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Abstract—Accurate channel state information at the transmit-
ter can significantly enhance the performance of multiple antenna
systems, but efficient channel quantization techniques must be
developed in order to scale such informed transmitter strategies
to frequency division duplexed (FDD) massive MIMO systems.
Recent results show that noncoherent trellis-coded quantization
(NTCQ) is an effective approach for limited feedback transmit
beamforming with a large number of transmit antennas. In this
paper, we investigate extensions of NTCQ that exploit channel
correlations in time and space to significantly reduce the required
feedback rate. Our numerical results show that near-optimal
beamforming with moderate feedback overhead can be obtained
in massive MIMO systems.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems have been

thoroughly investigated over the last two decades, and the

benefits of MIMO in enhancing reliability and throughput

are well established. While existing WiFi [1] and cellular

standards [2] incorporate MIMO techniques with a moderate

number (e.g., up to four or eight) of antennas, there is

significant recent interest in “massive MIMO” systems with a

significantly larger number (10s-100s) of antennas [3]. It was

shown in [4] that, even with very noisy channel estimation,

adding more antennas at the base station is always beneficial.

Large antenna arrays at base stations can lead to revolutionary

increases in the power efficiency (and hence range) [5] and the

number of simultaneous users (and hence network capacity)

[6] in future cellular systems. We refer to [7] and references

therein for further details.

Channel state information (CSI) at the base station can

significantly enhance the performance of the massive MIMO,

enabling range increases via transmit beamforming and net-

work capacity increases via Space Division Multiple Access

(SDMA). Much of the recent literature on massive MIMO

assumes that CSI is available via channel reciprocity in time

division duplexed (TDD) systems. However, most existing

cellular networks are frequency division duplexed (FDD),

hence it is of interest to develop massive MIMO upgrades to

such systems. A major hurdle in developing CSI for massive

MIMO FDD downlinks is the scaling of the overhead required

for downlink channel sounding and uplink feedback with the

number of antennas. In [8], a novel limited feedback strategy

based on noncoherent trellis-coded quantization (NTCQ) is

proposed for systems with a large (and even time-varying)

number of transmit antennas. NTCQ exploits the duality be-

tween optimal beamforming and block noncoherent sequence

detection, where the size of the block equals the number

of transmit elements. NTCQ can be dynamically adapted to

changes in the number of transmit antennas (by adapting the

block size) and in the allowable feedback rate (by adapting the

underlying coded modulation scheme, including constellation

and code rate).

In this paper, we develop advanced limited feedback strate-

gies based on NTCQ which exploit channel temporal and

spatial correlations to reduce feedback overhead. Differential

codebooks [9]–[16] and adaptive codebooks [17]–[20], which

exploit temporal and spatial correlation of channels, respec-

tively, have been studied over the last few years. However,

these techniques assume a fixed and moderate number of

transmit antennas, and hence do not apply to massive MIMO

systems with a large, and potentially variable, number of

antennas. The advanced NTCQ techniques proposed in this

paper develop differential and spatially adaptive techniques

that exploit temporal and spatial correlations, respectively, to

improve upon the original NTCQ scheme, while maintaining

the flexibility and scalability required for massive MIMO

systems.

The remainder of this paper is organized as follows. The

limited feedback system model considered in this paper is

presented in Section II. We briefly review the original NTCQ

scheme [8] in Section III. The proposed advanced NTCQ

schemes for temporally and spatially correlated channels are

presented in Section IV. Simulation results demonstrating the

effectiveness of the proposed schemes are provided in Section

V. Section VI contains our conclusions.

II. SYSTEM MODEL

We consider the multiple-input single-output (MISO) sys-

tem, shown in Fig. 1, with nt transmit antennas at the BS

and a single receive antenna transmitting over a frequency flat

block fading channel to a single antenna receiver. Among nt
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Fig. 1: Multiple-input single-output communications system with feedback channel. The receiver quantizes the current channel

realization using NTCQ and sends feedback to the transmitter. The transmitter uses an NTCQ decoder to reconstruct the

beamformer.

