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Abstract—The analog-to-digital converter (ADC) represents a
fundamental bottleneck in power- and cost-efficient realizations
of “mostly digital” communication transceivers at multi-Gigabit
speeds. Time-interleaved (TI) ADCs, with slower, power-efficient
“sub-ADCs” employed in parallel to obtain a high-rate ADC,
represent a potential solution to this bottleneck. The perfor-
mance floor caused by mismatch in TI-ADCs can be eliminated
by estimating and correcting for the mismatch. For TI-ADCs
employed in communication receivers, prior work has shown that
mismatch and channel parameters can be estimated jointly by
using the training available in communication systems. In this
paper, we propose simplified algorithms for this purpose, and
examine how well they scale as the number of sub-ADCs gets
large. We conclude that rapid convergence can be attained if the
training sequence scales with the number of sub-ADCs, and that
the convergence rate can be significantly enhanced by a suitable
choice of periodic training sequence.

I. INTRODUCTION

Modern communication transceivers exploit the availability

of exponentially increasing computational power (Moore’s

law) by employing “mostly digital” architectures, in which

the bulk of the signal processing is performed in the dig-

ital domain, followed by digital-to-analog converters at the

transmitter and analog-to-digital converters at the receiver. The

economies of scale thus provided have propelled the growth of

mass market digital communication systems such as cellular

networks, wireless local area networks, and broadband DSL

and cable modems. In order to scale this approach to provide

low-cost solutions for emerging multi-Gigabit communication

systems (e.g., 60 GHz wireless, optical interconnects), we

must address the analog-to-digital converter (ADC) bottleneck

[1]: high-speed ADCs implemented in CMOS technology

either have limited resolution or excessive power dissipation

[2], [3]. An attractive design approach for obtaining high-

rate ADCs with reduced power consumption is to employ a

time-interleaved architecture, in which several low-rate ADCs

(termed “sub-ADCs” here) are employed in parallel with stag-

gered sampling times. The lower sampling rates for the sub-

ADCs means that power-efficient architectures as successive

approximation or pipelined can be employed, compared to the

flash architectures required for directly implementing a high-

speed ADC. However, the limiting factor in the performance
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of such a time-interleaved ADC (TI-ADC) is the mismatch

between the sub-ADCs. When used in a communication re-

ceiver, for example, uncompensated mismatch leads to error

floors. The error floors can be removed by estimating and

compensating for the mismatch parameters, and we have

shown in earlier work [5] that it is possible to jointly estimate

the mismatch and the channel using the training sequences

already available in communication systems. In this paper, we

ask how well such mismatch estimation procedures scale, in

terms of the length of training required, as we increase the

number of sub-ADCs.

Contributions

Our starting point is our prior work [5], where we present

an iterative algorithm for joint estimation of the channel

coefficients and TI-ADC mismatch parameters (modeled as

gain, timing and voltage-offset mismatches). A least squares

cost function is alternately minimized over the channel and

mismatch parameters, keeping the other set of parameters

fixed. In this scheme, channel estimation with fixed mismatch

parameters has a closed form solution, while mismatch estima-

tion with fixed channel coefficients requires L one-dimensional

searches, where L denotes the number of interleaved ADCs.

In this paper, we simplify the iterative algorithm in [5] by

using a linear approximation to model the timing mismatch.

This leads to closed form solutions for both the channel and

mismatch estimation steps. We then analyze the convergence

and robustness to noise of the estimation procedure. We first

consider estimation performance with pseudorandom training

sequences, as a function of the training sequence length M ,

the number of sub-ADCs L, and the number of channel

coefficients N . When M is a large enough multiple of L
(e.g., M = 4L), we observe that the estimation error decreases

exponentially with iterations, with a decay rate that increases

with M (for a fixed L) or decreases with L (for fixed M ).

However, when the training sequence length M = 2L or

smaller, we provide some examples showing that the iterative

algorithm can get stuck away from the true parameter values.

Finally, we evaluate the Cramer-Rao lower bounds for joint

channel and mismatch estimation, and observe that the mean-

squared error for our estimates is close to these bounds.

