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Abstract—Distributed transmit beamforming with N cooper-
ating nodes, each with fixed transmit power, provides a received
power scaling with N2, corresponding to a “power pooling” gain
of N and a beamforming gain of N . Prior work has shown
that the optimal beamforming solution can be attained using a
decentralized, iterative algorithm based on one bit (per iteration)
feedback broadcast from the receiver to the transmitters. The
algorithm is provably convergent in a noiseless setting, and is
the basis for several successful prototypes. In this paper, we
develop a framework for providing analytical insight into the
effect of receiver noise, with the following key question in mind:
can we bootstrap the algorithm from the incoherent power-pooled
solution to operate in a regime in which the received SNR per
node can be made arbitrarily small as we scale up the number of
nodes N? Our analytical computations, validated by simulations,
yield a somewhat negative answer: while the power-pooling gain
guarantees a linear increase in received power with N , the per-
node SNR cannot be scaled down with N if we wish to attain a
quadratic increase in received power. Specifically, the fraction of
the ideal beamforming gain attained using the one-bit algorithm
is asymptotically independent of N , and depends only on the per-
node SNR. However, the one-bit algorithm provides significant
performance gains in practical regimes with a moderate number
of cooperating nodes: the per-node SNR required for attaining a
substantial fraction of the beamforming gain is low enough (e.g.,
- 5dB for 65% of the beamforming gain) to provide significant
extension in operation regimes, while providing aggregate SNRs
which permit reliable communication at high spectral efficiency:
for example, starting from -5 dB per-node SNR, we obtain about
11 dB aggregate SNR with 10 cooperating nodes, and 17 dB SNR
with 20 cooperating nodes.

I. INTRODUCTION

Distributed MIMO refers to cooperation between transmit

or receive nodes to organize themselves into virtual antenna

arrays. We consider here the problem of distributed transmit

beamforming, in which N nodes coordinate their transmis-

sions to send a common message to a distant destination. If

the per-node transmit power does not scale down with N , then

the net gain in received power from distributed beamforming

scales as N2: a power pooling gain of N because the virtual

array is sending at N times the power compared to a single

transmitter, and a beamforming gain of N because the signals

from different transmitters combine coherently at the receiver.

Feedback, whether explicit or implicit (e.g., via channel reci-

procity in TDD systems), is crucial for this purpose, since

open-loop beamforming is too sensitive to errors in location

estimates. Furthermore, the cooperating nodes must be tightly

synchronized to achieve coherence at the receiver.

Assuming that implicit feedback using channel reciprocity is

not available (as in an FDD system, for example), the conven-

tional approach for centralized MIMO is to feed back explicit

channel estimates, or cleverly quantized versions thereof, for

each transmit antenna, with the estimates based on pilot signals

sent from each antenna. This approach does not scale well to

distributed MIMO systems with a large number of nodes. An

attractive alternative is decentralized phase adaptation based

on aggregate feedback that does not depend on the indi-

vidual identities of the transmitters. Specifically, an iterative,

decentralized, randomized ascent algorithm based on one bit

feedback (regarding changes in received signal strength per

iteration) is provably convergent [1], and provides the basis

for several prototypes [2], [3] by virtue of its simplicity and

scalability in protocol terms: the receiver is oblivious of the

number and identities of cooperating transmitters. Another

potential advantage of the one bit algorithm is that its initial

condition is the incoherent power pooling solution which

already has an N -fold gain in average received power (of

course, the actual power is subject to fading due to the lack of

coordination of transmit phases). In this paper, we ask whether

these advantages can be translated into “indefinite” scalability

in physical terms: given the N2 scaling of received power

with ideal beamforming, can we reduce the transmit power per

node or increase the range indefinitely, simply by increasing

N? In this paper, we show that, when we take into account

noise at the receiver, the answer is no, at least for the one-bit

algorithm in its present form. Specifically, if we wish to attain

a certain fraction of the ideal beamforming gain (on top of the

power pooling gain), then the per-node SNR must be above

a threshold which does not scale down with N . Fortunately,

however, such thresholds are still low enough that significant

performance gains are obtained in practical regimes of tens of

cooperating nodes.

