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ABSTRACT

We investigate data hiding techniques that attempt to defeat
steganalysis by restoring the statistics of the composite image to
resemble that of the cover. The approach is to reserve a number
of host symbols for statistical restoration: host statistics perturbed
by data embedding are restored by suitably modifying the symbols
from the reserved set. While statistical restoration has broad ap-
plicability to a variety of hiding methods, we illustrate our ideas
here for quantization index modulation (QIM) based hiding. We
propose a method for significantly reducing the detectability of
QIM, while preserving its robustness to attacks. We next use the
framework of statistical restoration to develop a method to com-
bat steganalysis techniques which detect block-DCT embedding
by evaluating the increase in blockiness of the image due to hid-
ing. Numerical results demonstrating the efficacy of these tech-
niques are provided.

1. INTRODUCTION

In recent years, there has been a great deal of activity in devel-
oping data hiding techniques, which have classical applications
to steganography, or covert communication, as well as to water-
marking for digital rights management. The typical objective in
high-volume data hiding is to embed data in a host or cover, in
a manner that is resistant to a number of natural and malicious at-
tacks, and is imperceptible to the casual observer. However, the re-
sulting stego signal can be subjected to increasingly sophisticated
steganalysis techniques for detecting the presence of hidden data.
Thus, modern steganography is a game with escalating sophistica-
tion between the hider and the steganalyst. One of the first popu-
lar steganalysis tools was Stegdetect [1], which uses a chi-square
statistic on the histogram of transform coefficients to detect least
significant bit (LSB) hiding. Stegdetect can be improved upon by
more sophisticated detection-theoretic approaches [2]. Such meth-
ods, which are based on the histogram of the host coefficients, have
spurred the development of hiding techniques that make as little
change to the histogram as possible. Provos’ Outguess algorithm
[3] was an early attempt at histogram compensation for LSB hid-
ing, while Eggers et al [4] suggest a more rigorous approach to
the same end, using histogram-preserving data-mapping (HPDM).
In turn, steganalysis tools that counter such histogram-preserving
hiding methods have been developed, such as detection, for image-
based hiding, of block-DCT embedding by evaluation of the in-
crease in blockiness due to hiding [5, 6]. While both HPDM and
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OutGuess attempt to match the quantized histogram of the discrete
cosine transform (DCT) coefficients, more recent proposals [7, 8]
try to match the continuous marginal statistics.

In this paper, we propose a framework that allows design of
embedding schemes that can evade statistical steganalysis while
hiding at high rates, and also achieve robustness against attacks.
We are motivated by the notion of ε-secure steganography pro-
posed by Cachin [9], in which the relative entropy (also called
Kullback-Leibler or K-L divergence) between the cover and stego
distributions is less than or equal to ε. Our approach for achieving
a small ε is to employ statistical restoration, wherein a portion of
the data-hider’s “distortion budget” is spent in repairing the dam-
age done to the image statistics by the embedding process. To en-
sure that the restoration does not interfere with decoding, a fixed
percentage of host symbols are set aside for restoration, while the
rest are used for embedding. A secret key, shared between the
encoder and the decoder, determines the embedding and compen-
sation locations.

While statistical restoration for reducing detectability is a gen-
eral concept, we focus in this paper on quantization index modu-
lation (QIM) based data hiding. QIM allows the embedding of
large volumes of data in a manner that is resistant to a variety of
attacks: see [10, 11] for an information-theoretic treatment, and
[12] for a constructive coding framework for image-adaptive QIM-
based hiding. However, standard QIM is relatively easy to detect
for the steganalyst using simple statistical criteria. In this paper,
we propose a framework that preserves the desirable properties of
QIM (high-volume embedding, robustness to attacks), while sig-
nificantly reducing its detectability.

We first design a system that matches the first-order statistics
while hiding. The scheme uses dithered QIM, based on our ex-
isting scheme [12] with a reduced rate, saving some host discrete
cosine transform (DCT) coefficients for modifying the histogram
back to the original. If enough host coefficients remain, then the
original histogram can be matched exactly by the new histogram,
ensuring zero K-L divergence. While our approach is similar in
spirit to prior histogram-compensation methods such as OutGuess
[3], and HPDM [4], there are some significant differences. First,
unlike [3, 4], dithering is used, so that the histogram matches the
original source, not the quantized (compressed) version of the orig-
inal. The stego image can therefore be advertised as any uncom-
pressed format, (e.g. TIFF, BMP, RAW) or subsequently com-
pressed at any quality factor and will continue to match the source
exactly. We believe that the ability to exactly match the original
unquantized source histogram is an important contribution of the
present work. An additional advantage of the proposed scheme is
that, because it employs QIM, it is robust against benign distortion-



constrained attacks (e.g., recompression, and additive noise), un-
like HPDM and OutGuess, which employ fragile LSB hiding.

