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Noncoherent Trellis Coded Quantization:
A Practical Limited Feedback Technique for

Massive MIMO Systems
Junil Choi, Zachary Chance, David J. Love, and Upamanyu Madhow

Abstract—Accurate channel state information (CSI) is essential
for attaining beamforming gains in single-user (SU) multiple-
input multiple-output (MIMO) and multiplexing gains in multi-
user (MU) MIMO wireless communication systems. State-of-the-
art limited feedback schemes, which rely on pre-defined code-
books for channel quantization, are only appropriate for a small
number of transmit antennas and low feedback overhead. In
order to scale informed transmitter schemes to emerging massive
MIMO systems with a large number of transmit antennas at the
base station, one common approach is to employ time division du-
plexing (TDD) and to exploit the implicit feedback obtained from
channel reciprocity. However, most existing cellular deployments
are based on frequency division duplexing (FDD), hence it is of
great interest to explore backwards compatible massive MIMO
upgrades of such systems. For a fixed feedback rate per antenna,
the number of codewords for quantizing the channel grows
exponentially with the number of antennas, hence generating
feedback based on look-up from a standard vector quantized
codebook does not scale. In this paper, we propose noncoherent
trellis-coded quantization (NTCQ), whose encoding complexity
scales linearly with the number of antennas. The approach
exploits the duality between source encoding in a Grassmannian
manifold (for finding a vector in the codebook which maximizes
beamforming gain) and noncoherent sequence detection (for
maximum likelihood decoding subject to uncertainty in the
channel gain). Furthermore, since noncoherent detection can
be realized near-optimally using a bank of coherent detectors,
we obtain a low-complexity implementation of NTCQ encoding
using an off-the-shelf Viterbi algorithm applied to standard trellis
coded quantization. We also develop advanced NTCQ schemes
which utilize various channel properties such as temporal/spatial
correlations. Monte Carlo simulation results show the proposed
NTCQ and its extensions can achieve near-optimal performance
with moderate complexity and feedback overhead.

Index Terms—Massive MIMO systems, limited feedback,
trellis-coded quantization (TCQ), noncoherent TCQ.
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I. INTRODUCTION

THE concept of wireless systems employing a large num-
ber of transmit antennas, often dubbed massive multiple-

input multiple-output (MIMO) systems, has been evolving
over the past few years. It was found in [3] that adding more
antennas at the base station is always beneficial even with very
noisy channel estimation because the base station can recover
information even with a low signal-to-noise-ratio (SNR) once
it has sufficiently many antennas. This motivates the concept
of using a very large number of transmit antennas, where
the number of antenna elements can be at least an order of
magnitude more than the current cellular systems (10s-100s)
[4]. Massive MIMO systems have the potential to revolutionize
cellular deployments by accommodating a large number of
users in the same time-frequency slot to boost the network
capacity [5] and by increasing the range of transmission with
improved power efficiency [6]. Recently, fundamental limits,
optimal transmit precoding and receive strategies, and real
channel measurement issues for massive MIMO systems were
studied and summarized in [7] (see also the references therein).

When the transmitter has multiple antennas, channel state
information (CSI) can provide significant performance gains,
including beamforming gains in single-user (SU) multiple-
input multiple-output (MIMO) systems and multiplexing gains
in multi-user (MU) MIMO systems. Unlike conventional MU-
MIMO systems with a small number of transmit antennas,
massive MU-MIMO can be implemented with simple per-
user beamforming such as matched beamforming due to the
large number of degrees-of-freedom available in the user
channels [4]. However, without accurate CSI, massive MU-
MIMO systems would also experience a sum-rate saturation,
which is known as a ceiling effect, even if the base station
transmit power is unconstrained [8], [9].

The challenge, therefore, is to scale channel estimation
and feedback strategies to effectively provide CSI. Most of
the literature on massive MIMO sidesteps this challenge by
focusing on time division duplexing (TDD), for which CSI can
be extracted implicitly using reciprocity. However, since most
cellular systems today employ frequency division duplexing
(FDD), it is of great interest to explore effective approaches for
obtaining CSI for massive MIMO upgrades of such systems.
This motivates the work in this paper, which explores efficient
approaches for quantizing high-dimensional channel vectors to
generate CSI feedback.

There is a large body of literature devoted to accurate CSI
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quantization for closed-loop MIMO FDD systems with a rela-
tively small number of antennas [10]. Most approaches employ
a common vector quantized (VQ) codebook at the transmitter
and the receiver, and the explicit feedback sequence is simply
the binary index of the codeword chosen in the codebook.
Thus, the main focus has been on codebook design. For
i.i.d. Rayleigh fading channel models, deterministic codebook
techniques using Grassmannian line packing (GLP) were
developed in [11]–[13], and the performance of random vector
quantization (RVQ) codebooks was analyzed in [14], [15].
Limited feedback codebooks that adapt to spatially correlated
channels were studied in [16]–[18], and temporal correlated
channels were developed in [19]–[26].

It has been shown in [14] that an RVQ codebook is
asymptotically optimal for i.i.d. Rayleigh fading channels
when the number of transmit antennas gets large, assuming a
fixed number of feedback bits per antenna. However, existing
codebook-based techniques do not scale to approach the RVQ
benchmark. In order to maintain the same level of channel
quantization error, the feedback overhead must increase pro-
portional to the number of transmit antennas [15], [27]. While
the linear increase in feedback overhead with the number of
antennas may be acceptable as we scale to massive MIMO, the
corresponding exponential increase in codebook size makes a
direct look-up approach for feedback generation infeasible.

In order to address this gap in source coding techniques, it
is natural to turn to the duality between source and channel
coding. Just as RVQ provides a benchmark for source coding,
random coding produces information-theoretic benchmarks for
channel coding. However, there are thousands of papers ded-
icated to practical channel code designs that aim to approach
these benchmarks, with codes such as convolutional codes,
Reed-Solomon codes, turbo codes, and LDPC codes imple-
mented in practice [28]. While these ideas can and have been
leveraged for source coding, the measures of distortion used
have been the Hamming or Euclidean distortion. Our contribu-
tion in this paper is to establish and exploit the connection be-
tween source coding on the Grassmannian manifold (which is
what is needed for the limited feedback application of interest
to us) and channel coding for noncoherent communication. We
coin the term noncoherent trellis-coded quantization (NTCQ)
for the class of schemes that we propose and investigate.
Our approach avoids the computational bottleneck of look-up
based codebooks, with encoding complexity scaling linearly
with the number of antennas, and its performance is near-
optimal, approaching that of RVQ.

Approach: Our NTCQ approach relies on two key obser-
vations:
(a) Quantization for beamforming requires finding a quantized
vector, from among the available choices, that is best aligned
with the true channel vector, in terms of maximizing the
magnitude of their normalized inner product. This corresponds
to a search on the Grassmann manifold rather than in Eu-
clidean space. We point out, as have others before us, that
this source coding problem maps to a channel coding problem
of noncoherent sequence detection, where we try to find
the most likely transmitted codeword subject to an unknown
multiplicative complex-valued channel gain.
(b) We know from prior work on noncoherent communication

that a noncoherent block demodulator can be implemented
near-optimally using a bank of coherent demodulators, each
with a different hypothesis on the unknown channel gain.
Furthermore, signal designs and codes for coherent commu-
nication are optimal for noncoherent communication, as long
as we adjust our encoding and decoding slightly to account
for the ambiguity caused by the unknown channel gain.

