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Abstract—In matrix embedding (ME)-based steganography, the
host coefficients are minimally perturbed such that the transmitted
bits fall in a coset of a linear code, with the syndrome conveying the
hidden bits. The corresponding embedding distortion and vulnera-
bility to steganalysis are significantly less than that of conventional
quantization index modulation (QIM)-based hiding. However, ME
is less robust to attacks, with a single host bit error leading to mul-
tiple decoding errors for the hidden bits. In this paper, we employ
the ME-RA scheme, a combination of ME-based hiding with pow-
erful repeat accumulate (RA) codes for error correction, to ad-
dress this problem. A key contribution of this paper is to com-
pute log likelihood ratios for RA decoding, taking into account
the many-to-one mapping between the host coefficients and an en-
coded bit, for ME. To reduce detectability, we hide in randomized
blocks, as in the recently proposed Yet Another Steganographic
Scheme (YASS), replacing the QIM-based embedding in YASS by
the proposed ME-RA scheme. We also show that the embedding
performance can be improved by employing punctured RA codes.
Through experiments based on a couple of thousand images, we
show that for the same embedded data rate and a moderate attack
level, the proposed ME-based method results in a lower detection
rate than that obtained for QIM-based YASS.

Index Terms—Log likelihood ratio (LLR), matrix embedding
(ME), repeat-accumulate coding, steganalysis, steganography.

I. INTRODUCTION

S TEGANOGRAPHY is the art of secure communication
where the existence of the communication itself cannot

be detected while steganalysis is the art of detecting the secret
communication. The requirements for a “good” steganographic
scheme are a high embedding capacity, while remaining statis-
tically secure. When there is an active adversary in the trans-
mission channel, the hiding scheme is considered to be an ex-
ample of “active steganography.” Various examples of the ac-
tive warden scenario (active steganography) are in [4], [8], [10],
[16], and [21]. In our problem formulation, we assume that the
“active warden” may modify the transmitted signal which may
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(or may not) contain the embedded message—the signal being
the stego (or cover) image. When the stego image is modified
by the “active warden,” a secure stego scheme is effective only
if the embedded message can be recovered.

Matrix embedding (ME) [7], an embedding method with a
high embedding efficiency (number of bits embedded per unit
embedding distortion), is generally used for passive steganog-
raphy as the lower embedding distortions (as compared to em-
bedding methods like quantization index modulation (QIM) [5],
while both methods have the same embedded data rate) make
the hiding less detectable. Here, we use ME for active steganog-
raphy by combining it with powerful error correction codes. We
review ME using an example.

ME Example: Consider (7,3) ME, in which 3 data bits are
embedded in 7 host bits. The idea is to perturb the host bits
minimally so that they fall in the coset of a linear code, whose
syndrome equals the data bits to be hidden. In particular, we
consider the (7,4) Hamming code with parity check matrix
which is expressed as

(1)

For a host sequence , the syndrome is
obtained as , where the operations
are performed over the binary field. If the data bits to be em-
bedded are (0,1,0), we can send the host bits without perturba-
tion. However, suppose that we wish to embed (0,0,0). The aim
is to find , the perturbation vector for , with the lowest Ham-
ming weight. Then, . There-
fore, . If only the th element in is 1,
then equals the th column in . The second column
in . Therefore, . Sim-
ilarly, to embed the data bits (1,1,1), the perturbation is
such that

. Since the fifth column of ,
. Similarly, for embedding any three-tuple, we

need to change at most one host bit (Hamming weight of
), which explains why ME is so powerful for passive warden

steganography.
Comparison With QIM: Given the popularity of QIM embed-

ding [5], [27], it is the natural benchmark against which to com-
pare new steganographic methods. Scalar QIM in the context of
JPEG stego schemes corresponds to rounding a discrete cosine
transform (DCT) coefficient to the nearest even or odd quan-
tization level, depending on the embedded bit. Thus, the DCT
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coefficient is changed with probability half, relative to rounding
to the nearest quantizer level as done during JPEG compres-
sion. Therefore, on average, the embedding efficiency is 2 bits
per changed coefficient. For (7,3) ME, we embed 3 bits by mod-
ifying one of 7 coefficients resulting in a higher embedding ef-
ficiency of 3. Given a set of 7 embedding coefficients, QIM and
ME schemes can embed 7 and 3 bits, respectively, so that QIM
achieves a higher hiding rate for the same number of hiding lo-
cations. Also, a single error affects the decoding of only a single
bit for QIM. For (7,3) ME, changing a single coefficient (e.g.,
flipping the seventh bit of in the above example) can lead to
three bit errors, so that ME is more fragile than QIM for active
steganography. Thus the regime in which ME can outperform
QIM is when the required hiding rate is low enough so that 1) the
lower hiding rate of ME is not an issue; 2) also, the channel at-
tacks should be of moderate strength so that 3) the errors can
be rectified through powerful error correction codes. This is the
regime explored in this paper.

Contributions: Our main contributions are outlined below.
1) We impart noise robustness to the ME-based active

steganographic framework by performing error correc-
tion coding (ECC) on the data bits to generate the code
bits embedded using ME. For maintaining perceptual
transparency, hiding in coefficients of small magnitudes
is avoided. This is interpreted as erasures at the encoder,
as in our prior work on QIM-based hiding [27]. For
ECC, we have used repeat accumulate (RA) codes [9],
which are well suited for such high erasure channels
[27]. We also show that punctured [2], [3] RA codes
perform better than the original RA codes.

2) For iterative decoding, the decoder needs to be initial-
ized with proper confidence values (log likelihood ra-
tios or LLRs) at the embedding locations. Even if one
out of 7 host coefficients is erased for (7,3) ME, it can
affect the decoding at 3 bit locations—the RA decoder
needs to consider the various erasure-related cases be-
fore computing the soft weights to initialize the iterative
decoder. Thus, a key contribution of the paper is to work
through the combinatorics required to determine the soft
decisions.

3) To reduce detectability, we use Yet Another Stegano-
graphic Scheme (YASS), the hiding framework pro-
posed in [28]. Here, the hiding blocks are pseudoran-
domly chosen to desynchronize the self-calibration
scheme, which assumes that the hiding is done in reg-
ular 8 8 blocks of DCT coefficients, used in standard
steganalysis methods [22], [23]. ME-based YASS is
shown to be less detectable than QIM-based YASS for
the same steganalysis schemes for the same (low) data
rate.

To summarize the roles of the various modules, YASS
suggests “where” to embed (randomized block locations),
ME shows “how” to embed (embedding method), and the
RA-based ECC framework determines “what” gets embedded
(it generates the code bits, given the information bits)—this is
illustrated in Fig. 1.