Guillon et al [7] suggest transforming the source to get a uni-
form PMF source. The message is hidden in this with the quanti-
zation hiding scheme, which is known not to change the PMF of
uniform sources. Therefore, the PMF after transforming back is
also the same as the original. This method, however, is not likely
to be robust, and also, there is no way to control the distortion in-
duced by the embedding process. Another interesting approach is
that of Wang and Moulin’s [8], who propose a reduced rate variant
of standard QIM, called the stochastic QIM, which can be made to
have zero K-L divergence. However, because of the stochastic na-
ture of the hiding process, the method is likely to yield high error
rates when embedding large volumes of data.

Sallee’s model-based steganography [13] provides an interest-
ing and different perspective in the design of steganographic sys-
tems, with the hider ensuring that the stego signal conforms to a
given model. However, in the absence of a perfect model for the
host, nothing stops the steganalyzer from selecting a better model
by spending more computational power. This is indeed practi-
cally shown in [14], where Sallee’s Cauchy-model based JPEG
steganography is broken by using only the first order statistics.
Our approach is very difficult to detect in this manner, since the
stego marginals are simply restored to conform to the host’s empir-
ical density, rather than invoking a statistical model for the host’s
marginals.

For any statistical restoration technique, the steganalyst can al-
ways go one step further, and use higher order statistics than those
that have been compensated for, typically at the cost of higher
computational complexity. Thus, hiding techniques that compen-
sate marginals are easily detected using the cover memory. For ex-
ample, a few approaches (Fridrich et al [5], and Wang and Moulin
[6]) detect block-DCT embedding by modeling the increase in
blockiness of the image due to the block-DCT hiding. We use our
framework of statistical restoration to design a method that defeats
this type of block-based steganalysis. In this case, the statistic to
be restored is the difference of adjacent pixels values within the
blocks and on the block boundaries.

We use supervised learning on a set of over 1000 natural im-
ages to evaluate the performance of our schemes. We find that
statistical restoration severely affects the steganalysis performance
of both DCT-histogram and blockiness methods. We achieve very
low K-L divergence between original and cover distributions at
fairly high embedding rates. The image could also survive JPEG
compression or recompression without compromising the unde-
tectability.

2. STATISTICAL RESTORATION

Let us consider an image to be a particular realization of an un-
derlying stochastic process. If this ‘magic’ stochastic process is
known to a steganalyzer, all he or she needs to do is to use this
model to decide whether the image is natural or not. Obviously,
it would be impossible to characterize such a random process, and
hence, certain simplified statistics are considered for steganalysis
in practice. This is what generates the room for the data-hider.
The advantage with the data-hider is that he or she is ‘informed’
of the cover image, and hence its statistics. Thus, he or she can
be assured of perfectly secure communication simply by sending
a composite image whose statistics resemble that of the original
cover. A natural way to accomplish this is to spend a part of the

allocated distortion budget to restore the statistics. Note that we
are considering the simplified statistics under scrutiny, and not the
complete underlying random process.

In order to make sure the restoration process does not interfere
with decoding, we allocate certain coefficients for embedding and
use the rest for restoration. By separating the hiding and compen-
sation locations, we make sure that the robustness properties of the
employed embedding algorithm remain intact. This is unlike pre-
vious compensation approaches that use entropy codecs [4, 13],
and hence, are fragile against attacks.

The restoration process reduces the size of the message that
can be hidden, which is the cost of increasing the security. We
can characterize this cost by studying the amount of data that can
be hidden in an idealized data source with a given probability mass
function (PMF). Let λ be the ratio of host symbols used for hiding,
so 1−λ is the ratio remaining to match the cover PMF. If PX(n) is
the cover PMF, PS(n) the standard (uncompensated) stego PMF,
P ′C(n) and PC(n) the PMF of compensating host symbols before
and after compensation respectively, and PY (n) the PMF of the
final output, our goal can be summarized as:

PY (n) = λPS(n) + (1− λ)PC(n) = PX(n) ∀n (1)

Typically PS can be derived directly from PX . The amount of
data that can be hidden is proportional to the number of samples
that can be hidden in. So to maximize the amount of data we
send, we seek to maximize λ for a given cover PMF subject to the
constraint in (1), and the constraints imposed on the compensating
PMF, namely

∑
PC(n) = 1 and PC(n) ≥ 0 ∀n. Substituting

PC = PX (n)−λPS(n)
1−λ

from (1), the first constraint is true for any

λ. For the second constraint we find λ ≤ PX (n)
PS(n)

∀n. This gives us
an upper limit on the percentage of samples we can use for hiding,
or equivalently, the rate at which we can secretly embed. Since the
data-hider must choose a fixed percentage of symbols beforehand,
λ can not be a function of n, and hence a worst-case λ is chosen:
λ = minn

PX (n)
PS(n)

. We now address the next obvious question of
how to actually perform the restoration. A strategy to modify the
compensation host symbols with a minimum mean squared error
(MMSE) criteria is discussed below.