We next consider design of training sequences for speeding

up convergence of the estimation algorithm. We propose a

training sequence for which it is proved that the channel and
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mismatch parameters can be well estimated within the first

iteration.

A. Related literature

There is a significant literature on estimating gain and

timing mismatches for TI-ADCs [4]-[12]. Blind approaches

[6]-[9] typically rely on the knowledge of signal statistics,

while training-based approaches [10]-[11] use sinusoidal or

pseudorandom training. However, the number of sub-ADCs

considered is usually small (L < 16). In contrast to the litera-

ture on mismatch estimation for generic TI-ADC applications,

we focus on joint mismatch and channel estimation for the use

of TI-ADCs in communication applications, as in our prior

work [5], or as in [12]. This allows us to leverage training

sequences already available in communication systems, and

potentially eliminates the need for dedicated hardware for

mismatch estimation. While our prior work demonstrates the

feasibility of this approach [5], the focus of the present paper

is on exploring how well the approach scales as we increase

the number of sub-ADCs.

II. SYSTEM MODEL

As shown in Fig. 1, we consider transmission over a

dispersive channel. We denote by h(t) the impulse response

of the cascade of the transmit filter, the channel and the

receive filter. The transmitter sends a training sequence of

M symbol-rate samples, extending over a time interval of

length MT0, where T0 denotes the symbol period. We assume

that the impulse response h(t) has support in the interval

[0, (N − 1)T0], and that the training sequence has a cyclic

prefix of duration (N − 1)T0. We can therefore write the

received analog signal r(t) for the duration of a single training

sequence (t ∈ [0, (M − 1)T0]) as follows:

r(t) =
∑

t−(N−1)T0≤kT0≤t

b[k]h(t − kT0) + n(t), k ∈ Z

(1)

where b[k] denotes the symbol transmitted at time kT0 and

n(t) denotes receiver thermal noise. The receiver performs

symbol-rate sampling of r(t) in (1) using a TI-ADC (see Fig.

1). The sub-ADCs are indexed by i = 0, 1, · · · , L−1, such that

the sub-ADC with index i digitizes samples r(mT0) such that

m mod L = i. In practice, sampling the I- and Q-channels

requires two different TI-ADCs, which potentially can have

different sets of mismatch parameters. In order to simplify the

exposition, we assume that both I and Q TI-ADCs have the

same mismatch parameters. We can now write the received

samples as follows:

r[m] = (1+gi)
m∑

k=m−(N−1)

b[k]h((m−k+δi)T0)+n[m], (2)

where i = m mod L, r[m] = r(mT0), n[m] = n(mT0),
and gi, δi represent the (normalized) gain and timing mis-

matches, respectively, for the ith sub-ADC. From (2), we

observe that the mean values of the gain and timing mismatch,

denoted by g and δ, can be absorbed into the channel by

replacing h(t) by (1 + g)h(t + δT0). We therefore assume,

without loss of generality, that the mismatch parameters have

zero mean:

L−1∑
i=0

gi =
L−1∑
i=0

δi = 0 (3)

We assume that there is no excess bandwidth in the trans-

mission (a good approximation for OFDM, for example), so

that the transmit filter is band-limited to [− 1
2T0

, 1
2T0

]. This

implies that h(t) is also band limited to the same range and

hence, we can use the sampling theorem to write h(t) in terms

of (the symbol-rate samples) h[q] as follows:

h(t) =
N−1∑
q=0

h[q] sinc (
t

T0
− q), (4)

where we used the assumption that h[q] = h(qT0) is zero

unless q lies between 0 and N − 1. We now substitute h(t)
from (4) in (2) and collect all samples corresponding to the

ith sub-ADC (i.e., {r[m]} for m = i + pL) into a vector ri ,

modeled as follows:

ri = Ci(gi, δi)h + ni (5)

where h and ni denote the vector of N channel coefficients

{h[q]} and the vector of noise samples respectively. The matrix

Ci is a function of mismatch parameters, with (p, q)th element

given by

[Ci](p,q) = (1 + gi)

×
i+pL∑

k=i+pL−(N−1)

b[k] sinc (i + pL − k − q + δi)

(6)

We now describe a linear approximation to model timing

mismatch, where the samples of the sinc function are approx-

imated as follows:

sinc (k + δ) =
{

1 k = 0
δ · sinc

′
(k) k �= 0, k ∈ Z

(7)

where sinc
′

represents the derivative of the sinc function.