Approach and contributions: Our starting point is the simple

model and analytical framework developed in [1]. In the one

bit algorithm, each transmitter randomly perturbs its phase at

each iteration, and the receiver broadcasts one bit of feedback

regarding whether the received signal strength (RSS) has

gotten better or worse. If better, then the transmitters keep

their perturbations, and if worse, they undo them. We now
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assume that the received samples are corrupted by complex

WGN, so that the feedback is regarding changes in the

magnitudes of the noisy received samples. This requires a

modification of the feedback generation mechanism, with the

receiver performing noisy RSS comparisons over a window

to avoid deadlocks due to noise. The process is modeled as

a Markov chain, with transition probabilities computed using

joint Gaussian approximations on random variables associated

with the RSS and its one-step evolution. Drift analysis on the

expected RSS based on this framework yields the fraction of

the ideal beamforming gain that the algorithm converges to.

Numerical results from these analytical approximations (based

on asymptotics in N ) match closely with simulations for even

moderately large values of N .

We observe from our analysis that the converged beam-

forming gain monotonically increases with N , the fraction of

the N2-fold gain in received power that is obtained depends

on per-user SNR alone and is independent of N . Thus, the

increased initial power pooling gain at higher N does not

help overcome receiver noise. In essence, this is because

the expected RSS increase in each step due to randomized

phase perturbations (whose optimal variance scales as 1
N )

exhibits constant scaling (independent of N ), and is therefore

comparable to the receiver noise variance. Thus, the effect of

noise cannot be countered by increasing N .

Related Work: While our interest here is in noise at the

receiver, the analysis in this paper is similar to recent work

on analyzing the impact of phase noise on distributed receive

beamforming [4], both building on the original noiseless

analysis in [1]. The problem of synchronization for distributed

MIMO applications has been the subject of many studies. In

WiFi-like systems, TDD-based reciprocity plus coordination

across wired backhauls has been employed for access point

cooperation [5]–[7]. Distributed MIMO in a cellular context

[8] makes heavy use of wired backhaul and explicit feedback.

There are a number of all-wireless DMIMO systems that do

not rely on reciprocity, but use some version of the one-bit

feedback algorithm [3], [9], [10] or per-node feedback [11].

Fig. 1. System model of N transmitters beamforming with feedback broadcast
from the receiver.

II. SYSTEM MODEL

We consider the simplest possible system model to study the

effect of noise on the one bit algorithm. As depicted in Figure

1, N transmitters send a common message to a receiver over

a noisy, flat fading channel, with feedback from the receiver

used by the transmitters to adjust their phases so as to align at

the receiver. We assume that the transmitters are synchronized

in timing and frequency. Ignoring the common message, the

received sample is given by

Zn =

N∑
i=1

aie
j(θi+γi+ψi)

︸ ︷︷ ︸
:=Y

+w̄, (1)

where hi = aie
ψi is the complex gain of the channel seen

by transmitter i,γi is the receiver’s phase offset relative to

transmitter i, θi is the adjustable phase for transmitter i, and

w̄ ∼ CN(0, N0) is the receiver noise. The subscript “n” refers
to the noise corrupting the received sample, and hence the RSS
estimate. The received signal strength (RSS) is given by Yn =
|Zn|. The ideal beamforming solution corresponds to θi =
−(γi +ψi) (modulo any constant phase offset independent of

i), and yields the maximum possible value of noiseless RSS

as Ymax =
∑N

i=1 ai.
It is convenient to express phases taking as reference the

direction of the received sample. Setting φi = θi + γi + ψi −
∠(Zn), we can write

Yn =

∣∣∣∣∣
N∑
i=1

aie
jφi + w

∣∣∣∣∣ , (2)

where w ∼ CN(0, N0): the statistics of the noise are un-

changed under the change of phase reference due to circular

symmetry.

