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ABSTRACT

A distributed transmit beamforming technique is described for a sce-
nario with two or more transmit nodes and one intended receiver.
The protocol includes a measurement epoch, feedback from the in-
tended receiver to the transmit nodes, and a beamforming epoch.
The intended receiver tracks the clock and kinematic parameters of
the independent transmit nodes and coordinates the transmit nodes
by feeding back state predictions which are then used as phase cor-
rections to facilitate passband phase and frequency alignment at the
receiver. A three-state dynamic model is developed to describe the
stochastic kinematics and clock evolution of each transmit node rel-
ative to the frame of the receiver/coordinator. Steady-state analysis
techniques are used to analytically predict the tracking performance
as well as the beamforming gain as a function of the system param-
eters. Numerical results show that near-ideal beamforming perfor-
mance can be achieved if the period between successive observations
at the receiver/coordinator is sufficiently small.

Index Terms— distributed beamforming, cooperative commu-
nication, feedback systems, oscillator dynamics, tracking

1. INTRODUCTION

Researchers have recently begun to consider the possibility of “dis-
tributed transmit beamforming” in which two or more separate
information sources simultaneously transmit a common message
and control the phase of their transmissions so that the signals con-
structively combine at an intended destination. Distributed transmit
beamforming, sometimes also called “collaborative beamforming”,
is a powerful technique that offers the potential gains of conventional
antenna arrays to wireless communication systems composed of
multiple single-antenna transmitters with independent local clocks.

One of the key challenges of distributed transmit beamforming
is aligning the phases of the transmit nodes’ independent carri-
ers such that their passband signals coherently combine at the in-
tended destination. Several techniques have been proposed to enable
distributed transmit beamforming including receiver-coordinated
full-feedback [1], receiver-coordinated one-bit feedback [2, 3, 4],
master-slave synchronization with retrodirective transmission [5],
round-trip [6, 7], and two-way synchronization with retrodirec-
tive transmission [8, 9]. Distributed transmit beamforming has
also been considered for the downlink of cellular networks under
the title “coordinated multipoint” (CoMP), e.g. [10], which uses a
received-coordinated full-feedback approach similar to [1]. Each
of these techniques has advantages and disadvantages in particular
applications, as discussed in the survey article [11].

Much of the prior work in this area has ignored the effects of

stochastic clock drift and, with the exception of [7], the prior lit-
erature has also ignored the effects of node mobility. This paper
describes a receiver-coordinated full-feedback distributed transmit
beamforming technique within a state-space framework that includes
the effects of stochastic clock drift and unpredictable kinematics.
Our analysis also accounts for feedback latency, which can lead to
stale channel state predictions and degraded performance. Steady-
state analysis techniques are used to analytically predict the tracking
performance as well as the beamforming gain as a function of the
system parameters. Numerical results show that near-ideal beam-
forming performance can be achieved if the period between succes-
sive observations at the receiver/coordinator is sufficiently small.

2. SYSTEM MODEL

We consider the wireless communication system shown in Figure 1
with M transmit nodes and one receive node. The M transmit nodes
are enumerated as nodes 1, . . . ,M and the receive node is denoted
as node 0. Each node in the system is assumed to possess a sin-
gle1 isotropic antenna. Transmissions from the transmit nodes to the
receiver are called “uplink” transmissions and feedback from the re-
ceiver to the transmit nodes occurs via the “downlink”. The noise in
each channel is assumed to be additive, white, and Gaussian.
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Fig. 1. System model example with M = 5 transmit nodes.

1Our focus on single antennas is motivated by clarity of exposition. The
techniques developed in this paper can be extended to the case where nodes
have more than one antenna at the expense of some additional notational
complexity.
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3. CLOCK AND KINEMATIC MODELING

In a conventional transmit beamformer, the transmit antennas are
all driven by a common oscillator and typically remain in fixed rela-
tive positions. An important distinction in distributed transmit beam-
forming is that each transmit node has an independent local oscillator
and may also move independently of the other transmit nodes. This
section presents a state-space model for the independent clocks and
kinematics of each transmit node relative to the frame of the receiver.

We define the discrete-time state of the ith transmit node’s car-
rier as x(i)[k] := [φ(i)[k], φ̇(i)[k], φ̈(i)[k]]� where φ(i)[k] corre-
sponds to the received carrier phase offset in radians with respect
to the carrier at the receive node at time k. Note that the state in-
cludes offsets due to independent clocks as well as kinematics and
propagation from node i to the receive node. The state update of the
ith node’s received carrier offset is governed by

x
(i)[k + 1] =

⎡
⎣1 Ts

T2
s

2
0 1 Ts

0 0 1

⎤
⎦x

(i)[k] +w
(i)[k] (1)

= Fx
(i)[k] +w

(i)[k] (2)

where Ts is the sampling period and the process noise vector

w(i)[k]
i.i.d.
∼ N (0,Q(Ts)) includes the effect of clock and kine-

matic process noises that cause the carrier derived from the local
oscillator at node i to deviate from the nominal carrier at the receive
node. The process noise is assumed to be temporally white here
for clarity of exposition. Our results can be straightforwardly ex-
tended to temporally correlated process noise via prewhitening and
state-augmentation as discussed in [12, pp. 320-324].