2.1. Restoration with MMSE Criteria

The distribution of the compensation host symbols P ′C(n) must be
modified to a target distribution: PC(n) = PX (n)−λPS(n)

(1−λ)
. This

would not be as straightforward as saying that if the embedding
process modifies a host symbol from A to B, find another host
symbol (in the compensation stream) with value B and modify it
to A. If for example the hiding process itself modifies another host
symbol from B to A, the above change would not be required. It
would be very inefficient if such an approach is followed. Another
situation could be when P (B) < P (A) so that one would soon
run out of symbols with value B to compensate for data embed-
ding. To efficiently use our distortion budget, we must modify the
compensation stream to achieve a target distribution PC(n) with a
MMSE criteria.

This problem of histogram modification with MMSE criteria
was first considered by Mese and Vaidyanathan [15], who propose
solving an integer linear programming problem to obtain a map-
ping matrix. Tzschoppe et al [16] show that a simpler solution
exists, which does not require solving a linear programming prob-
lem. They prove a theorem essentially showing that to achieve a



MMSE mapping, all the bins of the target histogram must be filled
in an increasing order by mapping the input data with values in
increasing order. This means that first the bin n = 1 of the target
histogram must be filled with PC(1) smallest compensation host
symbols. The bin n = 2 will be filled next with the PC(2) smallest
remaining symbols, and so on. We note that the mapping would
be similar even if the process is started from the last bin and filled
in a decreasing order.

In the actual implementation, the above algorithm is slightly
modified to ensure that the high probability regions are compen-
sated before the low probability tail. Instead of starting the com-
pensation from the first index (i.e., the lowest value), we sepa-
rate the positive and negative sections of the histogram and per-
form their restorations independently. For the histograms centered
around zero, which is the case for both the practical scenarios con-
sidered in this paper, this procedure compensates the high proba-
bility regions first.

2.2. Rate vs. Security

Here we study the tradeoff between embedding rate and secu-
rity. Let us revisit the conditions on the embedding rate λ derived
above. If we apply the constraint λ = minn

PX (n)
PS(n)

to typical
PMFs, we run into erratic behavior in the low-probability tails.
The ratio PX (n)

PS(n)
can vary widely here, from infinitesimally small

to huge. e.g. PX(event A) = 1× 10−9, PS(A) = 1× 10−6, λ =
0.001; only a tenth of a percent of the samples can be used. Since
this happens only in the low probability regions in general, the ef-
fect of PMF differences in these regions on the net divergence is
small. So to avoid this problem we can relax exact equality con-
straint and ignore a small region of low probability. That is, we do
not require compensation in a small, low probability region of the
PMF. So now λ is chosen as the minimum PX (n)

PS(n)
over the high-

probability compensated region.
In addition to the divergence introduced due to the ignored

region, since (1) is not true for all n, PC must be normalized to
satisfy the unity sum constraint, adding a small change across the
PMF. Though the net effect is to introduce a small amount of di-
vergence, λ and the corresponding hiding rate can only increase.

The tradeoff between the desired security from detection and
the hiding rate can be studied by finding the rate corresponding
to several different sizes of ignored (uncompensated) regions. We
also note that simply embedding in fewer coefficients also reduces
the detectability. However, in Figure 1 we see that a large decrease
in divergence can be made with a small drop in rate using restora-
tion, which is not possible by merely embedding less. This is true
for both Laplacian and Gaussian PMFs over a range of variances.

3. PRACTICAL SCHEMES

In this section, we describe two practical schemes based on the
idea of statistical restoration.

3.1. Restoring Marginal Statistics

Several steganalysis approaches [1, 17] detect the JPEG steganog-
raphy techniques by hypothesis testing on the marginal distribution
of the DCT coefficients. We here propose a method that restores
the histogram of the DCT coefficients so as to evade this type of
steganalysis.
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Fig. 1. Rate, security tradeoff for Gaussian cover. As expected,
compensating is a more efficient means of increasing security than
simply reducing the rate.

The host image is divided into 8×8 non-overlapping blocks
and its 2-d DCT is taken. Those coefficients that lie in a low fre-
quency band of 21 coefficients are considered to be eligible for
data embedding or compensation. Now, a fixed percentage of eli-
gible coefficients (about 25-40%) are set aside for hiding and the
rest are used for compensation. Data is embedded into the coeffi-
cients designated for hiding using dithered quantization. Finally,
the compensation coefficients are modified using the algorithm de-
scribed in Section 2.1 so that the stego image histogram closely
matches that of the original cover.