As shown in our simulations later, this is a good approximation

(in the least squares sense) as long as the timing mismatches

(relative to T ) are small (< 10%). Using (7) in (6), we can

decompose the matrix Ci as

Ci = (1 + gi)Ai + δ̃iBi (8)

where δ̃i = (1+gi)δi. The elements of the matrices Ai and

Bi are given by
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Fig. 1: Base-band model for transmission over dispersive channel using a time-interleaved ADC with 4 sub-ADCs at the

receiver (d =integer, T0 = sampling period).

[Ai](p,q) = b(i + pL − q),

[Bi](p,q) =
i+pL∑

k = i + pL − (N − 1)
k �= i + pL − q

b[k] sinc
′
(i + pL − q − k) (9)

Our aim is to jointly estimate the unknown channel co-

efficients h and the gain and timing mismatch parameters

corresponding to all sub-ADCs. Using (5) and (8), we can

write the maximum-likelihood (ML) joint estimation problem

as,

(ĥ, {ĝ0, · · · , ĝL−1}, {δ̂0, · · · , δ̂L−1})

= arg min
L−1∑
i=0

||ri − (1 + gi)Aih − δ̃iBih||2

(10)

where we assume that the noise samples are i.i.d. and hence,

the ML estimate coincides with the least-squares estimate

given in (10). While this is not strictly true if the samples

are not equi-spaced, it is a good approximation as long as

the relative mismatches are small (< 10%); see [5] for more

discussion.

III. ALTERNATING MINIMIZATION ALGORITHM

Our numerical experiments show that the objective function

in (10) is non-convex, because the Hessian matrix [13] has

positive as well as negative eigenvalues. Thus, the powerful

tools of convex optimization cannot be applied (except as an

approximate solution to the problem). Direct search is also

not a valid option, due to the increase in the dimensionality of

the problem (10) when either L or N become large. However,

we observe from (10) that the estimation problem is quadratic

in the channel parameters when the mismatch parameters are

fixed, and vice versa, which means that there is a closed

form solution for each step of alternating minimization. This

simplification is possible due to the linear approximation in

(7). It is worth noting that the mismatch estimation problem

(with channel fixed) is quadratic in δ̃i, rather than in the actual

timing mismatches δi. Thus, we first estimate gi and δ̃i in

closed form, and then estimate δi. We can now specify each

minimization step explicitly as follows:

• Channel estimation given mismatches:

Given mismatch estimates {ĝ0, · · · , ĝL−1} and

{δ̂0, · · · , δ̂L−1}, the channel estimate is given using (5)

by

ĥ = C†r (11)

where the matrix C and r are formed by vertically

concatenating, for i = 0, 1, · · · , L − 1, the matrices Ci

and the vectors ri, respectively. The matrix C† is the

pseudoinverse of C.

• Mismatch estimation given channel: Since the mis-

match parameters are real-valued, it is convenient to

expand the complex-valued received vector (5) as a real-

valued vector. Using (8) in (5), we can write

( �[ri]
�[ri]

)
=

( �[u] �[v]
�[u] �[v]

)(
gi

δ̃i

)

+
( �[ni]

�[ni]

)
(12)

where u = Aih, v = Bih and �[·] , �[·] denote the real

and imaginary parts of a complex number respectively.

Given the channel estimate ĥ, the estimates of gi and δ̃i

are obtained from (12) as follows:

(
ĝi

ˆ̃
δi

)
=

( �[û] �[v̂]
�[û] �[v̂]

)†( �[ri]
�[ri]

)
(13)
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where û = Aiĥ, v̂ = Biĥ. Using (13), we can find

the estimate for the timing mismatch parameter as δ̂i =
ˆ̃
δi/(1 + ĝi).