transmit antennas, we assume only M(k) antennas are used

for transmission at time k (i.e., if all antennas are always used

M(k) = nt). This is a more general assumption for massive

MIMO because it covers the case when all transmitters are

used and the case when only the transmitters experiencing

good channel conditions are used for transmission. Optimizing

the effective number of transmit antennas in massive MIMO

systems can be an interesting research topic, which is beyond

the scope of this paper. The received signal y at time instant

k is written as

y[k] = h[k]Hx[k] + n[k] (1)

where n[k] denotes the noise which is drawn from CN (0, σ2),
h[k] is the C

M(k)×1 channel vector, and x[k] is the C
M(k)×1

transmitted signal vector. The channel vector h[k] can be

temporally or spatially correlated, and the exact expression

of h[k] is given in Section IV-A and IV-B for temporally

and spatially correlated channels, respectively. The transmitted

signal x[k] is given by x[k] = f [k]s[k] where f [k] is a

beamforming vector with ||f [k]||2 = 1 and s[k] is a message

stream such that E[s[k]] = 0 and E[|s[k]|2] = ρ. The received

SNR in this setup is given by

Γ(f [k]) =
E[|h[k]Hf [k]s[k]|2]

E[|n[k]|2] =
ρ

σ2
|h[k]Hf [k]|2. (2)

The receiver in the system is assumed to perfectly know

h[k]. As shown in Fig. 1, the receiver represents a quantized

version of h[k] using a quantization function Q(·). The quanti-

zation bits are sent over a feedback channel to the transmitter.

The transmitter then reconstructs f [k] using a reconstruction

function R(·). The main focus of this paper is to design the

quantizer Q(·) and reconstructor R(·) for CSI in Fig. 1 for

a large number of transmit antenna scenario. This problem

can also be viewed as the quantization by the receiver of

the unquantized beamforming vector fopt[k] using a codebook

C = {c1, . . . , c2B} known to both the transmitter and receiver.

III. NONCOHERENT TRELLIS-CODED QUANTIZATION

In this section, we briefly overview noncoherent trellis-

coded quantization (NTCQ) for beamformer quantization [8].

Channel quantization based on trellis is also studied in [21]–

[23]; however, they adopted either suboptimal Euclidean dis-

tance quantization or an ad hoc path metric. Our quantizer

is based on leveraging a duality between source and channel

coding similar to [24]. In [24], maximum likelihood decoding

techniques are directly applied to the channel quantization

problem. The proposed NTCQ, however, exploits the modula-

tion and coding technique of trellis-coded modulation (TCM)

[25], resulting in much better performance than schemes in

[24].

First, consider the noncoherent additive white Gaussian

noise, block noncoherent channel

y = ejθx+ z, (3)

where ejθ is an unknown constant phase offset, y ∈ C
N×1

is the received signal, x ∈ C
N×1 is the vector of transmitted

symbols and z ∈ C
N×1 is the complex Gaussian noise. Note

that, for this example, the unknown channel parameter is the

phase, θ (but, in general, it could also have an unknown

amplitude). x could have entries taken from constellations

such as phase shift keying (PSK) and quadrature amplitude

modulation (QAM). If x consists of PSK constellation, x has

a constant norm while the norm of x can vary with QAM

constellation. We assume x is of a constant norm for brief

explanation.

As in [24], [26], with the generalized likelihood ratio test

(GLRT), the estimate of the transmitted vector x̂ is given by

x̂ = argmin
x∈CN×1

min
θ∈[0,2π)

‖y − ejθx‖22, (4)

= argmin
x∈CN×1

min
θ∈[0,2π)

‖y‖22 + ‖x‖22 − 2Re(ejθyHx), (5)

= argmax
x∈CN×1

|yHx|, (6)

where (6) follows from the fact that

argmax
x∈CN×1

|yHx| = argmin
x∈CN×1

min
θ∈[0,2π)

{

−Re(ejθyHx)
}

.

Similarly, the beamforming vector f [k] that maximizes

beamforming gain in (2) maximizes the projection of the



channel vector onto the one-dimensional complex subspace

spanned by a codeword and is given by

f [k] = argmax
c∈C

∣

∣

∣

∣

h[k]H
c

||c||2

∣

∣

∣

∣

2

. (7)

This is equivalent to minimizing the projection of the channel

vector orthogonal to this subspace, and finding the optimal

codeword copt can be performed by optimizing

min
α∈R+

min
θ∈[0,2π)

min
c∈C

‖h[k]− αejθc‖22. (8)

When the codeword elements are chosen from a PSK constel-

lation, we can set α = 1 (this does not minimize the projection

orthogonal to c, but minimizes a closely related cost function).