The relationship between quantization based on a mean
squared error cost function and channel coding for coherent
communication over the AWGN channel has been exploited
successfully in the design of trellis coded quantization (TCQ)
[29], in which the code symbols take values from a standard fi-
nite constellation used for communication, such as phase shift
keying (PSK) or quadrature amplitude modulation (QAM).
The quantized code vector can then be found by using a Viterbi
algorithm for trellis decoding. Our observation (b) allows us
to immediately extend this strategy to the noncoherent setting.
The code vectors for NTCQ can be exactly the same as
in standard TCQ, but the encoder now consists of several
Viterbi algorithms (in practice, a very small number) running
in parallel, with a rule for choosing the best output. Thus,
while approximating a beamforming vector on the Grassmann
manifold as in (a) appears to be difficult, it can be easily
solved by using several parallel searches in Euclidean space.
Furthermore, just as noncoherent channel codes inherit the
good performance of the coherent codes they were constructed
from, NTCQ inherits the good quantization performance of
TCQ.

Contributions: Our contributions are summarized as fol-
lows:
• We show that channel codes, and by analogy, source codes
developed in a coherent setting can be effectively leveraged in
the noncoherent setting of interest in CSI generation for beam-
forming. As shown through both analysis and simulations, the
resulting NTCQ strategy provides near-optimal beamforming
gain, and has encoding complexity which is linear in the
channel dimension.
• We also develop adaptive NTCQ techniques that are op-
timized for spatial and temporal correlations. A differential
version of NTCQ utilizes the temporal correlation of the
channel to successively refine the quantized channel to de-
crease the quantization error. A spatially adaptive version of
NTCQ exploits the spatial correlation of the channel so that
it only quantizes the local area of the dominant direction of
the spatial correlation matrix. Utilization of channel statistics
using such advanced schemes can significantly improve the
performance or decrease the feedback overhead by utilizing
channel statistics.

An important feature of NTCQ is its flexibility, which
makes it an attractive candidate for potentially providing a
common channel quantization approach for heterogeneous
fifth generation (5G) wireless communication systems, which
could involve a mix of advanced network entities such as
massive MIMO, coordinated multipoint (CoMP) transmission,
relay, distributed antenna systems (DAS), and femto/pico cells.
For example, massive MIMO systems could be implemented
using a two-dimensional (2D) planar antenna array at the base
station to reduce the size of antenna array [30]. Depending on
the channel quality, the base station could turn on and off the
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rows/columns of this 2D array to achieve better performance.
The same situation could be encountered in CoMP and DAS
because the number of coordinating transmit stations may vary
over time. NTCQ can easily adjust to such scenarios, since
it can adapt to different numbers of transmit antennas (or
more generally, space-time channel dimension) by changing
the number of code symbols, and can adapt CSI accuracy and
feedback overhead by changing the constellation size and the
coded modulation scheme.

Related work: We have already mentioned conventional
look-up based quantization approaches and discussed why
they do not scale. Trellis-based quantizers for CSI gener-
ation have been proposed previously in [31]–[34], but the
path metrics used for the trellis search are ad hoc. On the
other hand, the mapping to noncoherent sequence detection,
similar to NTCQ, has been pointed out in [35]. Depending
on the number of constellation points used for the candidate
codewords, the proposed algorithms in [35] are dubbed as
PSK & QAM singular vector quantization (SVQ). Although
PSK/QAM-SVQ adopt similar codeword search methods as
NTCQ, they do not consider coding. The use of nontrivial
trellis codes as proposed here significantly enhances perfor-
mance compared to PSK/QAM-SVQ with the same amount
of feedback overhead. Furthermore, [35] employs optimal
noncoherent block demodulation, derived in [36], [37], for
quantization, incurring complexity O(M3

t ) for QAM-SVQ and
O(Mt logMt) for PSK-SVQ, where Mt denotes the number
of antennas. Our NTCQ scheme exhibits better complexity
scaling: near-optimal demodulation in O(Mt) complexity by
running a small number of coherent decoders in parallel, as
proposed in [38], suffices for providing near-optimal quanti-
zation performance.

The remainder of this paper is organized as follows. In
Section II, we describe the system model and fundamentals
underlying NTCQ. A detailed description of the NTCQ algo-
rithm and its variation is provided in Section III. Advanced
NTCQ schemes that exploit temporal and spatial correlation of
channels are explained in Section IV. In Section V, simulation
results are presented, and conclusions follow in Section VI.

II. SYSTEM MODEL AND THEORY

A. System Setup

We consider a block fading multiple-input single-output
(MISO) communications system with Mt transmit antennas
at the transmitter as in Fig. 1. The received signal, y�[k] ∈ C,
for a channel use index � in the kth fading block can be written
as1

y�[k] = hH [k]f [k]s�[k] + z�[k],

where h[k] ∈ CMt is the MISO channel vector, f [k] ∈ CMt

is the beamforming vector with ‖f [k]‖22 = 1, s�[k] ∈ C is
the message signal with E [s� [k]] = 0 and E

[|s�[k]|2] = ρ,
and z�[k] ∈ C is additive complex Gaussian noise such that
z�[k] ∼ CN (0, σ2). A number of different models for h[k]

1Lower- and upper-case bold symbols denote vectors and matrices, respec-
tively. The two-norm of a vector x is denoted as ‖x‖2. The transpose and
Hermitian transpose of a vector x are denoted by xT , xH respectively. The
expectation operator is denoted by E [·], and X ∼ CN (m, σ2) indicates that
X is a complex Gaussian random variable with mean m and variance σ2.

will be considered in the design and performance evaluation
of quantization schemes, but for now, we allow it to be
arbitrary. The receiver quantizes its estimate of h[k] into
a Btot-dimensional binary vector b[k], which is sent over
a limited rate feedback channel. The transmitter uses this
feedback to construct a beamforming vector f [k]. In order
to focus attention on channel quantization, we do not model
channel estimation errors at the receiver or errors over the
feedback channel.

Since we do not consider temporal correlation in {h[k]}
for quantizer design in this section, we drop the time index k
for the remainder of this section. Assuming an average power
constraint at the transmitter, we wish to choose f so as to
maximize the normalized beamforming gain that is defined as

J(f ,h) =
|hHf |2

‖h‖22‖f‖22
. (1)

Although ‖f‖2 = 1, we still normalize with ‖f‖2 in (1) to
maintain notational generality. An equivalent approach is to
minimize the chordal distance between f and h, defined as

d2c(f ,h) = 1− J(f ,h) = 1− |hH f |2
‖h‖22‖f‖22

.

These performance measures require searching for codewords
on the Grassmann manifold, a projective space in which
vectors are mapped to one-dimensional complex subspaces.