Related Work: Since the concept of ME was first introduced
by Crandall [7], there have been a number of papers describing

Fig. 1. Entire hiding framework using RA coding, ME, and YASS-based coef-
ficient selection.

the properties and improvements of ME for passive steganog-
raphy [11], [15], [17], [29]. The F5 algorithm [29] is a secure
JPEG steganographic scheme based on ME. F5 uses
coding based on binary Hamming codes, where , and

message bits are to be embedded in image DCT coefficients,
by changing the least significant bit (LSB) of (at most) one of the

quantized DCT coefficients after rounding. This method was
further generalized by Kim et al. [17]— coding method-
ology is suggested where while embedding -bits into host
bits , at most embedding changes can be
made. It is useful when the single coefficient to be perturbed in

scheme cannot be modified due to various constraints
(e.g., due to erasures). Approaches to increase the embedding
rate for ME based on random linear codes of small dimension,
and simplex codes, have been presented by Fridrich et al. [15].
An interesting approach for minimal distortion steganography is
perturbed quantization (PQ) [12], which is highly secure from
modern detectors [14]. Another contribution of the PQ scheme
is the use of wet paper codes (WPC) which allows sending the
same number of bits, on an average, as would have been pos-
sible if the actual set of hiding locations were known. In [11],
the embedding impact profile of all the pixels is estimated and
an optimal trade-off is studied between the number of embed-
ding changes and their amplitudes, while using ME.

While the ME-based methods generally focus on passive
steganography, our QIM-based hiding scheme YASS [28]
achieved secure (using randomized block locations) and robust
(using RA-codes) steganography. Due to the lower embedding
efficiency, QIM schemes are more detectable than ME-based
schemes like F5 [29], nonshrinkage F5 (nsF5) [14], and mod-
ified ME (MMx) [17]; but all these ME-based methods are
passive stego schemes. Here, we combine the low detectability
of ME with the robustness resulting from powerful ECC to ob-
tain an active stego scheme that works for real-world channels
such as JPEG attacks. We use data sets for which QIM-based
YASS is detectable even at low embedding rates, and attempt to
determine when ME outperforms QIM (we can only hope to do
better than QIM at low enough embedding rates and moderate
enough attacks).

Prior work that combines ECC with ME-based hiding in-
cludes [31]. However, the combination codes in [31] are used
over individual blocks of image coefficients, and are, therefore,
much less powerful than the RA code framework employed
here, where the codeword spans the entire set of embeddable co-
efficients. Erasures resulting from coefficient-adaptive hiding,
as well as the effect of real-world channels such as JPEG com-
pression, are also not considered in [31].

Outline of the Paper: The YASS framework and the overall
ME-based hiding system are described in Section II. We con-
sider the (7,3) ME case. The embedding method for the ME-RA
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TABLE I
GLOSSARY OF NOTATIONS

Fig. 2. Encoder embeds �, a 3-bit sequence, in �, a sequence of 7 DCT co-
efficients, by changing the minimum number of coefficients in �, thus modi-
fying it to � which is transmitted through the channel and � is the corre-
sponding received sequence. The decoder uses � to estimate the LLR values
for the 3-bit locations. The sequence � , which is derived from � �� �
mod�round�� �� ��� ���, is not explicitly shown at the decoder.

scheme (using ME to embed the RA-encoded bits) is explained
in Section III. The various approaches used for the initial
LLR computation at the decoder are explained in Section IV.
The ME-RA-puncture scheme, which is a refinement of the
ME-RA method and produces a higher effective embedded data
rate than ME-RA through “puncturing” [2], [3] (deletion of a
suitable number of encoded bits at appropriate bit locations), is
explained in Section V. Section VI compares the data rate ob-
tained using various methods for the initial LLR computation. It
also compares the performance of ME-RA-puncture to that of
the nonshrinkage (which avoids the erasure induced shrinkage
problem [14]) method. Comparison of the detectability against
similar steganalysis methods and effective hiding rate under
different noise channels, for QIM-RA (using QIM to embed
the RA-encoded bits) and ME-RA-puncture methods, are
presented in Section VII.

Table I introduces some notations which are frequently used
in the paper. A sequence of seven terms is re-
ferred to as . The complement of a bit is referred to as .

II. INTRODUCTION TO YASS AND SYSTEM OVERVIEW

YASS: The security of YASS [28] can be attributed to the ran-
domized choice of hiding locations. The input image is decom-
pressed if it is in JPEG format and then divided into blocks of
size , where is called the big-block size. For
each big-block, an 8 8 sub-block is pseudorandomly chosen
to hide data. The encoder and decoder share the same key by
which they can access the same set of 8 8 blocks. For every
sub-block, its 2-D DCT is computed and then divided by a JPEG
quantization matrix at a design quality factor (QF), denoted by
QF . A band of AC DCT coefficients lying in the low and
mid-frequency range is used for hiding. After data embedding,
the resultant image is JPEG compressed at a QF of QF . The
embedding rate decreases, as compared to using regular 8 8
blocks, because a lower fraction of
the DCT coefficients is now considered for embedding. To in-
crease the embedding rate, we also consider multiple disjoint
8 8 blocks within a block, for ; e.g., choosing
nine 8 8 blocks within a 25 25 big-block yields a higher
embedding rate than choosing one 8 8 block within a 9 9
big-block. The effective big-block size , which accommo-
dates one 8 8 block, is now reduced from 9 to 25/3.

System Overview: The system flow is explained in Fig. 2.
Let denote the number of blocks obtained from
the image, with elements used for hiding from the DCT ma-
trix for the 8 8 pixel block pseudorandomly chosen from
every block. For , the total number of
DCT coefficients available for hiding equals . When

(e.g., when or ), no of
blocks in a big-block . Using

(7,3) ME, the coefficients are partitioned into sets, each
having 7 terms—e.g., is such a set where
3 bits are embedded. The total number of code bits
equals , and for an RA code of redundancy factor ,

data bits can be accommodated. The encoder
aims to embed the code bits using ME while minimally changing
the DCT coefficients (e.g., from to ). The redundancy factor

is set to (defined in Table I) such that the hiding rate
is maximized for a given set of hiding parameters and attack



228 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 5, NO. 2, JUNE 2010

TABLE II
FOR (7,3) ME, THERE ARE EIGHT POSSIBLE RELATIONS BETWEEN �, THE 3-TUPLE OF BITS TO BE EMBEDDED, AND � , THE SYNDROME OBTAINED FROM �.
THERE IS ALWAYS A COEFFICIENT � , WHOSE MODIFICATION TO � (ENSURING � � � , WHERE � � mod�round�� �� �� AND � � mod�round�� �� ��)

ENSURES PROPER EMBEDDING. IF �� � � ���, THE CANDIDATE 2-TUPLES/3-TUPLES FOR EMBEDDING ARE MENTIONED

channel. The decoder can recover from the RA-encoded se-
quence without any side information, as explained in [1], [25].
We do not consider attacks that can desynchronize the encoder
and decoder (e.g., warping or cropping), so that the decoder has
access to the same set of hiding locations as the encoder. A
proper initialization of the soft weights (log likelihood ratios or
LLRs, explained in Section IV) for codeword locations allows
faster convergence (at a lower redundancy factor) and increases
the hiding rate. Various methods to compute the soft weights
LLR for 3 bit locations given 7

DCT terms , which is the noisy version
of ) are studied in Section IV.

