].

An open technical problem is a rigorous characterization
of the conditional distribution of the transmitter phases, con-
ditioned on the RSS. In particular, justification or refinement
of the Exp-Cosine conjecture appears to require a deep,
problem-specific large deviations analysis.

Realizing the potential gains from distributed beamforming
requires the design of network protocols that support and exploit
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Fig. 9. Monte Carlo Simulations for � � ���� ��������� transmitters with the optimal choice of distribution for the perturbations � ��� in (48), while keeping
the � always below 45 . The solid curves in the top row of plots show an estimate of � � � � � � � �� ���� based on Monte Carlo simulations. The
straight lines confirm an exponential convergence. The bottom row of plots show the evolution of the maximum value of the uniform distribution for the � ���.

it [6]. A detailed study is also required on how best to achieve
and maintain the frequency synchronization across transmitters,
which was assumed in our algorithm. Exploration of the effects
of time variations is important for understanding the applica-
bility of these ideas to mobile ad hoc networks. Preliminary re-
sults in [8] indicate that the analysis here can be extended to
understand the tradeoffs between tracking and convergence in
time-varying settings.

APPENDIX A
PROOF OF PROPOSITION 1

Proof of Proposition 1: Let be an arbitrary -vector of
phases normalized so that the total received signal
has zero phase. For simplicity, we assume that the elements
of the -vector are sorted so that

Assuming that RSS , we conclude that

(53)

Now we choose a phase perturbation that decreases .
This makes the most misaligned phase in closer to the received
signal phase, and thus increases the magnitude of the received
signal. Without loss of generality we assume , then we
need to choose a . Consider . We have

(54)

With chosen as above, we get

where

(55)

We observe that and depend only on and not on .
Equation (55) shows that the perturbation by itself will

achieve a nonzero increase in total received signal, provided that
the other phases do not get too misaligned by their respective

RSS RSS

(56)

We note that since RSS is continuous in each of the phases
, we can always find a to satisfy:

(57)

In particular the choice , satisfies (57), and this
choice of is independent of . With the ’s chosen to satisfy

, we have

(58)
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(63)

Since is bounded away from zero in each of the nonzero
intervals , the probability of choosing to satisfy
(57) is nonzero, i.e., , which is independent of . Finally,
we recall that each of the are chosen independently, and there-
fore with probability , it is possible to find to
satisfy (55) and , to satisfy (57). For chosen as above,
RSS RSS , and therefore Proposition 1 follows.

APPENDIX B
PROOF OF (35)

The necessary optimality condition for an extremum of the
functional

in (34) is given by

which is equivalent to

(59)

with and . Since, one of the
constraints imposes , we can express and
re-write (59) as

where , , and are parameters to be determined from
the conditions and .

APPENDIX C
PROOF OF (12)–(13)

Defining , we have that

Since the are chosen from a symmetric distribution ,
it follows that has zero mean. Using this and the

fact that the are (conditionally) independent of the ,
we conclude that has zero mean and therefore, both
and also have zero mean.

The variances of the real and complex parts of are given
by

(60)

(61)

To compute these variance, we expand

For the two terms are and are
zero-mean and independent and therefore any term with
disappears from the summation, which leads to

(62)

since . Similarly, see (63) at
the top of the page, since

. Replacing (62) and (63) in
(60)–(61), we obtain (12)–(13).
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