Conventional VQ codebook-based channel quantization
typically employs exhaustive search to select a codeword
from an unstructured and fixed Btot-bit codebook C =
{c1, c2, . . . , c2Btot } according to

copt = argmax
c∈C

J(c,h) = argmin
c∈C

d2c(c,h), (2)

and the binary sequence b = bin(opt) is fed back to the
transmitter where bin(·) converts an integer to its binary
representation. Then the beamforming vector is reconstructed
at the transmitter as

f =
cint(b)

‖cint(b)‖2
where int(·) converts a binary string into an integer. Exhaus-
tive search, which does not require geometric interpretation
of the performance metric, incurs computational complexity
O(Mt2

Btot), which is exponential in the number of bits.
We shall see that utilizing the geometry of the Grassmann
manifold, and in particular, relating it to Euclidean geometry,
is key to more efficient quantization procedures.

Since our performance criterion is independent of the code-
word norm, one could, without loss of generality, normalize
the codewords to unit norm up front (i.e., set ‖c‖2 ≡ 1).
However, for the code constructions and quantizer designs
of interest to us, it is useful to allow codewords to have
different norms (the performance criterion, of course, remains
independent of codeword scaling).

B. Feedback Overhead

The relation between the feedback overhead Btot (or code-
book size 2Btot ) and the performance of MIMO systems
has been thoroughly investigated for i.i.d. Rayleigh fading
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Fig. 1. Multiple-input, single-output communications system with feedback.

channels. In single user (SU) MISO channels with the Btot

bits RVQ codebook, the loss in normalized beamforming gain
is given as [15]

E

[
1− max

f∈FRVQ

J(f ,h)

]
= 2Btotβ

(
2Btot ,

Mt

Mt − 1

)

≈ 2−
Btot
Mt−1 (3)

where FRVQ is an RVQ codebook, β(x, y) = Γ(x)Γ(y)
Γ(x+y) is

the Beta function, Γ(x) =
∫∞
0 tx−1e−tdt is the Gamma

function, and expectation is taken over h and FRVQ. The
expression in (3) indicates that the feedback overhead needs
to be increased proportional to Mt to maintain the loss in
normalized beamforming gain at a certain level.

For MU-MIMO zero-forcing beamforming (ZFBF), a sim-
ilar conclusion is drawn in [8], [9]: in order to achieve the
full multiplexing gain of Mt, the number of feedback bits per
user, Buser, must scale linearly with SNR (in dB) and Mt as

Buser = (Mt − 1) log2 ρ ≈ Mt − 1

3
ρdB.

We therefore assume that at each channel use, the receiver
sends back a binary feedback sequence of length

Btot � BMt + q

where B is the number of quantization bits used per transmit
antenna and q is a small, fixed number of auxiliary feedback
bits, which does not scale with Mt.

While linear scaling of feedback bits with the number of
transmit elements is typically acceptable in terms of overhead,
a VQ codebook-based limited feedback is computationally
infeasible for massive MIMO systems with large Mt because
of the exponential growth of codeword search complexity with
Mt as O(Mt2

BMt). Thus, we need to develop new techniques
to quantize CSI for large Mt.

In order to develop an efficient CSI quantization method
for massive MIMO systems, we draw an analogy between
searching for a candidate beamforming vector to maximize
beamforming gain as in (2) and noncoherent sequence detec-
tion (e.g., [31], [35]). We then employ prior work relating
noncoherent and coherent detection to map quantization on
the Grassmann manifold to quantization in Euclidean space,
which can be accomplished far more efficiently. This line
of reasoning, which corresponds to the process of quan-
tization, has been previously established in [35], but we

provide a self-contained derivation in Section II-C pointing
to a low-complexity, near-optimal source encoding strategy.
We then show, in Section II-D that structured quantization
codebooks for Euclidean metrics are effective for quantization
on the Grassmann manifold. This leads to a CSI quantization
framework which is efficient in terms of both overhead and
computation.

C. Efficient Grassmannian Encoding using Euclidean Metrics

Consider a single antenna noncoherent, block fading, ad-
ditive white Gaussian noise (AWGN) channel with received
vector

y = βx+ n,

where β ∈ C is an unknown complex channel gain, x ∈ C
N

is a vector of N transmitted symbols, n ∈ CN is complex
Gaussian noise, and y ∈ CN is the received signal. Using the
generalized likelihood ratio test (GLRT) as in [35], [38], the
estimate of the transmitted vector, x̂, is given by

x̂ = argmin
x∈CN

min
β∈C

‖y − βx‖22 (4)

= argmin
x∈CN

min
α∈R+

min
θ∈[0,2π)

‖y‖22 + α2‖ejθx‖22 − 2αRe(ejθyHx)

(5)

= argmin
x∈CN

min
α∈R+

‖y‖22 + α2‖x‖22 − 2α|yHx| (6)

= argmax
x∈CN

|yHx|2
‖x‖22

, (7)

where we decomposed the entire complex plain β = αejθ

with α ∈ R
+ and θ ∈ [0, 2π) in (5), and (6) comes from

min
θ∈[0,2π)

{−Re(ejθyHx)
}
= −|yHx|.

To derive (7), we differentiate (6) with respect to α and set to 0

which gives α� = |yHx|
‖x‖2

2
. Note that α� is the global minimizer

of (6) because (6) is a quadratic function of α. We can derive
(7) after plugging α� into (6) and some basic algebra.

We can easily check from (2) and (7) that finding the opti-
mal codeword for a MISO beamforming system and the non-
coherent sequence detection problems are equivalent (although
this relation is already shown in [35], we proved the duality
of (4) and (2) more explicitly than [35]). Therefore, we can
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find copt for a MISO beamforming system with a Euclidean
distance quantizer (or noncoherent block demodulator)

min
α∈R+

min
θ∈[0,2π)

min
ci∈C

‖h̄− αejθci‖22. (8)

where h̄ = h
‖h‖2

is the normalized channel direction.
Moreover, instead of searching over the entire complex

plane by having α ∈ R+ and θ ∈ [0, 2π), we know
from prior work on noncoherent communication [38] that the
noncoherent block demodulator in (8) can be implemented
near-optimally using a bank of coherent demodulators over
the optimized discrete sets of α ∈ A = {α1, α2, . . . , αKα}
and θ ∈ Θ = {θ1, θ2, . . . , θKθ

}. While optimal noncoherent
detection can be accomplished with quadratic complexity
in Mt [35], as we show through our numerical results, a
small number of parallel coherent demodulators (which incurs
complexity linear in Mt) is all that is required for excellent
quantization performance.

The preceding development tells us that we can apply
coherent demodulation, which maps to quantization using
Euclidean metrics, to noncoherent demodulation, which maps
to quantization on the Grassmann manifold. However, we must
still determine how to choose the quantization codebook. Next,
we present results indicating that we can simply use codes
optimized for Euclidean metrics for this purpose.

D. Efficient Grassmannian Codebooks based on Euclidean
Metrics

We begin with an asymptotic result for i.i.d. Rayleigh fading
coefficients, which relies on the well-known rate-distortion
theory for i.i.d. Gaussian sources.