However, when the codeword elements can come from a QAM

constellation and the codewords may have unequal norm, then

it becomes essential to optimize over α in order to solve the

original problem (7). The inner minimization over Euclidean

distance in (8) can be performed using the Viterbi algorithm.

Instead of searching over α ∈ R
+ and θ ∈ [0, 2π), we

can closely approximate the optimization using a discrete set,

α ∈ A = {α1, α2, . . . , αKα
} and θ ∈ Θ = {θ1, θ2, . . . , θKθ

}.
Thus, the vector search (8) is implemented using Kα · Kθ

instances of the Viterbi algorithm. The dynamic range of the

amplitude search (and hence the size of the discrete set A) is

reduced by replacing the channel vector h[k] by its normalized

version h̄[k] = h[k]
||h[k]||2

.

We need to define a path metric to perform the Viterbi

algorithm. To do this, first define pt as a partial path up to

stage t and out(pt) as a function that outputs the sequence of

constellation points that correspond to the path pt. Then we

can define the path metric m(·) as

m(pt, αk, θk) = ‖h̄t − αke
jθk out(pt)‖22

= m(pt−1, αk, θk) +
∣

∣h̄t − αke
jθk out

(

[pt−1 pt]
T
)
∣

∣

2

(9)

where h̄t is the vector truncated to the first t entries of h̄, h̄t

is the tth entry of h̄ and pt is the tth entry of pt. Note that

minimizing the above path metric will minimize Euclidean

distance. With the path metric in (9), each channel entry is

quantized by each transition in the trellis. It is important to

note that, because of the trellis structure or set partitioning

of TCQ, only half of the constellation points are used during

quantization in each transition, i.e., when we rely on 8PSK

constellation only 2bits or a QPSK constellation point is used

to quantize each channel entry. However, there are two sets

of QPSK constellation points, and the QPSK set used for

quantization depends on the state in trellis. This issue is

explained in more detail in [8].

Having chosen the best path for each αk and θk using the

Viterbi algorithm, we then choose among these paths the one

that achieves the best metric. That is, we optimize the tuple

(pbest, αbest, θbest) by

min
pT∈P

min
αk∈A

min
θk∈Θ

m(pT , αk, θk) (10)

where P is a set of all possible paths and T =M(k), i.e., the

number of transmit antennas. The beamforming vector f [k]
can be calculated as

copt = out(pbest), f [k] =
copt

‖copt‖2
. (11)

The search over α and θ only increases the complexity of

beamforming quantization, not feedback overhead because

the transmitter does not need to known αbest and θbest to

reconstruct the beamforming vector. However, there do exist

an additional feedback information for NTCQ. The transmitter

have to know the starting state of pbest, which gives log2 S
additional feedback overhead where S is the number of states

in the trellis.

IV. EXPLOITING CHANNEL CORRELATIONS IN NTCQ

A. Differential NTCQ Scheme

Most of the literature regarding differential codebooks use

limited feedback utilize temporal correlation and consider a

fixed and small number of antennas at the transmitter side

[9]–[16]. In massive MIMO systems, however, this may not

be the case. Therefore, we propose a new differential feedback

scheme for a large number of transmit antennas.

We can model temporally correlated channels as a first-order

Gauss-Markov process as [27]

h[k] = ηh[k − 1] +
√

1− η2g[k] (12)

where η (0 ≤ η ≤ 1) is a temporal correlation coefficient

which represents the correlation between elements hm[k − 1]
and hm[k] where hm[k] is the mth entry of hm[k]. Using

Jakes’ model [28], η = J0(2πfDT ), where J0(·) is the 0th or-

der Bessel function of the first kind, fD denotes the maximum

Doppler frequency and τ denotes the channel instantiation

interval. g[k] is the evolution process having i.i.d. entries

distributed with CN (0, 1). We assume that the initial state

h[0] is independent of g[k] for all k.