III. THE ONE BIT ALGORITHM

The one bit algorithm is described as follows. The feedback

F (k) broadcast by the receiver at the end of time slot k is

generated by comparing the current RSS with the best RSS

from among the last M iterations, as follows.

F (k) =

{
1 Yn(k) > Yn,best(k)
0 Yn(k) < Yn,best(k)

, (3)

where

Yn,best(k) = max
k−M≤t<k

Yn(t)

Each transmitter updates its phase according to the feedback

from receiver as follows.

θi(k + 1) =

{
θi(k) F (k) = 0
θi(k) + δi F (k) = 1

. (4)

The one bit algorithm originally analyzed in a noiseless

setting in [1] considers M = ∞ (i.e., the current RSS

is compared against the best RSS seen so far). This can

be problematic in our noisy setting if the receiver observes

a noisy RSS value that is higher than the noiseless RSS
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Fig. 2. Effect of random phase perturbations on the total received signal

from the current set of beamforming phases alone. This can

cause the algorithm to get stuck, with actual improvements in

beamformed RSS going unnoticed unless the improvement is

higher than the deviation due to noise. We therefore require a

windowing mechanism to enable forgetting such outliers due

to noise.

A. Performance Analysis

Our goal is to characterize the progression of the RSS in a

noisy setting, and to estimate the value at which it saturates.

We do this by estimating the expected change, or drift, in RSS

over a single iteration, and finding the point at which this drift

becomes zero. We model algorithm dynamics associated with

windowing as a Markov chain, depicted in Fig. 3 and discussed

in more detail later, with the state at time t equal to Si if the

maximum RSS over the current window was observed at time

t− i. The transition probabilities for this Markov chain model

depend on the statistics of the noisy and noiseless RSS before

and after phase perturbations over one step of the algorithm,

and are characterized using jointly Gaussian approximations

(which are found to be accurate even for moderately large N ).

Consider the noisy and noiseless RSS values at a given

iteration k (suppressed from the notation). Assuming channel

gains ai = 1 for simplicity, define the noiseless and noisy

normalized RSS values (normalized by the maximum value

of N ) before phase perturbation as

y =
1

N
Y =

1

N
|

N∑
i=1

ejφi |

yn =
1

N
Yn =

1

N
|

N∑
i=1

ejφi + w1|

The corresponding noiseless and noisy normalized RSS values

after random phase perturbations are applied at transmitters are

given by

yδ =
1

N
|

N∑
i=1

ej(φi+δi)|

yδn =
1

N
|

N∑
i=1

ej(φi+δi) + w2|,
(5)

where w1, w2 are i.i.d. CN(0, N0), and {δi} are i.i.d. (distri-

bution specified later).

Following the approach in [1], conditioned on the normal-

ized noiseless RSS y prior to phase perturbation, the evolution

of normalized RSS is illustrated in Fig. 2. For large N ,

application of the central limit theorem allows us to model

the real and imaginary parts of the increments as independent

Gaussian. Furthermore, the imaginary part of the increment

(orthogonal to the current direction of the received sample)

can be neglected, yielding the approximation [1]

yδ ≈ χδy + xR,δ (6)

where χδ = E[cosδi] and xR,δ ∼ N(0, σ2
δ ) with variance

σ2
δ =

1− χ2
δ − ρδκ(y)

2N
(7)

where

ρδ = χ2
δ − E[cos(2δi)], κ(y) =

I2(m)

I0(m)

and m is derived from

y =
I1(m)

I0(m)

where I is the modified Bessel function of the first kind.