Theorem 1. If we quantize an Mt × 1 i.i.d. Rayleigh fading
MISO channel h ∼ CN (0, σ2

hI) with a Euclidean distance
quantizer using B bits per entry (which corresponds to B

2
bits per each of real and imaginary dimension) as

gED = min
gi∈G

‖h− gi‖22 (9)

where G = {g1, . . . ,g2Btot }, Btot = BMt, gi ∼ CN (0, (σ2
h−

2D)I) for all i, and D = 1
2σ

2
h2

−B , then the asymptotic loss
in normalized beamforming gain, or chordal distance, is given
by

d2c(h,gED)
Mt→∞−→ 2−B . (10)

Proof: By expanding ‖h− gED‖22, we have

‖h− gED‖22 =

Mt∑
t=1

[
{Re(ht)− Re(gED,t)}2

+ {Im(ht)− Im(gED,t)}2
]

where ht and gED,t are the tth entry of h and gED, re-
spectively. Note that Re(ht) and Im(ht) are from the same
distribution N (0, 1

2σ
2
h), and Re(gED,t) and Im(gED,t) are

from the distribution N (0, 1
2σ

2
h − D). Assuming B

2 bits are
used to quantize each of Re(ht) and Im(ht) for all t, by

rate-distortion theory for i.i.d. Gaussian sources [39], we can
achieve the rate-distortion bound

E
[
{Re(ht)− Re(gED,t)}2

]
= E

[
{Im(ht)− Im(gED,t)}2

]
= D

as Mt → ∞. Thus, by the weak law of large numbers, the
following convergences hold2

1

Mt
‖h− gED‖22 P→ 2E

[
{Re(ht)− Re(gED,t)}2

]
= 2D,

1

Mt
‖h‖22 P→ 2E[{Re(ht)}2] = σ2

h,

1

Mt
‖gED‖22 P→ 2E[{Re(gED,t)}2] = σ2

h − 2D

as Mt → ∞. Moreover,
∣∣∣hHgED

Mt

∣∣∣2 can be lower bounded as

∣∣∣∣h
HgED

Mt

∣∣∣∣
2

≥
(
Re(hHgED)

Mt

)2

=

(‖h‖22 + ‖gED‖22 − ‖h− gED‖22
2Mt

)2

P→ (
σ2
h − 2D

)2
.

Then, the normalized beamforming gain loss relative to the
unquantized beamforming case is bounded as

d2c(h,gED) = 1− |hHgED|2
‖h‖22‖gED‖22

≤ 2D

σ2
h

= 2−B,

d2c(h,gED)
(a)

≥ 2−
BMt
Mt−1

where (a) follows from the optimality of the RVQ codebook
in large asymptotic regime [14]. As Mt → ∞, the lower
bound of d2c(h,gED) converges to the upper bound 2−B,
which finishes the proof.

Note that the loss in (10) is asymptotically the same as
that of the RVQ codebook in (3). Since the RVQ codebook is
known to be asymptotically optimal as Mt → ∞ (fixing the
number of bits per antenna) [14], we conclude that coherent
Euclidean distance quantization as in (9) with a rich, rotation-
ally invariant constellation such as a Gaussian codebook G,
is also an asymptotically optimal way to quantize the channel
vector h. Of course, in practice, for finite constellations and
number of antennas, we must “align” the codewords gi with
the channel h, using parallel branches with different amplitude
scaling α and phase rotations θ as in (8), prior to computing
the Euclidean metric, in order to maximize the beamforming
gain.

We also note that the use of nontrivial codes is implicit
in Theorem 1, hence the uncoded constellations employed
in [35] do not achieve optimal quantization performance.
The constellation expansion employed in the NTCQ schemes
considered here is required to approach optimal performance.

We now provide a non-asymptotic result regarding the
chordal distances associated with Grassmannian line packing

2Let X̄n = 1
n
(X1 + · · · + Xn) and μ = E[Xi] for all i. We

say X̄n converges to μ in probability as X̄n
P→ μ for n → ∞ when

lim
n→∞Pr

(|X̄n − μ| > ε
)
= 0 for any ε > 0.
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(GLP) attained by codebooks optimized using Euclidean met-
rics. Let N = 2Btot and UN

Mt
∈ CMt×N denote the set of

Mt×N complex matrices with unit vector columns. To mini-
mize the average quantization error of (8) or (9) in Euclidean
space with a fixed codebook C, we have to maximize the
minimum Euclidean distance between all possible codeword
pairs

d2E,min(C) � min
1≤k<l≤N

d2E(ck, cl)

where dE(x,y) � ‖x−y‖2, and {ci}Ni=1 are column vectors
of C. Let CED denote an optimized Euclidean distance (ED)
codebook that maximizes the minimum Euclidean distance as

CED = argmax
C∈UN

Mt

d2E,min(C).

On the other hand, beamforming codebooks are ideally de-
signed for i.i.d. Rayleigh fading channels to maximize the
minimum chordal distance between codewords as

d2c,min(C) � min
1≤k<l≤N

d2c(ck, cl),

and a GLP codebook is given as [11], [13]

CGLP = argmax
C∈UN

Mt

d2c,min(C).

Note that the optimization metrics of CGLP and CED are
different, the former is the chordal distance and the latter is the
Euclidean distance. The following lemma shows the relation
of the two metrics.

Lemma 1. For any two unit vectors x and y, the squared
chordal distance between x and y is upper bounded by a
function of their Euclidean distance as

d2c(x,y) ≤ 1−
(
1− 1

2
d2E(x,y)

)2

= d2E(x,y) −
1

4
d4E(x,y).

Proof: Let us define d2θ(x,y) as

d2θ(x,y) � min
θ∈[0,2π)

d2E(x, e
jθy)

= ‖x‖22 + ‖y‖22 − 2 max
θ∈[0,2π)

Re
{
ejθxHy

}
= 2− 2|xHy| ≤ d2E(x,y).

Then, the squared chordal distance of x and y is upper
bounded as

d2c(x,y) = 1− |xHy|2

= 1−
(
1− 1

2
d2θ(x,y)

)2

≤ 1−
(
1− 1

2
d2E(x,y)

)2

,

which finishes the proof.
Moreover, Lemma 1 can be directly extended to the follow-

ing corollary.

Corollary 1. The minimum chordal distance of CED,
d2c,min(CED), is upper bounded by the minimum Euclidean
distance of CED, d2E,min(CED) as

d2c,min(CED) ≤ d2E,min(CED).
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Fig. 2. The minimum chordal distances of different codebooks with Mt =
8. GLP and Euclidean distance (ED) codebook are numerically optimized
according to their metrics, while the minimum distance of RVQ codebook is
averaged over 1000 different RVQ codebooks.

Although Corollary 1 does not say that CED maximizes
the minimum chordal distance between its codewords, CED is
expected to have a good chordal distance property. We verify
this by simulation with numerically optimized CGLP and CED

in Fig. 2. It is shown that the minimum chordal distance of
CED is larger than the (averaged) minimum chordal distance
of the RVQ codebook for all Btot values.

III. NONCOHERENT TRELLIS-CODED QUANTIZATION

(NTCQ)

A. Euclidean Distance Codebook Design

The observations in the preceding section provide the fol-
lowing practical guidelines for quantization on the Grassmann
manifold: (a) find a good codebook in Euclidean space whose
structure permits efficient encoding (or, equivalently, find a
good, efficiently decodable channel code); (b) use parallel
versions of the Euclidean encoder with different amplitude
scalings and phase rotations, and choose the best output
(or, equivalently, implement block noncoherent decoding ef-
ficiently with a number of parallel coherent decoders). The
proposed NTCQ emerges naturally from application of these
guidelines.