We now discuss the convergence and estimation error for

the joint estimation algorithm (11)-(13).

IV. JOINT ESTIMATION WITH PSEUDORANDOM TRAINING

In this section, we use a pseudorandom training sequence

to estimate the channel and the TI-ADC mismatches. In our

numerical results, we consider an m-sequence with generator

polynomial z8+z6+z5+z4+1. We append a zero to this length

255 m-sequence to obtain a training sequence of length 256
(an integer number of bytes). When we desire to use a smaller

training sequence length, we simply truncate the sequence

to retain the first M bits. The transmitted training sequence

is comprised of BPSK symbols b[n] = (−1)t[n], where

t[n] ∈ {0, 1} are the elements of the m-sequence. The values

of gain and timing mismatches are generated uniformly and

independently in the range [−0.1, 0.1]. We generate channel

coefficients with independent zero mean Gaussian real and

imaginary parts.

We study the convergence of the algorithm using the square

of the �2-error norm between the estimate and the truth as

the metric. Thus, the channel estimation error is given by∑N−1
q=0 |h[q] − ĥ[q]|2. For mismatch estimation, we average

the metrics over all sub-ADCs to obtain 1
L

∑L−1
i=0 |gi − ĝi|2

and 1
L

∑L−1
i=0 |δi− δ̂i|2 as the estimation error for the gain and

timing mismatches, respectively.

A. Progress of iterations

We first consider the progress of the algorithm in the

absence of noise. Fig. 2 depicts the decrease in estimation

error as the iterations progress for L = 32 sub-ADCs, with

channel length N = 20 and training length M = 256. We say

that convergence is achieved when the estimation error falls

below -100 dB. Fig. 2 shows that the algorithm converges

in as few as 7 iterations. Since the graphs in Fig. 2 (with

error expressed on a log scale) can be closely approximated

by straight lines, we infer that the estimation errors decrease

exponentially with iterations, with rate given by the slopes of

the corresponding linear fits. We observe similar trends for the

mismatch and channel estimation errors, and hence restrict our

attention to the latter hereafter.

B. Rate of Convergence:

We now consider values of M given by powers of 2 ranging

between 32 and 256. For each M , we choose the number of

sub-ADCs L as powers of 2 between 2 and M/2. We define

the convergence rate as the decrease in the channel estimate

error (in dB) from the 9th to the 10th iteration. From Fig. 3, we

observe that the convergence rate (averaged over 1000 random

instances of channel and mismatches) is inversely proportional

to L (with M fixed) and proportional to M (with L fixed).

Thus, when convergence is desired with fewer iterations, the

training sequence length must scale with the number of sub-

ADCs.
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Fig. 2: Progress with iterations for M = 256, N = 20 and

L = 32.
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Fig. 3: Variation of mean convergence rate with L for different

values of M (N = 20).

For fixed training length M , it is of interest to determine

the largest number of sub-ADCs, L, for which the algorithm

converges. When M/L = 1, the vectors u and v in (13) are

scalar multiples of each other. This is because the matrices Ai

and Bi have only M/L = 1 row. This implies that there is no

unique solution for the mismatch parameters (gi, δ̃i). Hence,

we at least need M/L ≥ 2. In Fig. 4, we demonstrate for

M = 32 and L = 16 that the iterative algorithm gets stuck

(albeit in fewer than 2 out of 104 instances) away from the true

channel and mismatch parameters. We also observe from Fig.

4 that the graph of the least-squares cost (i.e., the right hand

side of (10)) settles near -39 dB, or about 10−4, suggesting

that the solution is not a global minimum (otherwise the least

squares cost would be 0). This cost floor is not observed for

M ≥ 4L when we simulate 105 instances of channel and

mismatch parameters, for values of M given by powers of 2
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between 32 and 256.