At time k, if node i transmits an uplink signal to the receive
node, the receive node directly downmixes the received signal with
its own local carrier and measures the resulting phase difference ac-
cording to the observation model

y(i)[k] = Hx
(i)[k] + v(i)[k] (3)

where H := [1, 0, 0] and v(i)[k]
i.i.d.
∼ N (0, R) is the additive white

Gaussian measurement noise in the observation.

3.1. Process Noise Covariance

In the absence of motion, a two-state model is typically sufficient for
capturing the effect of the independent clocks [13, 14]. The covari-
ance of the discrete-time clock process noise is given as Qc(Ts) =
ω2
c (q

2
1V 1(Ts) + q22V 2(Ts)) where
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and where the parameters q1 (units of sec1/2) and q2 (units of
sec−1/2) can be estimated by fitting the theoretical Allan variance
of the two-state model to experimental measurements of the Allan
variance for a particular family of oscillators over a range of τ
values. For example, the Allan variance specifications for a Rakon
RFPO45 oven-controlled oscillator [15] yield a least squares fit of
q21 = 5.39× 10−22 and q22 = 2.10 × 10−23.

The covariance of the kinematic process noise depends on the
application and can be obtained either by modeling or by empiri-
cal measurements. As an example, the piecewise constant white-
jerk kinematic process noise model has a process noise given as [12]

Qk(Ts) = ω2
c (p

2
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and where p1 (units of sec1/2), p2 (units of sec−1/2), and p3 (units
of sec−3/2) are process noise parameters corresponding to white fre-
quency noise, integrated white frequency noise, and twice-integrated
white frequency noise, respectively.

It is reasonable to assume the process noise due to node kine-
matics is independent of the clock process noise, hence

Q(Ts) = ω2
c

(
(p21+q21)V 1(Ts)+(p22+q22)V 2(Ts)+p23V 3(Ts)

)
.

4. RECEIVER-COORDINATED DISTRIBUTED
TRANSMIT BEAMFORMING PROTOCOL

An overview of the receiver-coordinated distributed transmit beam-
forming protocol is shown in Figure 2. Uplink transmissions are
divided into measurement and beamforming epochs, repeating peri-
odically with period Tm. Downlink transmissions provide feedback
from the receive node to the transmit nodes and are assumed to be on
a different frequency than the uplink signals. Note that the protocol
includes the effects of feedback latency.
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Fig. 2. Receiver-coordinated distributed transmit beamforming.

During the uplink measurement epochs, the transmit nodes si-
multaneously transmit using code division multiple access to facil-
itate signal separation at the receive node. We assume that the fre-
quency offsets are small with respect to the duration of the mea-
surement such that the phase of the received signal is approximately
constant during the measurement epoch. The receive node estimates
the phase of the received signal from each transmit node, resulting
in noisy phase observations for each transmit node according to (3).
These observations are then provided to a Kalman filter to generate
state estimates x̂(i)[k|k] and state predictions x̂(i)[k + L|k] for the
start of the next beamforming epoch, for each node i = 1, . . . ,M .
The value of L is equal to the product of the feedback latency, i.e. the
time between the observation and the start of the beamforming epoch
in which the observation is used, and the sampling frequency.

The feedback from the receive node to transmit node i is its
state prediction vector for the start of the next beamforming epoch,
i.e. x̂(i)[k + L|k]. Over the beamforming epoch, each node uses its
state prediction vector to compute a corrected transmit phase so that
the phase offset at the receive node is nominally zero. For example,
if the feedback x̂(1)[k+L|k] = [π/2,−2π/1000]� , transmit node 1
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will apply a phase correction of −π/2 at the start of the beamform-
ing epoch and a frequency correction of −2π/1000 over the dura-
tion of the beamforming epoch. Since each transmit node corrects
its phase and frequency offsets according to the state predictions fed
back from the receive node, the signals combine coherently at the
receive node and the nodes operate as a distributed beamformer.

5. STEADY-STATE BEAMFORMING POWER ANALYSIS

This section analyzes the steady-state performance of the receiver-
coordinated distributed transmit beamforming system. We first
present a useful received power approximation that can be applied
when the phase offsets of each node are independent and identi-
cally distributed (i.i.d). We then use steady-state analysis techniques
to compute the Kalman filter’s prediction covariance during the
beamforming epoch.