NTCQ relies on trellis-coded quantization (TCQ) which was
originally proposed in [29], exploiting the functional duality
between source coding and channel coding to leverage the
well-known trellis-coded modulation (TCM) channel codes
designed for coherent communication over AWGN channels
[40]. TCM integrates the design of convolutional codes with
modulation to maximize the minimum Euclidean distance
between modulated codewords. This is done by coding over
partitions of the source constellation. Let CTCM denote a fixed
codebook with N codewords generated by a TCM channel
code. Then CTCM can be mathematically expressed as

CTCM = argmax
C∈VN

Mt

d2E,min(C)
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Fig. 3. Quantization and reconstruction processes for a Euclidean distance
quantizer using trellis-coded quantization (TCQ).

where VN
Mt

⊂ UN
Mt

is the set of Mt × N complex matrices
generated by a given trellis structure with a finite number of
constellation points of interest for entries of the matrix. Note
that CTCM is a Euclidean distance codebook within a given set
VN
Mt

. Thus, CTCM is expected to have a good chordal distance
property as well.

In TCQ, the decoder and encoder of TCM are used to
quantize and reconstruct a given source, respectively. From
Fig. 3, we see that the TCQ system consists of a source
constellation, a trellis-based decoder (for source quantization),
and a convolutional encoder (for source reconstruction). Quan-
tization is performed by passing a source vector x ∈ CN

through a trellis-based optimization whose goal is to minimize
a mean square error distortion between the quantized output
and the source message input. The additive structure of the
square of Euclidean distance implies that the Viterbi algorithm
can be employed to efficiently search for a codebook vector
that minimizes the Euclidean distance from a given source
vector as

copt = argmin
ci∈CTCM

‖x− ci‖22, (11)

which is then mapped to a binary sequence b = bin(opt).
The quantized source vector x̂ is reconstructed by passing the
binary sequence b into the convolutional encoder and mapping
the binary output of the convolutional encoder to points on
the source constellation (as if modulating the signal). Due to
the linearity of the convolutional code, each unique binary
sequence b represents a unique quantized vector x̂.

NTCQ adopts TCQ to quantize CSI. Note that (11) is the
same optimization problem as (8) with a given α ∈ A =
{α1, α2, . . . , αKα} and θ ∈ Θ = {θ1, θ2, . . . , θKθ

}. Thus, the
minimization (8) can be performed using Kα · Kθ parallel
instances of the Viterbi algorithm. This is the same paradigm
proposed as in TCQ except for the search over α and θ
parameters; due to the presence of these terms, the process is
coined noncoherent trellis-coded quantization. Note that with
PSK constellations, we can set α = 1 because all the candidate
beamforming vectors ci’s have the same norm.

We explain the implementation of NTCQ with 8PSK and
16QAM constellations next (we also report results for QPSK,
but do not describe the corresponding NTCQ procedure, since
it is similar to that for 8PSK). Before explaining the actual
implementation, it should be pointed out that, because of the
inherited TCM structure, the number of constellation points is

TABLE I
MAPPING OF QUANTIZING BITS/ENTRY (B) AND CONSTELLATIONS.

B 1 bit/entry 2 bits/entry 3 bits/entry
Constellation QPSK 8PSK 16QAM

16QAM

8PSK

z-1 z-1

z-1

bin,1

bin,2

bout,1

bout,2

bout,3+

+

bout,4bin,3

Fig. 4. This rate 2/3 convolutional code corresponds to the trellis in Fig. 6.
In the figure, the smaller the index the less significant the bit, e.g., bin,1 is
the least significant input bit and bin,3 is the most significant input bit.

larger than 2B in NTCQ where B is the number of quantiza-
tion bits per channel entry. We explicitly list the relationship
between B and the constellations in Table I. This issue will
become clear as we explain the 8PSK implementation.

B. NTCQ with 8PSK (2 bits/entry)

We adopt the rate 2/3 convolutional code in [40], as shown
in Fig. 4. The source constellation is assumed to be 8PSK
as in Fig. 5. Note that all constellation points are normalized
with the number of transmit antennas Mt.

The construction of the feedback sequence is done using a
trellis decoder. As is done in traditional decoding of convolu-
tional codes, the encoding process is represented using a trellis
showing the relationship between states of the encoder along
with input and output transitions. The trellis with input/output
state transitions corresponding to the convolutional code in
Fig. 4 is shown in Fig. 6.

We select candidate beamforming vectors using an Mt-
stage trellis where each stage selects an entry in each of
the candidate vectors. Thus, each path through the trellis
corresponds to a unique candidate beamforming vector. It is
important to note that there are only four state-transitions
from any of the eight states in Fig. 6. Each transition is
mapped to one point of the 8PSK constellation. Therefore,
even though the source constellation is 8PSK, each element
of h̄ is quantized with one of the QPSK subconstellations
marked by black or white circles in Fig. 5, which results in 2
bits quantization per entry as shown in Table I.

The path choices are enumerated with binary labels, and
each path also corresponds to a unique binary sequence. The
candidate vector or path that is chosen for output is the one that
optimizes the given path metric. The path metric is chosen to
reflect the desired Euclidean distance minimization regarding
codeword ci in (8) for a given α and θ. The output of the
quantization is the binary sequence corresponding to the best
candidate path.

Each transition from each state at the tth stage, st ∈
{1, 2, . . . , S}, in the trellis to a state at the (t + 1)th stage,



CHOI et al.: NONCOHERENT TRELLIS CODED QUANTIZATION: A PRACTICAL LIMITED FEEDBACK TECHNIQUE FOR MASSIVE MIMO SYSTEMS 5023

000100

001

101

010

110

011

111

1

tM

Fig. 5. 8PSK constellation points used in NTCQ are labeled with binary
sequences.

t = 0
0/0 1/4 2/2 3/6

t = 1 t = 2

0/1 1/5 2/3 3/7

0/4 1/0 2/6 3/2

0/5 1/1 2/7 3/3

0/2 1/6 2/0 3/4

0/3 1/7 2/1 3/5

0/6 1/2 2/4 3/0

0/7 1/3 2/5 3/1

Fig. 6. The Ungerboeck trellis with S = 8 states corresponding to the
convolutional encoder in Fig. 4. The input/output relations using decimal
numbers correspond to state transitions from the top to bottom. The example
path p2 = [1, 2, 5] that corresponds to binary input sequence [01, 00]T (or
decimal input [1, 0]T ) and binary output sequence [100, 001]T (or decimal
output [4, 1]T ) is highlighted.

st+1, corresponds to a point in the source constellation. For
example, a transition from state 4 to state 8 corresponds to
the binary output sequence 011 which corresponds to the
constellation point 1√

2Mt
(−1 + j) in Fig. 5. Note that, in

this setup, a single entry is chosen at each stage where it is
possible to choose more; this is done by using intermediate
codebooks for each stage of the trellis. For more details on
this method and the design of the codebooks, the reader is
referred to [31].