As shown in Fig. 1, the function Q(·) maps the channel

vector h[k] to the binary vector b[k] and R(·) reconstructs h[k]
to f [k]. Therefore, we denote R(Q(·)) as the NTCQ scheme

explained in Section III and f [k−1] = R(Q(h̄[k−1])) as the

beamforming vector at time k− 1. Instead of quantizing h̄[k]
directly at time k, the receiver first projects h̄[k] to the null

space of f [k − 1] as

fnull[k] =
(

IM(k) − f [k − 1]f [k − 1]H
)

h̄[k]. (13)

The receiver quantizes fnull[k] as f̂null[k] = R(Q(fnull[k])) and

constructs candidate beamforming vectors fᾱ,θ̄ using weights

ᾱ ∈ {ᾱ1, . . . , ᾱKᾱ
} = Ā and θ̄ ∈

{

θ̄1, . . . , θ̄K
θ̄

}

= Θ̄ as

fᾱ,θ̄ =
ηf [k − 1] + ᾱejθ̄

√

1− η2f̂null[k]

‖ηf [k − 1] + ᾱejθ̄
√

1− η2f̂null[k]‖2
. (14)

The receiver selects the pair of the best combiners

(ᾱbest, θ̄best) by optimizing

max
ᾱ∈Ā

max
θ̄∈Θ̄

|h̄Hfᾱ,θ̄|2, (15)
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Fig. 2: Conceptual explanation of the proposed differential

scheme with NTCQ

and the final beamforming vector f [k] becomes

f [k] = fᾱbest,θ̄best
. (16)

The conceptual explanation of this differential scheme is

shown in Fig. 2. We need two sets of combiners Ā and

Θ̄ to construct candidate beamformaing vectors as in (14).

It is obvious to have θ̄ ∈ [0, 2π). We make the following

proposition to get the range of ᾱ.

Proposition 1. For temporally correlated channels, ᾱ in (14)

can be bounded as

1− η
√

1− η2
≤ ᾱ ≤ 1 + η

√

1− η2
(17)

when η → 1.

Proof: First, expand the norm square of the denominator

of (14) as

‖ηf [k − 1] + ᾱejθ̄
√

1− η2f̂null[k]‖22 = η2 + ᾱ2(1− η2)

+ 2ᾱη
√

1− η2Re
{

ejθ̄fH [k − 1]f̂null[k]
}

. (18)

Because ||f [k − 1]||22 = 1 and ||fnull[k]||22 = 1, we have

−1 ≤ Re
{

ejθ̄fH [k − 1]f̂null[k]
}

≤ 1,

(

η − ᾱ
√

1− η2
)2

≤ (18) ≤
(

η + ᾱ
√

1− η2
)2

.

With a good quantizer R(Q(·)), we can approximate fH [k −
1]f̂null[k] ≈ 0. Moreover, we can approximate η ≈ 1 because

of the assumption of a slowly time-varying channel for differ-

ential codebooks. Then, we have (18) = 1 and the range of ᾱ
becomes (17).

The range in (17) can be further optimized, however,

optimizing the range of ᾱ is out of the scope of this paper. We

set 1−η√
1−η2

≤ ᾱ ≤ 1+η

3
√

1−η2
for simulation purpose in Section

V.

After the receiver selects the beamforming vector f [k] as

in (16), it has to feed back f̂null[k], ᾱbest, and θ̄best to the

transmitter. Because of the information of ᾱbest, and θ̄best,
feedback overhead is increased in the proposed differential

scheme. However, the additional feedback overhead of ᾱbest

and θ̄best can be marginal compared to that of f̂null[k]. Our

simulations show that it is enough to have 1bit for ᾱbest and

3bits for θ̄best to achieve near-optimal performance. Once

the transmitter receives the feedback information from the

receiver, it reconstructs f [k] as in (14).

B. Adaptive NTCQ Scheme

In massive MIMO systems, the transmit antennas have to be

deployed in a potentially limited area resulting in channels that

may be spatially correlated. The spatially correlated channel

is often modeled as

h[k] = R
1
2hw[k] (19)

where R is an invertible, long-term spatial correlation matrix

and hw[k] is a uncorrelated MISO channel vector with i.i.d.

complex Gaussian entries.

In [17]–[20], codebook adaptation methods for spatially

correlated MISO channels have been proposed. These works

roughly quantize only the local area of the dominant eigen-

vector of R by rotating and normalizing codewords in a fixed

codebook with respect to R. It has been shown that this

adaptation method can reduce the channel quantization error

significantly with the same number of codewords. However,

candidate codewords for channel quantization are not easily

fixed in NTCQ so it is not possible to apply the adaptation

method directly. Therefore, we come up with the following

method for NTCQ to mimic the adaptation methods in [17]–

[19] for spatially correlated MISO channels.