It now becomes possible to approximate the noisy RSS

simply by adding the real part of the noise sample to the

noiseless RSS:

yn ≈ y + wR,1

yδn ≈ χδy + xR,δ + wR,2

(8)

where wR,1 wR,2 are the real parts of w1/N and w2/N , and

are therefore modeled as i.i.d. N(0, σ2
n), with variance σ2

n =
N0

2N2 .

The receiver knows the one-step change in the noisy RSS,

given by U � yδn − yn, whereas we would like to make

decisions based on the one-step change in the noiseless RSS,

given by V � yδ − y. Under our approximations (6) and (8),

U and V are jointly Gaussian:

[
U
V

]
∼ N

([
(χδ − 1)y
(χδ − 1)y

] [
σ2
δ + 2σ2

n σ2
δ

σ2
δ σ2

δ

])
. (9)

As described shortly, we use such joint Gaussian approxima-

tions to compute the transition probabilities for the Markov

chain modeling the algorithm dynamics.

Note that, in [1] it has been shown that the optimal

choice for δi is a distribution with variance scaling as 1/N .

Thus, we choose phase rotations from uniform distribution

δi ∼ U(−c/√N, c/
√
N ], where c is a constant chosen based

on simulation. This is easily seen to imply that σ2
δ ∼ 1

N2 ,

which is the same scaling as the noise variance σ2
n. Thus the

entries of the covariance matrix in (9) scale with 1/N2, with

the relative strengths of the phase perturbation and noise terms

being independent of N .

B. Performance Analysis with RSS Memory

In order to compute expected value of the RSS drift given

noiseless RSS value y, we make the simplifying assumption

that RSS drift at iteration k is statistically independent of

the feedback before k − M .The RSS drift at the kth step
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Fig. 3. Markov chain

conditioned on current state Sm and noiseless RSS value y
with memory size M can be written as

Drift(RSSk|Sm, y) = E[Vk| feedback since k −m, y].

The total RSS drift with memory size M can be computed as

Drift(RSSk|y) =
M∑

m=1

P(Sm|y) · Drift(RSSk|Sm, y). (10)

The conditional drift in (10) can be expressed as:

Drift(RSSk|Sm, y) =

P(Uk > 0|Sm)Drift(RSSk|Sm, Uk > 0, y)

+P(Uk < 0|Sm)Drift(RSSk|Sm, Uk < 0, y).

(11)

We model the progress of the algorithm with the Markov

chain shown in Fig. 3. A positive feedback causes a transition

to S1 from any state. Negative feedback causes a transition

from Si to Si+1, except when the final state is SM . When

we get negative feedback in state SM , we assume that we

transition to any of the M states with equal probability. The

state transition probability matrix can therefore be written as

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

p1 1− p1 0 · · · 0
p2 0 1− p2 · · · 0
...

... 0
. . .

...

pM−1 0
. . . 0 1− pM−1

pM + 1−pM

M
1−pM

M · · · 1−pM

M
1−pM

M

⎤
⎥⎥⎥⎥⎥⎥⎦

The state transition probabilities pm are the probabilities of

having positive feedback when the algorithm is in state Sm

and can be defined as

pm =P(Uk > 0|Sm, y)

=P(Uk > 0|Uk−1 < 0, ..., Uk−m+1 < 0, y)
(12)

which can be computed from multivariate Gaussian random

vector [Uk, Uk−1, ..., Uk−m+1]
T .

We define the probability of the algorithm being in state m
conditioned on noiseless RSS value y as P(Sm|y). The steady

state stationary distribution of the Markov chain is computed

as the left eigenvector of P corresponding to eigenvalue of 1.