To optimize over the trellis, the first task is to define a
path metric. Let pt be a partial path, or a sequence of states,
up to the stage t. For example, the path p2 = [1, 2, 5] using
state indices is highlighted in Fig. 6. Also, define the two
functions in(·) and out(·) such that in(pt) outputs the binary
input sequence corresponding to path pt, and out(pt) gives
the sequence of output constellation points corresponding to
the path pt. Again, using the sample path p2 in Fig. 6, we
can see that

in(p2) = [01, 00]T , out(p2) =
1√
Mt

[
−1,

1√
2
(1 + j)

]T
.

With these definitions, we can define the path metric, m(·),
as

m(pt, θ) = ‖h̄t − ejθ out(pt)‖22,

3d

0000

1000

0100

1100

0010

1010

0110

1110

0001

1001

0101

1101

0011

1011

0111

1111

d

Fig. 7. 16QAM constellation points used in NTCQ are labeled with binary
sequences.

where θ ∈ [0, 2π) and h̄t is the vector created by truncating
of normalized MISO channel vector h̄ to the first t entries.
Note that α = 1 because all constellation points have the
same magnitude in the 8PSK case. It is easy to check that
minimizing over the path metric will minimize the Euclidean
distance. It is also important to notice that the path metric can
be written recursively as

m(pt, θ) = m(pt−1, θ) +
∣∣h̄t − ejθ out

(
[pt−1 pt]

T
)∣∣2 ,

where h̄t and pt are the tth entry of h̄ and pt, respectively.
The above path metric can be efficiently computed via the
Viterbi algorithm. The path metric is computed in parallel for
each quantized value of θ ∈ Θ = {θ1, θ2, . . . , θKθ

}. Then the
best path pbest and the phase θbest that minimize the path
metric can be found as

min
θ∈Θ

min
pMt∈PMt

m(pMt , θ)

where PMt denotes all possible paths up to stage Mt. Finally,
the beamforming vector f is calculated as

copt = out(pbest), f =
copt

‖copt‖2 .

Note that ‖copt‖2 = 1 for 8PSK; therefore f = copt.
It is important to point out that minimizing over θ only

increases the complexity of quantization, not the feedback
overhead because the transmitter does not have to know the
value of θbest that minimizes the path metric during the
beamforming vector reconstruction process. However, there
is additional feedback overhead with NTCQ. Since we test
all paths in the trellis, the transmitter has to know the starting
state of pbest, which causes additional log2 S bits of feedback
overhead where S is the number of states in the trellis.
Therefore, the total feedback overhead is

Btot = BMt + log2 S.

The additional feedback overhead log2 S bits can vary depend-
ing on the trellis used in NTCQ.

C. NTCQ with 16QAM (3 bits/entry)

For the 16QAM constellation, the rate 3/4 convolution
encoder is shown in Fig. 4. The source constellation is shown

in Fig. 7 where d = �
2
√
Mt

with  =
√

6
M−1 with M = 16

to have E[‖ci‖22] = 1 where expectation is taken over
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ci assuming all constellation points are selected with equal
probability.

The procedure of NTCQ using 16QAM is basically the
same as the 8PSK case. The difference arising for 16QAM
is that we have to take α into account during the path metric
computation as

m(pt, α, θ) = ‖h̄t − αejθ out(pt)‖22 (12)

where θ ∈ Θ = {θ1, θ2, . . . , θKθ
} and α ∈ A =

{α1, α2, . . . , αKα}. Similar to the 8PSK case, additional
log2 S feedback bits are needed to indicate the starting state
of pbest to the transmitter in the 16QAM case.

D. Complexity

NTCQ relies on a trellis search to quantize the beamforming
vector, and the trellis search is performed by the Viterbi
algorithm. In each state transition of the trellis, one channel
entry is quantized with one of 2B constellation points. This
computation is performed for S states in each state transition
(stage) and there are Mt state transitions in total. Thus, the
complexity of the Viterbi algorithm becomes O(2BSMt).

The Viterbi algorithm has to be executed Kθ · Kα

times in NCTQ, which gives the overall complexity of
O(KθKα2

BSMt). In the limit of large Mt, Theorem 1 tells
us that we can get away with Kθ → 1 and Kα → 1 without
performance loss. However, even for moderate values of Mt,
our results in Section V-A show that small values of Kθ and
Kα can be employed with minimal performance degradation.
The key aspect to note is the linear scaling of complexity with
the number of transmit antennas Mt, which makes NTCQ
particularly attractive for massive MIMO systems for which
conventional look-up based approaches are computationally
infeasible.

E. Variations of NTCQ

We can also construct several variations of NTCQ with
minor tradeoffs between the total number of feedback bits,
Btot, and performance. We explain one of the variations
briefly below.

• Variation: Fixing the starting state for the trellis search.
Because NTCQ searches paths which start from every possible
state in the first stage in the trellis, we need an additional
log2 S bits of feedback overhead to indicate the starting state
of pbest. One variation is to fix the first state to eliminate these
additional bits, so that the total feedback overhead incurred
is exactly BMt bits. We do incur a small performance loss
by doing this, since allowing starting from different states
effectively leads to considering more possible values of the
scaling parameters α and θ. However, this loss becomes
negligible as Mt gets large (consistent with Theorem 1).

For other variations, we can fix the first entry of copt to a
constant in the trellis search or adopt a tail-biting convolutional
code.

IV. ADVANCED NTCQ EXPLOITING CHANNEL

CORRELATIONS

In practice, channels are temporally and/or spatially corre-
lated. In this section, we propose advanced NTCQ schemes

that exploit these correlations to improve the performance or
reduce the feedback overhead.

A. Differential Scheme for Temporally Correlated Channels

A useful model of this correlation is the first-order Gauss-
Markov process [41]

h[k] = ηh[k − 1] +
√
1− η2g[k]

where g[k] ∈ CMt denotes the process noise, which is
modeled as having i.i.d. entries distributed with CN (0, 1). We
assume that the initial state h[0] is independent of g[k] for
all k. The temporal correlation coefficient η (0 ≤ η ≤ 1)
represents the correlation between elements ht[k−1] and ht[k]
where ht[k] is the tth entry of h[k].

If η is close to one, two consecutive channels are highly
correlated and the difference between the previous channel
h[k− 1] and the current channel h[k] might be small. Differ-
ential codebooks in [19]–[26] utilize this property to reduce
the channel quantization error with an assumption that both
the transmitter and the receiver know η perfectly. Most of
the previous literature, however, focused on the case with a
fixed and small number of transmit antennas and moderate
feedback overhead, e.g., Mt = 4 and Btot = 4. Therefore, we
have to come up with a new differential feedback scheme to
accommodate massive MIMO with large feedback overhead.

We denote f [k− 1] as the quantized beamforming vector at
block k − 1 and

fopt[k] =
h[k]

‖h[k]‖2
as the unquantized optimal beamforming vector at time k.
In our differential NTCQ scheme, instead of quantizing h[k]
directly at time k, the receiver quantizes fdiff [k] which is given
as

fdiff [k] =
(
IMt − f [k − 1]fH [k − 1]

)
fopt[k].