III. ME-RA EMBEDDING

The encoder embedding logic for (7,3) ME, introduced in
Section I, is explained in detail here. The operations at the en-
coder side are outlined in Fig. 2. The sequence
is to be embedded in , a set of 7 locations. After rounding
to the nearest integer and modulo 2 operation, the coeffi-
cients return the bit sequence , where

mod round . Using the (3 7) mapping matrix ,
introduced in (1), on , the following syndrome is obtained:

. The aim is to make minimum changes
to to obtain , such that .

From Table II, for every condition (except condition 0), if
is the only element being changed (for the other elements,
is the rounded version of , ), and ,

. To ensure , is changed to the nearest odd/even
integer , if gets converted to an even/odd integer, respec-
tively, after rounding off. It may happen that the absolute value
of the coefficient to be modified is less than 0.5—an era-
sure occurs at that location. This erasure-induced problem can
be solved by changing two or more of the remaining coefficients
in (using solution proposed in [17]). Based on the embeddable
bits and the candidate coefficients, five cases (A-E) are possible,
as shown in Fig. 3.

Embedding Method Involving Minimum Perturbations:
• We use Table II to find the single coefficient to change

to the nearest odd or even integer , if rounds off to an
even or odd integer, respectively. If that element (e.g., in
Fig. 3) can indeed be modified, it corresponds to Case A.

• If that single coefficient lies in the erasure zone ( 0.5,
0.5), we look for the pairs of 2-tuples that can be perturbed
for proper embedding. If there is just one suitable 2-tuple,

Fig. 3. Embedding logic used at the encoder for a (7,3) ME example: cases
(A)–(D) correspond to cases where embedding is possible, while case (E) is
where embedding fails.

it corresponds to Case B. If there are more than one suit-
able 2-tuple, we select that tuple whose perturbation in-
troduces the least embedding distortion (Case C). For ex-
ample, among 2 pairs (0.6, 0.7) and (0.90, 0.95), (the el-
ements in both pairs are changed to (0, 0) after embed-
ding), the total perturbation equals and

, respectively. Hence, the first pair is
used for embedding—in general, among two pairs with ele-
ments in (0.5, 1), the one with elements closer to 0.5 should
be selected for embedding.

• The process is repeated for 3-tuples, if we do not get a
suitable 2-tuple for embedding. Case D corresponds to the
use of a 3-tuple for embedding. If a suitable 1/2/3-tuple
cannot be found for embedding, then a higher order tuple
cannot also be found for embedding using (7,3) ME (Case
E). Thus, data embedding is possible for Cases A–D; while
for Case E, the desired 3 bits cannot be embedded due to
too many erasures.

IV. ME-RA DECODING

We now discuss the decoder operations depicted in Fig. 2.
One of the main challenges involved in using ME along with
RA coding is the computation of the initial LLR values provided
to the decoder. It is instructive to review the LLR computations
used in prior work on QIM-based embedding [27], [28] before
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discussing the more complicated computations for ME-based
embedding.

Definition of LLR: Let a certain image coefficient be equal
to and the corresponding embedded bit be . The LLR value
LLR denotes the logarithm of the ratio of the likelihood
that a 0 was transmitted through that coefficient
to the likelihood that a 1 was transmitted

(2)

Hence, LLR is positive when 0 is the more likely bit and
vice versa. LLR equals zero for an erasure. In our QIM-
based methods [27], [28], an image coefficient was changed to
the nearest even or odd integer to embed 0 or 1, respectively.
If the absolute value of were less than 0.5, LLR
(erasure); else, depending on whether the received coefficient
is close to an even or odd integer, LLR is set to or ,
where reflects the decoder’s confidence in the accuracy of the
decoded bit values.

LLR Computation for ME: For (7,3) ME, the 7-element se-
quence of received DCT coefficients, , decides the log likeli-
hood for , a 3-tuple bit sequence. We denote it as LLR
in (3)—it is a sequence of 3 terms, each denoting the LLR for
an individual bit location. From (2) and (3), it is evident that
while an LLR value LLR for QIM-RA depends on only
one coefficient value , there is a 7 : 1 mapping between the
elements in and an LLR value (LLR , ) for
ME-RA

(3)

If we assume an ideal channel between the transmitted se-
quence and the received sequence (i.e., ), the
3-tuple of decoded bits, , obtained as the syndrome of , can
be directly used for LLR estimation—here, ,
where mod round . In practice, the LLR values
should be modified to account for those conditions where em-
bedding of in was not possible because of erasures, or to
account for errors, when .

Motivation Behind Proposed LLR Computation Methods: In
the absence of an exact mathematical model for the statistics of
the hiding channel (which varies across images), we investigate
three methods (Methods M1, M2, and M3) for LLR computa-
tion and empirically evaluate their performance in terms of the
hiding rate (Table IX in Section VI). Our performance metric in
comparing the LLR computation methods is the overall hiding
rate; thus, a better LLR computation method would require a
smaller redundancy factor for the RA decoding to converge.
Both M1 and M2 compute the LLR LLR as a sum-
mation of the individual LLRs, for each of the eight possible
mappings between (syndrome obtained at the decoder) and

(syndrome at the encoder side, unknown to the decoder). For
each individual LLR computation, M1 assigns an LLR value of

, depending on whether the bit more likely to be em-
bedded is erasure , respectively—this is similar
to the LLR allocation for QIM-RA [28]. M2 uses a more detailed

analysis of the various erasure scenarios for LLR allocation. M3
computes the LLR as a ratio of probabilities, as per the defini-
tion (3), while considering all the eight conditions, along with
the different erasure scenarios (like M2). Computing the LLR
as a ratio instead of a summation of individual LLRs eliminates
the need for choosing explicitly.

We initially ignore the channel effects (errors and erasures
associated with the transition probability matrix between and

) in our LLR computation methods (we assume that
) described in Sections IV-A and IV-B, and modify them

to incorporate the channel effects in Section IV-C.

A. LLR Computation-Method 1 (M1) and Method 2 (M2)

The final LLR values LLR are computed by summing
over the individual LLRs for all the eight possible conditions
(possible mappings between and as shown in Table II)

(4)
Here, condition is the condition where proper embedding

can occur by changing only (or suitable 2–3 coefficients if
lies in the erasure zone), and for condition 0, no term in

needs to be modified. The prior probability of condition is de-
noted by condition (4) and equals 1/8 since all the
conditions are equally likely. The problem now becomes one of
computing the individual LLR terms LLR condition .
If there is a coefficient (or a set of 2–3 coefficients) which lies
outside the erasure zone and allows proper embedding, the con-
dition is classified as “Not in Erasure Band” (NEB). If all the
relevant coefficients lie in the erasure band, the condition is de-
noted as “Erasure Band” (EB). For NEB, the LLR is computed
similarly by M1 and M2 while for EB, the LLR is computed dif-
ferently.

1) NEB and EB Conditions: Assuming a certain condition
(say, condition ) to be true, if is the coefficient that needs
to be modified for proper embedding and , then the
decoder is sure that proper embedding has occurred by modi-
fying (cases (A)–(D) in Fig. 3). When rounds off to zero,
it was either modified from 1 (rounded value of ) to zero or
it was not modified at all, if were in the erasure zone; e.g.,
if or and the embedding logic
demands that , then it is converted to , after em-
bedding. So, a received coefficient that rounds to zero leaves
open the possibility that embedding could not be carried out in
that location as happens for case , assuming that condition

is true—this is the “shrinkage” problem (this has been coun-
tered by nonshrinkage F5 (nsF5) [14], an improvement on the
F5 scheme). If , relevant 2–3 tuples are considered to
check if a tuple with all the elements outside the erasure zone
can be found—if yes, the condition is NEB; else it is termed as
EB.