The positive feedback drift term in equation (11) is com-

puted as

Drift(RSSk|Sm, Uk > 0, y))

=E(Vk|Uk > 0, Uk−1 < 0, ..., Uk−m+1 < 0, y).
(13)

Fig. 4. 2D histogram of noiseless versus noisy RSS increments (N = 100
transmitters and window size M = 4) compared against the analytical joint
Gaussian distribution.

where we compute this expectation from the multivariate

Gaussian distribution [Vk, Uk, Uk−1, ..., Uk−m+1].
The negative feedback drift term in equation (11) is 0 except

when the algorithm is in state M since phase rotations δi are

discarded as receiver broadcasts a negative feedback. When

the algorithm is in state M and negative feedback is received

then a new RSS value is considered in the next iteration. RSS

drift for state M can be expressed as

Drift(RSSk|SM , Uk > 0, y)) = P[max noisy RSS at k − r]

×E[Vk−r|Uk−r < 0, {Ui < Uk−r},∀i �=(k−r),i>k−M ]

=E(Vk|Uk < 0, Uk−1 < Uk, ..., Uk−M+1 < Uk, y).
(14)

where we compute this expectation from multivariate Gaus-

sian vector [Vk, Uk, Uk−1, ..., Uk−M+1]
T using Monte Carlo

integration.

The total expected RSS drift is computed by combining

(10) and (11) where we use our computed values for state

probabilities, state transition probabilities and expected drift

values for a given state. We estimate the steady state value of

the noiseless normalized RSS y as the value corresponding to

the zero crossing point of expected RSS drift conditioned on

y.

IV. NUMERICAL RESULTS

In this section, we present simulation results for our pro-

posed architecture and compare them with our analytical

approximations.

Fig. 4 shows that the simulated histogram of (U, V ) corre-

sponds closely to our joint Gaussian analytical approximation.

As SNR decreases, the correlation of U and V decreases,

and hence the probabilities of the receiver broadcasting the

correct decision (P [U > 0|V > 0, y] and P [U < 0|V < 0, y])
approach 1/2 (if U becomes conditionally independent of V ,

then these approach P [U > 0|y] = P [U < 0|y] = 1
2 .

Analytical computations for expected drift in different noise

settings are plotted in Fig. 5. We see that the algorithm’s

progress is faster when the normalized RSS y is smaller, and

that the steady state corresponding to the zero crossing values

get worse as per-node SNR degrades.
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Fig. 5. Theoretical values of RSS drifts with window size M = 4 and for
N = 100 transmitters in different noise levels
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Fig. 6. Simulated normalized RSS values vs SNR for different number of
transmitters, RSS memory size M = 4 and random phase rotations δi ∼
U(−Δ,Δ)

Fig. 6 shows simulation results for the normalized RSS

values vs per-node SNR. These are “steady state” values ob-

tained after 100N iterations, averaged over multiple runs, for

different number of transmitters N . Random phase rotations

are generated from uniform distribution δi ∼ U(−Δ,Δ) where

Δ = 100/
√
N . We observe that the normalized steady state

RSS values from simulations match with the corresponding

zero crossing values of expected RSS drift in Fig. 5. The match

between our analytical results and simulations does degrade

slightly at lower SNR: the analytical results are pessimistic.

However, the insensitivity of the steady state normalized RSS

to N is indeed as predicted by the analysis.

V. CONCLUSION

We have shown that, when we account for receiver noise,

the one bit feedback algorithm does not scale indefinitely,

in that the fraction of the ideal beamforming gain attained

depends on per-node SNR, and does not improve with N .

As we increase N , starting with a power pooling gain can

certainly help enhance the reliability of communication right

from the beginning of the process relative to a single node, but

normalized progress towards the beamforming solution does

not improve with N . This is because the progress in RSS

over a step of the algorithm scales in the same manner as

receiver noise, as shown by the covariance computations under

our joint Gaussian approximations. We do note, however,

the overall received SNR does improve monotonically with

N , and in practical regimes of tens of cooperating nodes,

significant performance gains (e.g., in terms of range extension

while maintaining a reliable, spectrally efficient, link) can be

obtained. It remains an open question as to whether there

exist aggregate feedback algorithms, or hybrids of per-node

and aggregate feedback, that can overcome the bottleneck

identified in this paper.
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