Note that fdiff [k] is a projection of fopt[k] to the null space of
f [k−1]. We let f̂diff [k] denote the quantized version of fdiff [k]
by NTCQ with ‖f̂diff [k]‖22 = 1. The receiver then constructs
candidate beamforming vectors fᾱ,θ̄ with weights ᾱ ∈ Ā =
{ᾱ1, . . . , ᾱKᾱ} and θ̄ ∈ Θ̄ =

{
θ̄1, . . . , θ̄Kθ̄

}
as

fᾱ,θ̄ =
ηf [k − 1] + ᾱejθ̄

√
1− η2 f̂diff [k]∣∣∣∣∣∣ηf [k − 1] + ᾱejθ̄

√
1− η2f̂diff [k]

∣∣∣∣∣∣
2

. (13)

The receiver selects the optimal weights ᾱopt and θ̄opt by
optimizing

max
ᾱ∈Ā

max
θ̄∈Θ̄

∣∣h̄H [k]fᾱ,θ̄
∣∣2 , (14)

and the final beamforming vector is given as

f [k] = fᾱopt,θ̄opt .

To construct candidate beamformaing vectors as in (13), we
have to define sets of weights Ā and Θ̄. It is easy to conclude
that Θ̄ = [0, 2π) because the quantization process uses
beamformer phase invariance. To derive the range of the set
Ā, we make the following proposition.
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Fig. 8. JdB
avg vs. different quantization levels of θk and αk with Mt = 20

in i.i.d. Rayleigh fading channels.

Proposition 1. When η → 1, the range of Ā can be set as

1− η√
1− η2

≤ ᾱ ≤ 1 + η√
1− η2

. (15)

Proof: First, we define fnom
ᾱ,θ̄

as the numerator of (13) as

fnomᾱ,θ̄ = ηf [k − 1] + ᾱejθ̄
√
1− η2f̂diff [k].

Then, the norm square of fnom
ᾱ,θ̄

becomes

‖fnomᾱ,θ̄ ‖22 = η2 + ᾱ2(1− η2)

+ 2ᾱ
√
1− η2Re

{
ejθ̄fH [k − 1]f̂diff [k]

}
.

Because −1 ≤ Re
{
ejθ̄fH [k − 1]f̂diff [k]

}
≤ 1, we have

(
η − ᾱ

√
1− η2

)2

≤ ‖fnomᾱ,θ̄ ‖22 ≤
(
η + ᾱ

√
1− η2

)2

. (16)

Note that fH [k−1]f̂diff [k] ≈ 0 with a good quantizer. More-
over, with the assumption of a slowly varying channel which
is typically assumed in the differential codebook literature, we
approximate η ≈ 1. Then we have ‖fnom

ᾱ,θ̄
‖22 = 1, and plugging

this into (16) gives the range of ᾱ in (15).
Note that the range in (15) can be further optimized

numerically. In Section V-B, we set 1−η√
1−η2

≤ ᾱ ≤ 1+η

3
√

1−η2

for simulation. Once the receiver selects the optimal weights
ᾱopt and θ̄opt by (14), it feeds back f̂diff [k], ᾱopt and θ̄opt
to the transmitter over the feedback link and the transmitter
reconstructs f [k] as in (13). Additional feedback overhead
caused by ᾱopt and θ̄opt can be very small compared to the
feedback overhead for f̂diff [k]. Simulation indicates that 1 bit
for ᾱopt and 3 bits for θ̄opt is sufficient to have near-optimal
performance in a low mobility scenario.

B. Adaptive Scheme for Spatially Correlated Channels

If the transmit antennas are closely spaced, which is likely
for a massive MIMO scenario, channels tend to be spatially
correlated and can be modeled as

h[k] = R
1
2hw[k]

1 2 3
8

10

12

14

16

18

20

# of bits per entry (B)

A
ve

ra
ge

 b
ea

m
fo

rm
in

g 
ga

in
 (

dB
)

 

 

Unquantized
Variation of NTCQ
PSK−SVQ
RVQ
Scalar quantization
Benchmark with Thm. 1

M
t
 = 100

M
t
 = 20

Fig. 9. JdB
avg vs. B with Mt = 20 and 100 in i.i.d. Rayleigh fading channels.

PSK-SVQ is from [35]. All limited feedback schemes have the same Btot .

where hw[k] is an uncorrelated MISO channel vector with
i.i.d. complex Gaussian entries and R = E

[
h[k]hH [k]

]
is a

correlation matrix of the channel where expectation is taken
over k. We assume that R is a full-rank matrix. For spatially
correlated MISO channels, codebook skewing methods were
proposed in [16]–[18] such that codewords in a VQ codebook
are rotated and normalized with respect to R to quantize only
the local space of the dominant eigenvector of R. It was shown
in [16]–[18] that this skewing method can significantly reduce
the quantization error with the same feedback overhead. With
NTCQ, however, there are no fixed VQ codewords for channel
quantization which precludes the normal approach for skew-
ing. Therefore, we propose the following method to mimic
skewing with NTCQ for spatially correlated MISO channels.

We assume that both the transmitter and the receiver know
R in advance3. At the receiver side, hw[k] is obtained by
decorrelating h[k] with R− 1

2 , i.e.,

hw[k] = R− 1
2h[k].

Then the receiver quantizes hw[k] with NTCQ and get ĥw[k].
The receiver feeds back ĥw[k], and the transmitter reconstructs
f [k] as

f [k] =
R

1
2 ĥw[k]∣∣∣∣∣∣R 1
2 ĥw[k]

∣∣∣∣∣∣
2

.

This procedure effectively decouples the procedure of ex-
ploiting spatial correlation from that of quantization, while
providing the same performance gain as standard skewing of
fixed codewords.

V. PERFORMANCE EVALUATION

In this section, we present Monte-Carlo simulation results
to evaluate the performance of NTCQ in i.i.d. channels, tem-
porally correlated channels, and spatially correlated channels.
In each scenario, we simulate the original NTCQ and its
variation, differential NTCQ, and spatially adaptive NTCQ

3In practice, the transmitter can acquire an approximate knowledge of R
by averaging f [k], i.e., R ≈ E

[
f [k]fH [k]

]
where expectation is taken over

k.
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Fig. 10. JdB
avg vs. fading block index k with v = 3km/h in temporally

correlated channels. Without feedback delay.

explained in Sections III, IV-A, and IV-B, respectively. We
use the average beamforming gain in dB scale

JdB
avg = 10 log10

(
E[|hHf |2])

as a performance metric where the expectation is over h.

A. i.i.d. Rayleigh fading Channels

For i.i.d. Rayleigh fading channels, h[k] is drawn from
i.i.d. complex Gaussian entries (i.e., h[k] ∼ CN (0, I)). In
Fig. 8, we first plot JdB

avg of NTCQ and its variation in
i.i.d. channels with Mt = 20 transmit antennas depending
on different quantization levels for θk and αk. Clearly, the
variation of NTCQ gives strictly lower JdB

avg than the original
NTCQ. Note that it is enough to have Kθ = 4 (2 bits for θk)
for 1 bit/entry (QPSK) to achieve near-maximal performance
of NTCQ and its variation. Interestingly, we can fix αk = 1
with 3 bits/entry (16QAM) for NTCQ and its variation without
having any performance loss. This is because when optimizing
(12), it is likely to have E

[‖copt‖22] = 1 since the objective
variable is the normalized channel vector h̄ which has a unit
norm, i.e., ‖h̄‖22 = 1. We fix Kθ = 16 (4 bits for θk) for
simulations afterward regardless of the number of bits per
entry to have a fair comparison. We also fix αk = 1 for 3
bits/entry quantization.