Example of NEB and EB: For a certain combination of
and , let , , and . Thus, proper em-
bedding needs that only be changed suitably (condition 1 in
Table II). If equals zero after rounding, we test for suitable
2-tuples out of , where the corre-
sponding terms could have been modified at the encoder so



230 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 5, NO. 2, JUNE 2010

as to achieve the same effect as modifying . Again, we are
sure we have a suitable 2-tuple if both the coefficients have an
absolute magnitude (after rounding). If we do not find a
suitable 2-tuple, we look for a suitable 3-tuple (Table II). Finally,
depending on whether (or not) we find a suitable 1/2/3-tuple, the
combination is considered to be an example of NEB (or EB).

LLR Computation for NEB: For the NEB condition, if the
coefficient which we assumed to have been changed for embed-
ding were indeed the one that was modified, the 3-tuple com-
puted from would equal the sequence that was supposed
to be embedded. The LLR values are then computed identically,
for both M1 and M2, based on , using (5)

(5)

2) LLR Computation for EB: M1 and M2, compute the indi-
vidual LLR values LLR condition differently.

• Method M1: We assign zeros, corresponding to erasures,
to all the 3 bit locations for that condition.

• Method M2: If a certain condition is classified as EB, we
can still guess the actual embeddable bits; e.g., consider the
EB condition (condition 1 in Table II) where or corre-
sponding 2–3 terms could not be modified. Then, ,

, and (Table II) is the relation between
(bits to embed) and (default syndrome) at the embedder
side. Therefore, bit will be wrongly decoded. Thus, if the
EB condition indeed occurred due to , or corresponding
2–3 terms, lying in the erasure zone, ( , , and ) would
be the actual embeddable bits. The LLR for the 3 bit lo-
cations, assuming that condition 1 is true, can then be ex-
pressed in terms of , , and , as shown later in (9).

For an EB condition, embedding may still have been possible.
Thus, we have less confidence in the embeddable bit values sug-
gested by an EB condition than by an NEB condition. M2 uses
a weighting factor for the EB condition
LLRs, used below in (9). We demonstrate proper embedding
under an EB condition using an example. Say, for condition
1, we observe that are all in the erasure zone,
while the remaining terms are outside the erasure zone. Then, if

were all originally in the erasure zone, embed-
ding under condition 1 using 1/2/3-tuples would not be possible.
However, it may have been that one/more of these coefficients
were in [ 1, 0.5) or (0.5,1] and they got modified to values in
the erasure zone after embedding. Thus, proper embedding can
occur if or (0.5,1], or if and at
least one element from is outside the erasure zone.
The probability of proper embedding is expressed as (6)
and the weighting factor (7) corresponds to the probability
that embedding could not be performed, given an EB condition

(6)

(7)

TABLE III
EXPLANATION OF LLR ALLOCATION FOR EXAMPLE-1: CONDITIONS

{0,3,4,7} ARE THE NEB CONDITIONS. HERE, THE SYNDROME BASED ON

� , �� � � � � � � ��� �� ��. IF CONDITION � IS NEB, THE ACTUAL BIT

SEQUENCE THAT WAS EMBEDDED IS ASSUMED TO BE �� � � � � �, WHILE

FOR AN EB CONDITION, THE EMBEDDABLE BIT SEQUENCE IS ASSUMED

TO BE �� �� �� � �� �� � �� �� FOR M2 (FUNCTIONS � ARE OBTAINED

FROM TABLE II). FOR A CERTAIN CONDITION, “BITS” REFERS TO THE

ORIGINAL SEQUENCE THAT IS EMBEDDED (FOR AN NEB CONDITION) OR THE

SEQUENCE THAT WAS SUPPOSED TO BE EMBEDDED (FOR AN EB CONDITION).
WE ASSUME � � ���

Though varies per image as it depends on the distribution
of the quantized DCT coefficients, we empirically observe that

is a good choice across a variety of design QFs

(8)

(9)

In (9), the functions are given by the th condition.
For an EB condition, maps the computed values
to the actual bit sequence which we assumed was embedded;
e.g., when proper embedding is not possible for condition 1,
the mapping between (bits to embed) and (output syn-
drome) is , , and . Hence, ,

, and . The LLR computation for M1
and M2 is explained through an example (Table III).

Example 1: In this example,
, , and

. Conditions {0,3,4,7} are the NEB
conditions. The LLR values for the NEB conditions are
computed using (5) (for M1 and M2) and the EB condition
LLRs are computed using (8) and (9), for M1 and M2,
respectively. To show why condition 1 is classified as EB,
consider which lies in the erasure zone. Looking for higher
order tuples that satisfy condition 1 (from Table II), we find that

all lie in the erasure zone and hence, 2–3 tuples
which are suitable for embedding cannot be found. For M2,
if condition 1 is true and we assume that proper embedding
has not occurred, the actual bit sequence that should have been
embedded is ; the resultant LLR equals

using (9).

B. LLR Computation For ME-RA—Method 3 (M3)

For M1 and M2, when bit is assumed to be embedded, the
LLR value is given by , as in (5), where denotes the
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TABLE IV
LLR COMPUTATION FOR METHOD 3 BASED ON (10)—EXPLAINED USING EXAMPLES 2–3, AND USING � � ���, � � �

decoder’s confidence level. The proper choice of varies with
the hiding parameters QF . Here, we propose an LLR com-
putation method which is independent of . By definition (3),
an LLR term is a ratio of two probability terms—each term
(e.g., ) can be replaced by the frequency of occur-
rence of that event, considering all eight conditions. We express
LLR as a ratio, as shown below in (10). Of the eight pos-
sible values for , we determine which conditions correspond
to and , respectively, and also weight each condi-
tion differently depending on whether it corresponds to NEB or
EB. The th condition can result in either because 1) it
is an instance of NEB and equals 0, or 2) it is an EB condi-
tion and , as used in (9), equals 0. As explained before,
the EB conditions are weighted less [by in (9)] than
the NEB conditions (weighted by ). We denote the
number of NEB and EB conditions where by
and , respectively

To avoid the numerator or denominator in LLR be-
coming zero, we add 1 to both of them

(10)

For QIM-RA and the M1 and M2 schemes, the LLR is ex-
pressed in terms of the scaling factor . For a given set of
hiding conditions QF , the best possible is that
value which results in the highest data rate. We experimentally
observe that the values used for M1 and M2 (for M2,

for QF ) result in similar

LLR values for M3. Therefore, in (10), we add 1 to both the nu-
merator and denominator to avoid the LLR becoming .

We provide two examples (Table IV) to explain the steps in-
volved in LLR computation using M3.