We assume that the transmitter and the receiver both know

R perfectly because it is a long-term channel statistic. The

receiver first decorrelates h[k] with R−
1
2 and gets hw[k] as

hw[k] = R−
1
2h[k]. (20)

Then the receiver quantizes hw[k] as ĥw[k] = R(Q(hw[k]))
and feeds back ĥw[k] to the transmitter. The transmitter

reconstructs the beamforming vector f [k] as

f [k] =
R

1
2 ĥw[k]

‖R 1
2 ĥw[k]‖2

. (21)

The procedures in (20) and (21) decouple the correlation and

the quantization part effectively and gives the same result as

the adaptation method for fixed codewords.

V. SIMULATIONS

In this section, we verify the performance of the advanced

NTCQ schemes in temporally and spatially correlated channels

by Monte Carlo simulation. The total number of feedback bits

for each scheme is shown in Table I. Each number in the table

is the required feedback bits for M(k) = 5 / 10 / 20 transmit

antennas. Note that 1, 2, and 3 bits/entry correpond to NTCQ



TABLE I: Summary of feedback overhead

1bit/entry 2bits/entry 3bits/entry

Orig. NTCQ 7 / 12 / 22 13 / 23 / 43 18 / 33 / 63

Diff. NTCQ 11 / 16 / 26 17 / 27 / 47 22 / 37 / 67

Adap. NTCQ 7 / 12 / 22 13 / 23 / 43 18 / 33 / 63

with QPSK, 8PSK, and 16QAM constellation, respectively.

We define the average normalized received SNR Γ̄avg as

Γ̄avg =
ρ

σ2
E[Γ(f [k])] = E[|h[k]Hf [k]|2] (22)

and use Γ̄avg as a performance metric. Note that the expecta-

tion in (22) is over h.

A. Temporally Correlated Channels

We assume a 2.5GHz carrier frequency and τ = 5ms chan-

nel instantiation interval. We uniformly quantize the combiners

θ̄ and ᾱ in (14) with 3bits and 1bit, respectively.

We plot the performance of differential NTCQ schemes with

v = 3km/h (η = 0.9881) and v = 10km/h (η = 0.8721) in

Fig. 3 and 4 to see the effect of channel variation. Even with

1 bit/entry quantization, the differential NTCQ schemes give

almost the same performance as unquantized beamforming in a

v = 3km/h environment regardless of the number of transmit

antennas and still achieve a large fraction of unquantized

beamforming gain in a v = 10km/h environment.

B. Spatially Correlated Channels

To simulate spatially correlated channels, we adopt the

Kronecker model for the correlation matrix R which is written

as

R = UΣΣΣUH (23)

where U and ΣΣΣ are M(k) ×M(k) eigenvector and diagonal

eigenvalue matrices, respectively. We assumeΣΣΣ has a structure

ΣΣΣ = diag

{

λ1,
M(k)− λ1

M(k)− 1
, · · · , M(k)− λ1

M(k)− 1

}

(24)

where 1 ≤ λ1 < M(k) is the maximum eigenvalue of R

to model varying amounts of spatial correlation. If λ1 is large

(small), then channels are highly (loosely) correlated in spatial

domain.

In Figs. 5, and 6, we plot Γ̄avg with different values of

λ1 for M(k) = 10 and 20 cases. In both values of M(k),
the performance of adaptive NTCQ schemes becomes closer

to that of unquantized beamforming with the same feedback

overhead as the original NTCQ as λ1 increases.

Simulation results in this section show that utilizing statisti-

cal information for temporally/spatially correlated channels is

crucial to increase the performance or decrease the feedback

overhead.
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Fig. 3: Plot of Γ̄avg versus k in temporally correlated channels

for v = 3km/h (η = 0.9881).
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Fig. 4: Plot of Γ̄avg versus k in temporally correlated channels

for v = 10km/h (η = 0.8721).

VI. CONCLUSIONS

The results in this paper demonstrate that advanced non-

coherent trellis-coded quantization strategies that account for

temporal and spatial correlations in the channel provide an

effective approach for obtaining channel state information in

massive MIMO systems with moderate feedback overhead.

The differential and spatially adaptive schemes proposed here

each improve upon the original NTCQ scheme, and an in-

teresting topic for future research is to investigate additional

performance improvements from combining these schemes.
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