C. Convergence with noise:

In Fig. 5, we consider thermal noise in (10) with a non-

zero power σ2 = 1/SNR. The mean-squared error (MSE)

refers to the estimate error averaged over 50 algorithm runs

with a randomly generated instance of thermal noise in each

run. First, we observe that the iterative algorithm converges

even in the presence of noise. We observe from Fig. 5 that

the convergence rate, before the estimate error settles, ranges

between 6 − 8 dB/iteration, which is close to the no-noise,

mean-convergence rate for M = 256 and L = 64 in Fig.

3. Thus, we observe that the convergence rate, before the

algorithm settles, is fairly independent of the noise power.
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Fig. 4: Progress with iterations for the joint estimation algo-

rithm with (M, L, N) = (32, 16, 4).
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Fig. 5: Performance of the iterative algorithm in the presence

of thermal noise with (M,L, N) = (256, 64, 20).

D. Comparison with CRLB

We now evaluate the Cramer-Rao lower bound (CRLB) for

the joint estimation problem, which serves as a lower bound

on the level of MSE at which the algorithm settles in Fig. 5.

Assuming i.i.d gaussian noise samples in (10), the likelihood

function is a scaled (by 1/σ2) version of the least-squares cost

function given in (10). We first evaluate the Fisher information

matrix, F , which can be inverted to obtain the CRLB:

F =
1
σ4

E

[(
∂l(x)
∂x

)(
∂l(x)
∂x

)t
]

(14)

where x = {�[h0], · · · ,�[hN−1],�[h0], · · · ,�[hN−1],
g0, · · · , gL−1, δ0, · · · , δL−1} denotes the vector of channel

and mismatch parameters. We evaluate the derivatives required

in (14) numerically at x. Further, the expectation in (14) is

approximated by an empirical average over 104 instances of

noise samples.

From Fig. 6, we observe that the channel MSE is close to the

corresponding CRLB for all SNR (= 1/σ2) values considered.

For example, the CRLB for channel estimation for SNR levels

30 dB and 40 dB are -40 dB and -50 dB, respectively, which

are very close to the values the MSE settles in Fig. 5. However,

the mismatch MSEs are approximately 3dB higher than the

corresponding CRLB.

V. TRAINING SEQUENCE DESIGN FOR FAST CONVERGENCE

In this section, we design training sequences so that the

mismatch and channel parameters can be estimated with

fewer iterations than with standard pseudorandom training se-

quences. The chosen training sequence satisfies the following

three conditions:

(a) total length M = NL,

(b) periodic with period N ,

(c) does not equal any i-circular shift of itself for 0 ≤ i ≤
N − 1.

In addition to these conditions, we also stipulate that N
and L have no common factors. We refer to the subsequence

{b0, · · · , bN−1} as the training frame. Thus, the actual training

sequence (by conditions (a) and (b)) is a repetition of L
training frames. In order to understand the higher convergence

rate for the proposed sequence, we first simplify the structure

of the matrices Ai and Bi in (9).

Lemma 1. Structure of Ai: The collection of the rows of Ai

is the collection of all possible circular shifts of the training
frame {b0, · · · , bN−1}.

Proof: We first prove by contradiction that no two rows

of Ai are equal. From the definition in (9), we observe that

pth row of Ai is obtained by circularly shifting the first

row by pL. Suppose the pth
1 and the pth

2 rows of Ai are

equal. Using property (c) of the training sequence, this can

only happen when (p1 − p2)L mod N = 0. Since N and L
have no common factors, this implies (p1 − p2) mod N = 0.

This leads to a contradiction, since 0 ≤ p1, p2 ≤ N − 1 or

−(N − 1) ≤ p1, p2 ≤ (N − 1).
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(M, L, N) = (1216, 64, 19).

The lemma is true for any i. Thus, the rows of Ai represent

a permutation of the rows of A0. Equivalently, Ai = PiA0,

where Pi represents the matrix obtained by performing the

same row permutations on an Identity matrix.