In Fig. 9, we plot JdB
avg for variation of NTCQ (to have the

same feedback overhead Btot = BMt with the other limited
feedback schemes) as a function of the number of quantization
bits per entry, B, in i.i.d. Rayleigh channel realizations. We
also plot JdB

avg for unquantized beamforming, RVQ, PSK-
SVQ in [35], scalar quantization, and the benchmark from
Theorem 1 which is given as Mt

(
1− 2−B

)
(in linear scale).

The performance of RVQ is plotted using the analytical

approximation in (3) as Mt

(
1− 2−

Btot
Mt−1

)
(in linear scale),

because it is computationally infeasible to simulate when the
number of feedback bits grows large. In scalar quantization,
B bits are used to quantize only the phase, not the amplitude,
of each channel entry because the phase is generally more
important than the amplitude in beamforming [42].
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Fig. 11. JdB
avg−delay [d] vs. fading block index k with Mt = 100, d blocks

of feedback delay, and v = 3km/h in temporally correlated channels.

As the number of feedback bits increases, the gap between
the unquantized case and all limited feedback schemes de-
creases as expected. RVQ gives the best performance among
limited feedback schemes with the same number of feedback
bits. However, the difference between JdB

avg for RVQ and vari-
ation of NTCQ is small for all B. The plots of the benchmark
using Theorem 1 well approximate JdB

avg of NTCQ for all B
and Mt, which shows the near-optimality of NTCQ. Note
that variation of NTCQ achieves better JdB

avg than PSK-SVQ
regardless of B and Mt, and the gap becomes larger as Mt

increases. This gap comes from the coding gain of NTCQ. As
shown in Table I, NTCQ can exploit 2B+1 constellation points
while PSK-SVQ only utilizes 2B constellation points with
B bits quantization per entry. The coding gain of variation
of NTCQ is around 0.25 to 1dB depending on Mt and B.
Although we do not plot the performance of QAM-SVQ which
relies on QAM constellations, it has the same structure as
PSK-SVQ meaning that QAM-SVQ roughly experiences the
same performance degradation compared to NTCQ.

B. Temporally Correlated Channels

To simulate the differential feedback schemes with the orig-
inal NTCQ algorithm in temporally correlated channels, we
adopt Jakes’ model [43] to generate the temporal correlation
coefficient η = J0(2πfDτ), where J0(·) is the 0th order
Bessel function of the first kind, fD denotes the maximum
Doppler frequency, and τ denotes the channel instantiation
interval. We assume a carrier frequency of 2.5 GHz and
τ = 5ms. We set the quantization level for the combiners
θ̄ and ᾱ in (13) as 3 bits and 1 bit, respectively, which causes
4 bits of additional feedback overhead.

In Fig. 10, we plot the performance of the proposed
differential NTCQ feedback schemes with the velocity v =
3km/h (η = 0.9881) assuming no feedback delay. The
differential NTCQ schemes, even with 1 bit/entry quantization,
achieve almost the same performance as unquantized beam-
forming regardless of Mt. Thus, if we can adjust the feedback
overhead as a function of time, we can switch from NTCQ
with 2 or 3 bits/entry quantization to 1bit/entry quantization
in differential NTCQ to reduce the overall feedback overhead.
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Fig. 12. JdB
avg vs. λ1 with Mt = 10 in spatially correlated channels.

To see the effect of feedback delay in temporally correlated
channels, we simulate the Mt = 100 case with different
numbers of delay d measured in fading blocks (one fading
block corresponds to 5ms) in Fig. 11 such that

JdB
avg−delay[d] = 10 log10

(
E[|hH [k + d]f [k]|2)]) .

It is shown that the effect of feedback delay is negligible,
i.e., around 0.1dB loss with one additional block delay for
all cases, which confirms the practicality of the differential
NTCQ scheme. Moreover, we can reduce the frequency of
the feedback updates to reduce the total amount of feedback
overhead without significant performance degradation when
the velocity of the receiver is low.

C. Spatially Correlated Channels

To generate spatially correlated channels, we adopt the
Kronecker model for the spatial correlation matrix R which
is given as R = UΣΣΣUH where U and ΣΣΣ are Mt × Mt

eigenvector and diagonal eigenvalue matrices, respectively.
The performance of the adaptive scheme will highly depend
on the amount of spatial correlation. To see the effect of spatial
correlation, we assume the eigenvalue matrix ΣΣΣ has a structure
given by

ΣΣΣ = diag

{
λ1,

Mt − λ1

Mt − 1
, · · · , Mt − λ1

Mt − 1

}

where 1 ≤ λ1 < Mt is the dominant eigenvalue of R. If λ1

is small (large), the channels are loosely (highly) correlated
in spatial domain. Note that channels are i.i.d. when λ1 = 1.

In Fig. 12, and 13, we plot JdB
avg as a function of λ1 for

Mt = 10 and 20 cases. The performance of spatially adaptive
NTCQ become closer to that of unquantized beamforming
as λ1 increases with the same feedback overhead as original
NTCQ. This shows the effectiveness of the proposed adaptive
NTCQ scheme for spatially correlated channels.

VI. CONCLUSIONS

In this paper, we have proposed an efficient channel quanti-
zation method for massive MIMO systems employing limited
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Fig. 13. JdB
avg vs. λ1 with Mt = 20 in spatially correlated channels.

feedback beamforming. While the quantization criterion (max-
imization of beamforming gain or minimization of chordal
distance) is associated with the Grassmann manifold, the key
to the proposed NTCQ approach is to leverage efficient encod-
ing (via the Viterbi algorithm) and codebook design (via TCQ)
in Euclidean space. Efficient encoding relies on the mapping
of quantization on the Grassmann manifold to noncoherent
sequence detection and the near-optimal implementation of
noncoherent detection using a bank of coherent detectors (i.e.,
Euclidean space quantizers). Standard rate-distortion theory
and asymptotic results for RVQ tell us that good Euclidean
codebooks should work well in Grassmannian space. Our
numerical results show that the NTCQ provides better per-
formance than uncoded schemes such as those considered in
[35].

The advantages of NTCQ include flexibility and scalability
in the number of channel coefficients: additional coefficients
can be accommodated simply by increasing the blocklength,
and the encoding complexity is linear in the number of
transmit antennas. It can also be easily modified to take
advantage of channel conditions such as temporal and spatial
correlations. Our numerical results show that these advanced
schemes can improve the performance significantly or reduce
feedback overhead considerably depending on the system
requirement.

While we have developed an efficient channel quantization
method for massive MIMO systems, we note that limitations
on feedback overhead would typically prevent scaling to an
indefinitely large number of antennas. However, the feedback
overhead may be reasonable for the moderately large number
of antennas (32 to 64) expected in initial deployments [30],
and NCTQ represents a computationally efficient approach to
generating such feedback.

Finally, in order to make FDD massive MIMO practical,
it is also crucial to develop scalable sounding schemes for
channel estimation. Current sounding methods that transmit
pilot signals from all transmit antennas using different time
and/or frequency resources are not appropriate for massive
MIMO systems because the pilot signals will dominate the
downlink resources. Initial work on this topic was conducted
in [44] and extended in [45].
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