Example 2: The value of is the same as used in
Table III. Focussing on , at the NEB condi-
tions {0,3,4,7}, therefore, . Of the EB
conditions, equals 0 for conditions {2,6} and 1
for conditions {1,5}, respectively—hence,
and . The resultant LLR equals

.
Example 3: Let be (1.2,0.2,0.9,1.5,1.9,0.1,0.2). Then,

and .
Embedding is seen to be possible for all eight cases
(all NEB conditions). For and , LLR equals

. LLR equals
.

C. LLR Computation Considering Channel Effects

Let us consider the flow , as
shown in Fig. 2. For the LLR computation methods described in
Sections IV-A and IV-B, we assume that there are no errors or
erasures in the channel between and . We now refine the
LLR computation method, accounting also for channel effects.

For a received sequence , we can compute the LLR value
for the 3 bit locations corresponding to these 7 coefficients using
M1/M2/M3. However, considering channel effects, the received
sequence need not be the same as the transmitted sequence

. Here, we guess the value of the transmitted sequence and
refer to it as . For each guessed sequence , we compute the
probability that the transmitted sequence is , given that the
received sequence is . The final LLR value for , given the
sequence and considering the channel effects for all possible

sequences, LLR is computed as shown in (11)

(11)

(12)

We express (12) in terms of the parameters in the
3 3 transition probability matrix , for the channel between
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TABLE V
VARIATION OF THE HIDING RATE (bpnc) WITH DIFFERENT LLR COMPUTATION METHODS FOR (7,3) ME-RA, WITH � � �, QF � ��, AND

USING THE FIRST 19 AC DCT TERMS FOR HIDING �� � ���, AND M3 TO COMPUTE INDIVIDUAL LLRS

and , where each coefficient can be mapped to one of
erasure

(13)

if

if
(14)

Representing the sequences in terms of the ternary symbols,
we consider only those guessed sequences , where 0 or 1
symbols are changed to obtain the received sequence from

, to compute LLR (15)—we assume that the channel error
and erasure probabilities are small enough so that

when more symbols are changed

LLR

(15)

The elements in depend on the JPEG compression channel
and not on the distribution of the image DCT coefficients. For a
given set of hiding parameters (QF , QF , and ), we compute

for each image, from a set of 500 images, and the average is
used as an estimate of .

We compute the probability terms assuming that
the symbols are independent of each other. Using and

to denote the ternary symbols, the probability
equals .

For the matrix, we assume , , ,
(this is also experimentally verified). Let denote the

value of , when LSBs from are changed (through
errors/erasures) to generate . The probability terms and
are computed as shown below in (16) and (17), respectively,

(16)

if

if
(17)

Experimental Setup: An output quality factor QF of 75
is used for all the experiments here. While accounting for
channel effects, we systematically increase the values of the
design quality factor QF , as shown below in Table V. As
QF increases, the DCT coefficients are divided by a finer
quantization matrix (the elements in the JPEG quantization
matrix get smaller)—the perturbation introduced by a fixed
JPEG channel QF can cause more errors/erasures
if the original elements undergo finer quantization. We show
results for QF and —the error and erasure prob-
abilities are much smaller for lower QF . For QF of 60, 70,
and 75, QF being fixed at 75, and using an embedding band
of elements, (averaged over 500 images) equals

, ,

, respectively. The average

hiding rate is computed in terms of bpnc (explained in Table I).
“Hiding rate” refers to the bpnc averaged over 250 images (the
image dataset is explained in Section VII-A), while using the
minimum RA-code redundancy that ensures perfect data
recovery for each image. Since considering the transition prob-
ability matrix improves the bpnc for more noisy channels, we
use (15) for LLR computation for QF of 60 and 70 in further
experiments. For lower QF values, the LLR is computed using
the erasure-only model (10).

Experimental Results: We show the usefulness of the as-
sumed model (individual LLR terms LLR are computed
using M3) in Table V. The bpnc using both and , as in (15),
for LLR computation is slightly higher than that computed using
only , while both are significantly higher than the erasure-only
model as in (10), especially for channels with a higher error rate
(QF and ).

V. PERFORMANCE IMPROVEMENT WITH PUNCTURED

RA CODES

RA codes are near-optimal for our application because of the
high proportion of erasures, but the available rates are limited to

, where is an integer. We address this shortcoming by the
use of punctured RA codes. Puncturing [2], [3] is a technique
where the data rate is increased by deletion of some bits in the
encoder output. The bits are deleted according to some punc-
turing matrix. We explain how puncturing operates using an ex-
ample. Assume that there are 200 hiding locations—for an RA
codeword of 200 bits, let the value of be 4 and hence, we
can embed data bits. Now, we increase the effec-
tive codeword length using “puncturing.” Let the new codeword
length be 300—we assume that the extra bits
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are deleted (these deletions are regarded as erasures at the de-
coder output). As the effective channel is the same, the error and
erasure rate for the 200 code-bits is unchanged while there are
100 additional erasures. We obtain a higher data rate if the new
value of , as . The design choices for
puncturing here are 1) the number of additional erasures and
2) their locations in an RA codeword. By suitably puncturing
the RA codeword which is embedded using ME-RA, we obtain
a higher bpnc—this new approach is called “ME-RA-puncture.”
We first explain the algorithm and then describe why/how it re-
sults in an improved performance.

Algorithm Description:
• The embedding band remains the same for ME-RA and

ME-RA-puncture schemes. We use the top 19 AC DCT
coefficients per 8 8 block for hiding. Let
the number of blocks pseudorandomly chosen
by YASS be . The total number of hiding coefficients

(assuming ).
• To create a longer codeword than ME-RA (which has

code bits), we assume that ( , i.e.,
) bits are embedded per 8 8 block. Hence, the

codeword has bits. The problem becomes one of
distributing the erasures among the

code bits.
• One can spread the erasures pseudorandomly or the

erasures can occur at consecutive locations (bursty
erasures). Let denote the set of locations which
correspond to the code bits which are embedded
out of code bits.
The four methods that we explore to obtain are
mentioned below:

1) Locally Random Erasures (LREs): We assume
that out of a set of consecutive code bits,
bits are erased. Let the 9 pseudorandomly selected
bit locations, decided based on a key shared with
the decoder, used for embedding out of locations
be , where . Thus, the
set of the bit locations (out of locations)
which correspond to the RA-code bits which are
actually embedded is .
As , we consider the first

of the locations in to obtain
the embeddable code bits.

2) Locally Bursty Erasures (LBEs): We assume
that out of consecutive code bits, locations

are used for embedding and
are erasure locations.

3) Globally Random Erasures (GREs): Out of
locations, locations are pseudorandomly
selected as the embedding locations. For LRE and
GRE, the pseudorandom locations are decided
based on a shared key, so that the decoder knows
the additional erasure locations.

4) Globally Bursty Erasures (GBEs): We
assume that out of locations, locations

are used for embedding while
the remaining are erased.

Fig. 4. Mapping between the binary RA code bits to the ternary sequence ob-
tained from the continuous valued LLRs at decoder output is shown here for
the ME framework—“channel” refers to the JPEG compression that introduces
errors and erasures while mapping � to ��. The additional erasure locations for
the ME-RA-puncture scheme are selected in the final RA encoded sequence ���
and not in the intermediate sequences (� or �). For RA decoding, continuous
valued LLRs are used—the ternary sequence ���� is used only to represent the
channel as a 2 � 3 transition probability matrix.