Lemma 2. Structure of Bi: The matrix Bi can be expressed
as PiB0, where Pi is the same row-permutation matrix as in
Ai = PiA0.

Proof: From (9), we can rewrite the elements of Bi as,

Bi(p, q) =
N−1∑

q′=0,q′ �=q

b(i + pL − q
′
) sinc

′
(q

′ − q)

(15)

Using (15) and the definition of Ai from (9), it can be

observed that the columns of Bi are linear combinations of

the columns of Ai, and hence we can write Bi = AiQ. It is

noteworthy that Q does not depend on the choice of i. Since

Ai = PiA0, it implies that Bi = PiA0Q. Thus, we infer

that Bi = PiB0.

Lemma 3. Fast convergence: For the proposed training se-
quence, the channel estimate can be directly obtained from
the received samples without any iterations (to a first-order in
mismatch terms).

Proof: We use Lemmas 1 and 2 in (5) to obtain

ri = Pi[(1 + gi)A0 + δ̃iB0]h (16)

Since row permutation matrices are invertible, we can

premultiply (16) by P−1
i . Further, we sum over i to obtain

L−1∑
i=0

P−1
i ri = A0h + giδiB0h (17)

where we use the normalization of {gi} and {δi} as given in

(3). From (17), we note that the second term on the right-hand

side includes a product of mismatch terms, which represents

a second-order term in mismatch magnitude. Assuming mis-

matches to be small, we can approximate the estimate of h
from (17) as

h ≈ A−1
0

L−1∑
i=0

P−1
i ri (18)

We note that when we initialize the values of mismatches to

zero in (17), the least-squares estimate for h is as given in (18).

Thus, when we use the iterative algorithm of section III, we

can estimate the channel and mismatch parameters, accurate

to first order in the relative mismatch parameters, within the

first iteration.

In Fig. 7, we plot the channel estimation error for pseudo-

random training and the proposed periodic training. We choose

N = 19 and L = 64 (no common factors) for a training

length of M = NL = 1216. For the proposed training,

we first randomly generate a vector with entries as ±1 of

length 19 and take its FFT, which is repeated 64 times to

obtain the overall training sequence. This sequence has the

advantage that any matrix Ai (see (9)) has all eigenvalues

equal in magnitude. Thus, we see from (18) that when we

invert Ai, the resulting noise enhancement would be similar

for the estimates for all of the channel coefficients. For

pseudorandom training, we use the same m-sequence (from

section IV) of length 255, repeated five times, but with the

last 59 bits deleted to obtain a total length of 1216. We

observe that the proposed sequence indeed demonstrates much

better convergence rates, over several random instances of

channel and mismatch parameters, compared to pseudorandom

training.
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VI. CONCLUSION

We have demonstrated in this paper that effective mismatch

and channel estimation is possible with the pseudorandom

training typical of communication systems. However, the

required training length does scale with the number of sub-

ADCs (four times the number of sub-ADCs is a good rule

of thumb), so that offline calibration with longer training

sequences may be more suitable for a large number of ADCs.

Optimized periodic training sequences can be employed to

considerably speed up convergence relative to pseudorandom

training; however, these are typically quite long for channels

of moderate length, and may be more suitable for offline

calibration.

To get a sense of the numbers, consider the example of an

indoor multiGigabit wireless link operating over the 60 GHz

unlicensed band. Assuming 1 GHz of transmission bandwidth,

a typical delay spread of 20 ns corresponds to N = 20 channel

coefficients. When we use a time-interleaved ADC with L =
32 sub-ADCs, each ADC samples at a rate of 31.25 MHz,

which is small enough to be implemented using power efficient

pipelined or SAR architectures [2]. Using a pseudorandom

based training sequence, with length M = 256, three iterations

suffice to obtain the estimates accurate to an error less than -50

dB. The complexity of estimation is tractable, owing to closed-

form solutions at each step of the iteration. Alternatively, when

we use the proposed training sequence with length M = 672,

one iteration suffices to obtain the same estimation error (we

estimate N = 21 channel coefficients in order to ensure that

N and L have no common factors).
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