The use of dithering in our design allows us to avoid gaps in
the histogram so that, after restoration, we can match the unquan-
tized source histogram. This way, we neither lose the embedded
data nor compromise the undetectability even after the image is
compressed or recompressed by the data-hider or an adversary.

The tradeoff between rate and security (Section 2.2) implies
that the source histogram cannot be matched exactly if we want
to communicate at a reasonable rate. Also, in practice, we must
work with a limited number of compensation coefficients. Hence,
depending on the chosen rate of embedding, we cannot perfectly
match a part of the source histogram towards the low probability
tail region. Therefore, we would expect a smart detector to per-
form better than just a random guess, and this partly explains the
better-than-random performance of our supervised learning tests.

3.2. Defeating Block-Based Steganalysis

We now turn our attention to steganalysis schemes that use the
cover memory to detect the hidden data. In particular, we focus on
techniques that bank on the increase in the blockiness due to block-
DCT embedding [5, 6]. It can be seen that these methods basically
use a function or a subset of a two-dimensional histogram. For
example, Wang and Moulin [6] use one-dimensional histograms
of value differences of two populations: one within the blocks,
and another along the block boundaries. We note that the value
difference histogram can be derived by summing along the diag-
onals of the two-dimensional histogram. This way the most rele-
vant information is kept while reducing the complexity (of a two-
dimensional histogram). Here we propose a method that restores
the pixel value differences within the blocks as well as along the
block boundaries, so as to survive the steganalysis technique pro-
posed in [6].

A subset of 8×8 blocks are used for data embedding and the
rest are set aside for restoring the pixel difference histograms. In
the blocks designated for data embedding, data is hidden in a low



Table 1. Performance of uncompensated vs. compensated meth-
ods for over 1000 images in supervised learning tests. It is seen
that restoration can severely affect the steganalysis performance.

Dithered Adaptive Blockiness
QIM dithered QIM based scheme

Un- comp. Un- comp. Un- comp.
comp. comp. comp.

P(m) 0.075 0.525 0.701 0.796 0.043 0.259
P(fa) 0.177 0.000 0.000 0.074 0.000 0.007

P(m)+
P(fa) 0.252 0.525 0.701 0.870 0.043 0.266

frequency band comprised of 21 DCT coefficients. Next, the pixel
values of the compensation blocks are modified (with MMSE cri-
teria, as described in Section 2.1) so that the difference histograms
are very close to the original. Note that the two histograms (within
the blocks and along the block boundaries) are restored separately
to match their respective originals.

4. RESULTS

As a first step in examining the efficacy of statistical restoration,
we compare the divergence between cover and stego for standard
hiding and for hiding with compensation at the same rate. Embed-
ding at a rate of λ = 0.35 in a Gaussian cover, the divergence for
statistically restored dithered-QIM hiding is 1.3×10−3, roughly a
five-fold improvement over the standard QIM which yields a diver-
gence of 5.9×10−3. Similar improvement is also seen for a set of
real image statistics, wherein, the average divergence for standard
hiding is 6.5×10−3, which reduces to 2.1×10−3 for compensated
embedding. Although detection is still possible, restoration greatly
increases the error probabilities of an ideal detector. For example,
a steganalyst would require more than three times as many samples
to achieve the same detection rates with standard hiding in images
as with hiding with restoration.

We next use a supervised learning machine on a set of over
1000 natural images to discriminate between the cover and the
stego images (as in [17]). The machine is trained on the statistics
of hundreds of examples of distinct stego and cover images, and is
then tested on its ability to correctly classify a different, unknown
set of cover and stego images. Three embedding methods were
tested: dithered QIM, adaptive dithered QIM (of [12]), and block-
iness based scheme (of Section 3.2). For each of these schemes,
we trained and tested two machines on the same sets of images and
at the same rate; one with compensation, one without. Table 1 lists
the probability of false alarm, P(fa), and the probability of missed
detection, P(m), for each of these configurations. It can be seen
that for the dithered QIM hiding, the detector has twice the sum of
errors while detecting restored hiding as compared to standard hid-
ing. For the blockiness compensation scheme, the sum of errors is
six times greater for restored hiding than for standard hiding. Note
that, a λ of 0.35 is used in all the cases, which translates to hiding
roughly 30100 bits in a 512×512 image.

5. CONCLUSION

We have demonstrated how statistical restoration can be employed
for robust and secure communication. Our experiments indicate
that the detectability of our statistically compensated QIM schemes

is lower than the standard QIM. We show that we can signifi-
cantly lower the detection rates for block-based steganalysis as
well. However, the detection is still better than a random guess
probably because we ignore certain low probability region for com-
pensation. Possible modifications to improve the performance of
these schemes are currently under investigation. We are also inves-
tigating whether and how we can employ the statistical restoration
framework to other hiding schemes.
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