• The LLR values for the locations where code bits
are actually embedded (locations specified by ) are
computed using M1, M2, or M3. The LLR values at the
additional erasure locations are set to zero.

Understanding How “ME-RA-Puncture” Works: When can
increasing the codeword length, while “actually embedding” the
same number of bits, increase the effective hiding rate? Sup-
pose that the RA codeword lengths for two different choices of
“number of additional erasures” are and (we as-
sume that both , and ). Let the value of
for the two cases be and , respectively. The number
of data bits embedded is and ,
respectively. As , the number of erasures introduced in
the second case is higher (the channel becomes more noisy) and
hence, the minimum redundancy needed may be equal to
or higher than . Thus, to have a higher data rate, the rate
of increase in the redundancy factor should be less than
the fractional increase in the code length, i.e.,

.
To understand how the redundancy varies after inserting ad-

ditional erasures, we study the effective hiding channel (the
channel shown in Fig. 4 applies to both ME-RA and ME-RA-
puncture), and observe how the channel transition probability
matrix changes with and how it affects . Since the LLR
values are continuous valued for the ME-RA scheme, we em-
pirically obtain a suitable threshold to map the LLR values
to ternary symbols. The continuous LLR values belonging to

, and are mapped to the three discrete
values , 0 and , respectively. The 2 3 mapping from the
binary RA code bits to the ternary symbols and then the
3 3 mapping between the ternary symbols ( and ) owing
to the JPEG-based compression channel are shown in Fig. 4.
The effective 2 3 mapping from to is used to compute
the effective channel capacity , which is obtained by maxi-
mizing the mutual information (18)—a discrete memo-
ryless channel is assumed here

(18)
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TABLE VI
FOR EACH IMAGE, THE bpnc IS COMPUTED USING ME-RA-PUNCTURE, USING QF � �� AND � � �. THE bpnc INCREASES FOR A SUITABLE RANGE OF � (RATE

OF ADDITIONAL ERASURES). HERE, LRE IS USED FOR ERASURE DISTRIBUTION

TABLE VII
THE bpnc VALUES ARE COMPUTED USING ME-RA-PUNCTURE FOR DIFFERENT ERASURE DISTRIBUTION METHODS, FOR VARYING QF AND �, AND � � �.

THE CHANNEL EFFECTS ARE CONSIDERED FOR LLR COMPUTATION FOR MORE NOISY CHANNELS (QF OF 60 AND 70) USING (15),
WHILE AN IDEAL CHANNEL IS ASSUMED FOR QF OF 50

The inverse of the capacity provides the minimum re-
dundancy factor needed for proper decoding for an ideal channel
code—the RA code is expected to be close to the ideal channel
code for channels with high erasure rates [27]. The minimum
needed for RA decoding should be equal to or slightly higher
than this redundancy factor. We empirically observe that using

provides a 2 3 transition probability matrix between
and that results in values close to .
Say the overall transition probability matrix between and

, for , is expressed as . For

, where , out of every bit locations, 9 bits obey
the mapping specified by , while the remaining bits
always get erased. The modified transition probability matrix
(for ) is related with as follows:

Let the channel capacity based on and be denoted by
and , respectively; we empirically observe that in general,

. Let denote the channel capacity using
. The average values of , , ,

, , and are 1.33, 1.66, 1.87,
2.11, 2.31, and 2.55 for QF ; for comparison, equals
1.33, 1.67, 1.89, 2.11, 2.33, and 2.56 for of 12, 15, 17, 19,
21, and 23, respectively, where . For the RA code frame-
work, the redundancy is constrained to be an integer. Hence,
it is seen for certain cases (numerical examples from Table VI)
that even on inserting extra erasures, the RA code redundancy
remains the same or increases at a rate lower than leading
to increased bpnc.

TABLE VIII
THE BPNC VALUES ARE COMPUTED USING ME-RA-PUNCTURE FOR DIFFERENT

� AND QF aND LRE FOR ERASURE DISTRIBUTION; WE SET � � � AND USE

M3 FOR INDIVIDUAL LLR COMPUTATION

Numerical Examples: For four sample images, is varied
from 9 to 23 and we observe how bpnc, and vary, for
QF of 60, as shown in Table VI. The LRE method is used to
determine the embeddable bit locations. We set and use
M3 for individual LLR computation.

Comparing Erasure Distribution Methods: In general, bursty
erasures result in a lower bpnc as compared to when erasures are
pseudorandomly distributed (Table VII). For less noisy chan-
nels (QF ), LRE and GRE perform much better than
LBE and GBE. For more noisy channels QF , era-
sures located in globally consecutive positions (GBE) perform
similar to/better than LRE and GRE schemes. We set ,
QF , and use M3 for individual LLR computation.

Experimental Results: Our experiments, performed on 250
images, show that as is increased from 9, the bpnc increases
significantly initially while it flattens out for in the range
17–19, for “ME-RA-puncture” (Table VIII). We use (15) for
LLR computation for QF of 60 and 70 and use an erasure-only
model for QF of 30, 40, and 50 (the same setup is again used in
Table IX and also in Section VII-B). We use LRE for choosing
the embeddable code bits. We use M3 to compute the individual
LLR values.

Utility of ME-RA-Puncture Scheme: The same number of
RA-encoded bits gets embedded for the ME-RA and ME-RA-
puncture schemes; hence, the effective embedding distortion
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TABLE IX
TABLE COMPARING THE HIDING RATE (bpnc) OBTAINED AFTER USING M1, M2, AND M3, FOR LLR COMPUTATION, USING � � � AND QF � ��. FOR M1 AND

M2, THE OPTIMUM � (THAT RESULTS IN HIGHEST bpnc FOR A SET OF HIDING PARAMETERS) VALUE FOR LLR SCALING IS EMPIRICALLY DETERMINED AND THE

REPORTED bpnc CORRESPONDS TO THE OPTIMUM �. FOR ME-RA AND ME-RA-NONSHRINKAGE, WE USE � � ��, WHILE FOR ME-RA-PUNCTURE, WE USE

� � ��. THE EFFECTIVE bpnc OBTAINED USING M3 IS HIGHER, IN GENERAL, THAN THAT USING M1 AND M2

TABLE X
COMPARING DETECTION PERFORMANCE �� � AND EMBEDDING RATE (bpnc) USING QIM-RA AND “ME-RA-PUNCTURE” SCHEMES—FOR � � � AND

��, QF � ��, QF � ��. THE bpnc FOR “ME-RA-PUNCTURE (7,3)” [OR ME-RA-PUNCTURE (3,2)] IS HIGHER THAN THAT OF “QIM-RA: 4 TERMS”
(OR QIM-RA: 6 TERMS) WHILE THE LATTER IS MORE DETECTABLE, FOR THE SELF-CALIBRATION-BASED FEATURES

and the detectability against steganalysis are identical for these
methods. Thus, for a proper choice of , we obtain a higher data
rate for ME-RA-puncture as compared to ME-RA even though
both have the same detectability.