5.1. Received Power Approximation

During the beamforming epoch, assuming unit gain channels, the
mean received power can be written as

ρ[k] = E

⎧⎨
⎩
∣∣∣∣∣

M∑
i=1

ejφ
(i)[k]

∣∣∣∣∣
2
⎫⎬
⎭
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⎧⎨
⎩
(
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)2
⎫⎬
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⎧⎨
⎩
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)2
⎫⎬
⎭

= E
{
C2
}
+ E

{
S2
}

where φ(i)[k] corresponds to the first element of the state vector
x(i)[k]. Note that φ(i)[k] is a zero-mean Gaussian random variable
at time k. Although cos(φ(i)[k]) and sin(φ(i)[k]) are not Gaussian
distributed, if we assume that the φ(i)[k] are i.i.d. at time k with zero
mean and variance σ2

φ[k], the central limit theorem implies that the
sums C and S will be approximately Gaussian when M is reason-
ably large. It can be shown through straightforward integration that

E
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{
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2
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)
.

Applying the central limit theorem, we have

C ∼ N

(
M exp(−σ2

φ[k]/2),
M

2

(
1− exp(−σ2

φ[k])
)2)

S ∼ N

(
0,

M

2
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.

Hence,

E
{
C2
}
+ E

{
S2
}
= E{C}2 + E{S}2 + var{C}+ var{S}

= M2 exp(−σ2
φ[k]) +M

(
1− exp(−σ2

φ[k])
)
.

This intuitively satisfying result shows that the beamforming power
at the receiver is a convex combination of the ideal coherent beam-
forming power M2 and the non-coherent power M . In the absence
of phase errors, the received power is that of an ideal beamformer

M2. With very large phase error variance, the received power ap-
proaches the incoherent lower bound of M . As shown in Figure 3,
this result is also surprisingly accurate even for small values of M .
The next section shows how the phase error variance σ2

φ[k] can be
computed through steady-state analysis techniques.
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Fig. 3. Received beamforming power as a function of σφ[k]. Note
the close correspondence between the approximation and the simu-
lated results.

5.2. Steady-State State Prediction Error Covariance

Referring back to the discrete-time model presented in Section 3,
note that the pair {F ,H} is completely observable. Denoting
Q(Tm) = C�(Tm)C(Tm) and assuming the pair {F ,C(Tm)} is
completely observable, then the steady-state prediction covariance
is a unique positive definite matrix specified as the solution to the
discrete-time algebraic Riccati equation [12]

P = F (Tm)

[
P −

PH�HP

HPH� +R

]
F (Tm)� +Q(Tm).

Note that this steady-state prediction covariance corresponds to the
covariance of the state prediction just prior to an observation. The
steady-state estimation covariance (immediately after an observa-
tion) is then

S = P −
PH�HP

HPH� +R
. (4)

To predict the performance of the receiver-coordinated distributed
transmit beamforming system, it is necessary to compute the covari-
ance of the state predictions during the beamforming epochs. To
do this, we project the steady-state estimation covariance forward
to samples in the beamforming epoch at elapsed time dt ∈ [t1, t2),
where t1 and t2 correspond to the feedback latency from the obser-
vation to the start and end of the beamforming epoch, respectively,
from the kth observation by computing

P (dt | k) = F (dt)SF
�(dt) +Q(dt). (5)

The (1,1) element of this result corresponds to σ2
φ[k] and can be sub-

stituted into the received power approximation developed in the pre-
vious section to compute the steady-state mean beamforming power
at any point during the beamforming epoch.
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6. NUMERICAL RESULTS

Figure 4 shows an example of the mean received power of the
receiver-coordinated distributed beamforming system for a case
with 10 transmit nodes transmitting at 900MHz, a measurement
epoch 2ms with measurements taken every Tm = 250ms, and a
feedback latency of 100ms. The process noise parameters were
set to ω2

c (q
2
1 + p21) = 3.4 × 10−4, ω2

c (q
2
2 + p22) = 0.58, and

ω2
cp

2
3 = 1.00. The standard deviation of the phase measurement

error at the receive node was set to 5 degrees.
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Fig. 4. Mean received power of the receiver-coordinated distributed
beamforming system for a case with 10 transmit nodes.

These results show that near ideal beamforming is achieved
by the receiver coordinated distributed beamforming system in the
third and subsequent beamforming epochs. In the first beamforming
epoch, the nodes do not transmit because they do not have feedback
in time to correct their phases (recall that the feedback has 100ms of
latency). The nodes do transmit in the second beamforming epoch,
but the frequency estimates are so poor that the signals combine
incoherently at the receiver. In the third beamforming epoch (from
0.502s to 0.750s), coherent combining is achieved. This is because
the phase and frequency predictions from the Kalman filter are now
good enough to accurately correct the transmission phases of the
nodes so that the passband signals arrive nearly in phase at the
receiver. In fact, the Kalman filters have approximately achieved
their steady-state prediction in the third beamforming epoch. The
beamforming gain remains within 0.5dB of ideal over the duration
of the beamforming epoch.

7. CONCLUSIONS

This paper describes a receiver-coordinated full-feedback distributed
transmit beamforming technique that includes the effects of stochas-
tic clock drift and unpredictable kinematics. Steady-state analysis
techniques are used to analytically predict the tracking performance
as well as the beamforming gain as a function of the system param-
eters. Numerical results show that near-ideal beamforming perfor-
mance can be achieved.
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