VI. COMPARISON OF LLR COMPUTATION METHODS AND

EFFECTS OF AVOIDING SHRINKAGE

In Section IV, we introduced three methods for LLR com-
putation (M1, M2, and M3). Here, we compare the hiding rate
(in terms of bpnc) obtained using these methods in Table IX.
M2 and M3 are more complicated than M1 in the way the
different erasure scenarios are analyzed. Performance-wise, in
general, (in terms of bpnc achieved using
these methods). It is also seen that the performance benefits of
ME-RA-puncture over ME-RA (in terms of increased bpnc)
are higher for lower QF values, where the effect of erasures
is more dominant. In Section VII-B, while reporting the ste-
ganalysis results using ME-RA-puncture, we also report its
bpnc—for that, we use those parameters (erasure distribution
method and ) which maximize the bpnc. We use GRE for
erasure distribution for QF of 50 and 60 and GBE for QF of
70, and use (based on Tables VII and VIII).

Avoiding Shrinkage: The MMx algorithm [17] avoids
shrinkage as follows—when lies in a nonerasure zone
([0.5,1] or [ 1, 0.5]), but gets converted to zero after embed-
ding, is converted to 2 (or 2) depending on whether it is 0
(or 0). Thus, shrinkage is avoided as a zero-valued coefficient
can arise only due to erasure and not due to embedding; how-
ever, embedding distortion is also higher for the nonshrinkage
case which leads to higher detectability. For LLR computation,
we now use for M3 (10) as there is no ambiguity
between an erasure and an embedding.

While comparing the performance of nonshrinkage ME-RA
with ME-RA, we observe that the nonshrinkage version results
in a higher bpnc only when the shrinkage problem is domi-
nant, which happens when the erasure rate is high enough, i.e.,
at lower QF (of 30–60 in Table IX). The gain in bpnc (for
ME-RA-nonshrinkage as compared to ME-RA) decreases as
QF increases (erasure rate decreases) from 30 to 60. The em-
bedding distortion of the nonshrinkage version is always higher
than ME-RA, which in turn has the same embedding distor-
tion as ME-RA-puncture. Hence, the nonshrinkage scheme is
expected to be more detectable than ME-RA-puncture for the
same steganalysis features. In Table IX, it is seen that the bpnc
for ME-RA-puncture is higher than the nonshrinkage version
across different QF .

VII. EXPERIMENTS AND RESULTS

We first compare the detectability of both the QIM-RA and
the ME-RA-puncture schemes against steganalysis, at similar
hiding rates (shown later in Tables X and XI). The hiding rates
are adjusted by varying and the number of coefficients used
for hiding . We also investigate the level of noise attacks
up to which ME performs better than QIM, as shown later in
Table XII. We also present the steganalysis results using some
recently proposed features, most of which were designed specif-
ically to detect YASS (Table XIII).

A. Setup for Steganalysis Experiments

The experiments are done on a set of 1630 high-quality JPEG
images taken with a Canon S2-IS Powershot camera; the images
were originally at a QF of 95 and they were JPEG compressed
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TABLE XI
COMPARING � AND bpnc FOR QIM-RA AND “ME-RA-PUNCTURE”—FOR � � �� AND ��, QF � ��, QF � ��

TABLE XII
COMPARING BPNC UNDER VARIOUS ATTACKS—“QIM-�” REFERS TO THE “QIM-RA: � TERMS” METHOD, WHILE ����	 REFERS TO THE “ME-RA-PUNCTURE

����	” METHOD. FOR HIDING, WE USE QF � ��, � � �, AND AFTER THE ATTACK, THE IMAGES ARE JPEG COMPRESSED USING QF � ��.
HERE, THE bpnc FOR “ME-RA-PUNCTURE(7,3)” AND “ME-RA-PUNCTURE(3,2)” ARE COMPARED WITH THAT OF QIM-4 AND QIM-6, RESPECTIVELY

TABLE XIII
COMPARING � FOR A VARIETY OF RECENTLY PROPOSED FEATURES TO DETECT YASS, USING QF � ��. WE USE � � � FOR THE QIM SCHEMES.

THE ACRONYMS USED FOR THE VARIOUS METHODS ARE THE SAME AS USED IN TABLE XII

at a QF of 75 for the experiments.1 The advertised QF QF is,
therefore, kept at 75, so that both the cover and stego images,
considered for steganalysis, are at the same JPEG QF.

Steganalysis Performance Measures: The steganalysis re-
sults are expressed in terms of the detection probability
(19) while the embedding rates are expressed in terms of the
bpnc. We train a support vector machine (SVM) on a set of
known stego and cover images. The SVM classifier has to
distinguish between cover (class “0”) and stego (class “1”)
image classes. Let and denote the events that the image
being observed belongs to classes “0” and “1”, respectively.
On the detection side, let and denote the events that
the observed image is classified as belonging to classes “0”
and “1”, respectively. The probability of detection is
defined as follows:

(19)

where and denote the
probability of false alarm and missed detection, respectively.
Note that the above equation assumes an equal number of cover
and stego images in the dataset . An

1We have experimentally observed that the detectability is higher using high-
quality JPEG images than images taken with the same camera, but at poorer
quality, i.e., JPEG compressed with lower QF. Hence, we use high-quality im-
ages for our experimental setup to show that ME-based YASS is more unde-
tectable as compared to QIM-based YASS.

uninformed detector can classify all the test images as stego (or
cover) and get an accuracy of 0.5. Thus, being close to
0.5 implies nearly undetectable hiding, and as the detectability
improves, should increase towards 1. For the steganal-
ysis results, we report as a percentage, at a precision of
two significant digits after the decimal point.

Steganalysis Features: The following features are used as
these have generally been reported as having the best detection
performance among modern JPEG steganalyzers.

1) PF-219/324/274: Pevný and Fridrich’s 274-dim feature
vector (PF-274) is based on the self-calibration method
[23] and it merges Markov and DCT features. The ex-
tended DCT feature set and Markov features are 193-dim
(PF-193) and 81-dim, respectively. The logic behind the
fusion is that while Markov features capture the intrablock
dependency among DCT coefficients of similar spatial
frequencies, the DCT features capture the interblock
dependencies. For the extended DCT features [18], [23],
the authors have a 219-dim implementation (PF-219).2

The Markov features (PF-324) are obtained based on the
324-dim intrablock correlation-based feature set (Shi-324)
proposed by Shi et al. [26]—the only difference being that
the features are “calibrated” in [23].

2) Chen-486: Another steganalysis scheme that accounts for
both intra- and interblock correlation among JPEG DCT

2PF-219 differs from PF-193 in the following ways: 1) In PF-219, there are
25 co-occurrence features for both the horizontal and vertical directions—these
are averaged to give 25 features in PF-193. 2) Instead of one variation feature in
PF-193, there are two variation features (for horizontal and vertical directions,
separately) in PF-219.
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TABLE XIV
THE bpnc VALUES ARE COMPARED FOR ME-RA AND QIM-RA METHODS, BEFORE AND AFTER PUNCTURING, AT QF � ��

coefficients is the 486-dim feature vector, proposed by
Chen et al. [6]. It improves upon the 324-dim intrablock
correlation-based feature [26].

B. Discussion of Experimental Results

Comparison After Varying Big-Block Size : The detection
performance, in terms of (19), and the embedding rate, in
terms of bpnc, are compared for QIM-RA and “ME-RA-punc-
ture,” using and (Table X), and and (Table XI).
The ME-based method has been experimented with for both
the (7,3) and (3,2) encoding schemes. The “QIM-RA: terms”
scheme has been defined in Table I.

From these tables, it is seen that is comparable for
“QIM-RA: 2 terms” and “ME-RA-puncture (7,3)” while the
latter has a higher embedding rate. The bpnc for “ME-RA-punc-
ture (7,3)” [or ME-RA-puncture (3,2)] is higher than that of
“QIM-RA: 4 terms” [or QIM-RA: 6 terms] while the latter
is more detectable, for the self-calibration-based features.
It is seen that YASS is more detectable using the self-cal-
ibration-based features than using Chen-486. Hence, the
performance improvement of ME over QIM (lower at
similar bpnc values) is more significant for PF-219/324/274
features.

Depending on the bpnc requirements for a certain stego
scheme, one can decide whether to use (3,2) or (7,3) ME—the
former allows for higher bpnc while the latter is more unde-
tectable. Using (15,4) code for ME results in very low hiding
rates and hence has not been considered.

Robustness Comparison for Various Noise Attacks: We now
study how the bpnc is affected by additional noise attacks
for these schemes. The YASS framework can be made robust
against various global (and not local) attacks by adjusting the
RA-code redundancy factor. We consider a wider range of
attacks—gamma variation and additive white Gaussian noise
(AWGN) attacks, which are followed by JPEG compression at
QF . It is seen that for higher noise levels ( ,
for gamma variation, or SNR dB, for AWGN), the bpnc
is significantly lower for the ME-based method, as compared
to QIM-RA, for similar detection rates (Table XII).

Using Recent Steganalysis Features More Tuned to Detect
YASS: We explain the following features and then show their
steganalysis performance in Table XIII:

1) KF-548: To improve upon the PF-274 feature,
Kodovský and Fridrich [19] proposed the use of a
548-dimensional feature set which accounts for both
calibrated and uncalibrated features. Here, the reference
feature is used as an additional feature instead of being
subtracted from the original feature.

2) Li-14 and Li-2: In [20], Li et al. propose the use of the
frequency of requantized DCT coefficients in the can-
didate embedding band which round off to zero. The

th and th features correspond to of ,
for . Thus, if we are sure that , we use
the first two dimensions of Li-14, i.e., Li-2; else when
the exact value of is not known, the 14-dim feature is
used.

3) YB-243: In [30], Yu et al. propose a 243-dim feature
based on transition probability matrices computed using
the difference matrix computed in the pixel and DCT
domains.

It is seen that in the lower embedding rate regime which
is discussed in this paper, these newer features (KF-548 and
Li-2) provide similar levels of detectability as that provided by
features already discussed, like PF-274. We have also experi-
mented using a larger sized training set and increases
marginally after increasing the size of the training set by a factor
of more than 2 (for detailed results, see [1]).

Performance Comparison After Puncturing: We now use
puncturing for QIM-RA and compare the bpnc results for
ME-RA and QIM-RA, both with and without puncturing,
in Table XIV. From Tables X and XI, ME-RA-puncture is
less detectable than QIM-RA and also has higher bpnc. After
using puncturing, we observe that the bpnc gain margin (of
ME-RA-puncture over QIM-RA-puncture) decreases—how-
ever, in general, ME-RA-puncture is still less detectable (punc-
turing does not affect the detectability) than QIM-RA-puncture
at similar bpnc values.

Fig. 5(a) illustrates how ME outperforms QIM in the “bpnc
versus ” trade-off. Considering points along the same
vertical line (equal value of ), the ME-points have higher
y-values than the QIM-points, indicating higher bpnc. Fig. 5(b)
corresponds to Table X—ME (7,3) [which corresponds to
ME-RA-puncture (7,3)] is shown to be less detectable than
QIM-2 (QIM-RA: 2 terms) and QIM-4 from ROC curves while
Table X shows that ME (7,3) achieves higher bpnc than these
QIM-based schemes. The variation in detectability with the
hiding parameters ( , , (7,3) ME or (3,2) ME) for ME and
QIM-based schemes is shown in Fig. 5(c) and (d), respectively.

To conclude, for hiding conditions where the embedding rate
has to be low enough to ensure a certain level of undetectability,
ME-based embedding with suitable puncturing generally results
in higher bpnc than QIM, for similar robustness levels against
steganalysis. However, this holds true only when the channel
noise is low enough—for more severe noise, the LLR estimation
for ME is erroneous enough to result in a lower hiding rate than
QIM.
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Fig. 5. PF-274 is used for steganalysis in these plots—(a) trade-off of hiding
rate versus detection accuracy is shown considering different parameter settings
for ME and QIM-based hiding, as used in Tables X, XI, (b)–(d) comparison of
ROCs is done for (b) ME versus QIM at comparable bpnc, (c) variants of ME,
and (d) variants of QIM (varying �). Here,� � � unless otherwise mentioned.
The diagonal line corresponding to a fully random detector is kept as refer-
ence—the closer a ROC curve is to this line, more secure is the hiding method.

VIII. CONCLUSION

Randomized block-based hiding as in YASS [28] provides a
powerful framework for secure hiding, especially against self-
calibrating steganalysis. In this paper, we have shown that using
ME instead of QIM within the YASS framework provides im-
proved steganalysis performance in certain regimes, specifically
when avoiding detection is a high priority (so that the hiding rate
is small) and attacks are moderate. Technically, the key to our
approach is to combine ME-based data hiding, which has a high
embedding efficiency but is fragile against attacks, with a pow-
erful channel code employing soft decisions. While we use RA
codes as in our prior work, the LLR computation framework de-
veloped here, which depends only on the ME embedding logic,
is applicable to any channel code whose decoder employs soft
decisions (e.g., turbo codes or low density parity check codes).
The performance is further improved by the use of punctured
RA codes. While such codes have been used previously for ob-
taining good high-rate codes for classical communication chan-
nels [24], our results demonstrate their potential benefits for
low-rate data hiding channels. It would be interesting to examine
their utility in other stego schemes.

One approach to gain further performance improvements is to
address the shrinkage problem in YASS: when given a zero co-
efficient, the decoder is confused as to whether the zero resulted
from an embedding or due to an erasure. Fridrich et al. have
used WPC [12], [13] to overcome this problem, as in the “non-
shrinkage F5” method [14]. Combining WPC with the ME-RA
framework might lead to further improvement in the embedding
rate while maintaining the undetectability of the stego scheme.
Another approach is to use more sophisticated “inner codes,”
possibly combining error correction with hiding as in [31], with
RA or other turbo-like codes used as outer codes. However, the
combinatorial complexity of computing soft decisions (at least
in the direct fashion considered here) for such an inner code

would be excessive for larger blocklengths and a larger number
of data bits. An interesting topic for future research might be to
explore techniques for overcoming this complexity bottleneck.
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