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Abstract—We propose a fast sequential algorithm for the fun-
damental problem of estimating continuous-valued frequencies
and amplitudes using samples of a noisy mixture of sinusoids.
Each step consists of two phases: detection of a new sinusoid,
and refining the parameters of already detected sinusoids. The
detection phase is performed on an oversampled DFT grid, while
the refinement phase enables continuous-valued estimation, thus
avoiding basis mismatch. By benchmarking against the Cramér
Rao Bound, we show that the proposed algorithm achieves near-
optimal performance under a variety of settings. We also compare
our algorithm with the classical MUSIC, and more recent Lasso
algorithms in terms of estimation accuracy and computational
complexity.

I. INTRODUCTION

Frequency estimation for a mixture of sinusoids in AWGN
is a fundamental problem that arises in a variety of com-
munication and radar applications, including estimation of
spatial channels (e.g., for phased arrays), temporal multipath
channels (e.g., for equalization), and spatiotemporal channels
(e.g., range and direction of arrival estimation for a target).

In this paper, we propose an algorithm to estimate fre-
quencies from N equi-spaced noisy samples in time, de-
noted by y ∈ CN . We denote the unit norm sinusoid
[1 ejω · · · ej(N−1)ω]T /

√
N of frequency ω by x(ω). The

signal is a mixture of K sinusoids:

y =

K∑
l=1

glx(ωl) + z, z ∼ CN
(
0, σ2IN

)
, (1)

where gl ∈ C are the unknown complex gains. The signal
to noise ratio for lth sinusoid is given by SNRl = |gl|2/σ2.
The goal of the algorithm is to provide reliable estimates of
{(gl, ωl) : l = 1, 2, . . . ,K} and K, the number of sinusoids
in the mixture.

The preceding model and its variants have many applica-
tions. For a linear array with N elements with inter-element
spacing d, the response corresponding to angle of arrival or
departure θ relative to broadside is given by x(ω), where
ω = 2π(d/λ) sin(θ) is the spatial frequency corresponding
to θ, and λ denotes the carrier wavelength. For estimation
of a multipath channel h(t) =

∑K
l=1 glδ(t − τl) (e.g., for

communication, or for determining target ranges in radar), the
channel transfer function H(f) =

∑K
l=1 gle

−j2πfτl . It is easy
to see that sampling uniformly in the frequency domain with
spacing ∆f yields a mixture of sinusoids with ωl = −2π∆fτl,
reducing the problem of estimating delays to that of frequency
estimation.

Contributions: Our key contributions are as follows:
(1) We propose a low-complexity sequential algorithm which
employs a version of matching pursuit [1] for coarse detection
on a grid, followed by Newton refinements, with the second
phase being crucial for avoiding basis mismatch [2] and
obtaining accuracies far better than would be possible by
optimizing over a discrete grid. We do not require explicit es-
timates of model order, and provide a stopping criterion based
on CFAR (constant false alarm rate). A freely downloadable
software package implementing the proposed algorithm can be
found in [20].
(2) We show that the algorithm is near-optimal by numerical
comparisons against the Cramér Rao Bound (CRB) [19] in
a variety of settings. Our numerical evaluations show that the
proposed algorithm significantly outperforms classical MUSIC
[3]. They also show that it outperforms recent sparse convex
optimization techniques, with the gains (in terms of both mean
squared error and computational complexity) becoming larger
when the estimation problem is “more difficult.”
Related work: Estimation of continuous-valued frequencies is
a fundamental problem in statistical signal processing. Classi-
cal spectral methods such as MUSIC and ESPRIT algorithms
[3], [4] exploit low-rank structure of the autocorrelation matrix
to estimate the underlying signal subspace. While these meth-
ods are widely used, they perform poorly in noisy settings,
and their performance is sensitive to model order estimation.
Another family of classical methods are DFT-based methods
[5], [6], which typically have lower computational complexity
and similar level of estimation accuracy compared to subspace
methods [6], [7]. The proposed algorithm handily outperforms
such classical techniques in terms of estimation accuracy.

More recent techniques using convex optimization cast the
frequency estimation problem as finding a sparse approxi-
mation for the received signal using an infinite-dimensional
dictionary of sinusoids. It is shown in [8] that, in the absence
of noise, total-variation norm is able to locate frequencies
with infinite precision, as long as the minimum frequency
separation exceeds 4×∆dft were ∆dft = 2π/N . The required
minimum separation has been improved to 2.52×∆dft in [9].
An extension to noisy scenarios is provided in [10]. Another
approach is atomic norm denoising [11], [12], which provides
theoretical guarantees of noise robustness in terms of mean
squared error (MSE). Both total-variation norm and atomic
norm are generalization of `1 norm to infinite-dimensional
settings. While they outperform classical techniques in terms



of accuracy, their computational complexity is prohibitive for
most applications, especially when the number of observations
gets large. A pragmatic approach is to use Lasso optimization
on a highly oversampled grid as an approximation for atomic
norm denoising [11], and this is what we compare our pro-
posed algorithm against in our numerical experiments.

The proposed sequential algorithm builds on the idea of
coarse detection followed by Newton refinement first used in
prior works on frequency estimation [13] and estimation of a
single delay [14]. We have used similar sequential algorithms
for spatial channel estimation with compressive measurements
for millimeter wave communication [15], [16]. In the present
paper, we provide the version of such algorithms which we
have found to acheive near-optimal performance, together with
a principled stopping criterion based on CFAR. Given the
fundamental nature and widespread utility of the frequency
estimation problem, our goal here is to present what we
believe is the state of the art algorithm within an application-
independent abstraction.
Outline: We explain the details of our algorithm in Section II.
Simulation results are presented in Section III, and conclusions
in Section IV.
Notation: abs{v} denotes the absolute value of the elements
of vector v. Complex conjugate transpose of v is denoted by
vH . <{a} is the real part of complex number a. The DFT
matrix with unit norm columns and the corresponding grid
spacing are denoted by F and ∆dft, respectively.

II. ALGORITHM

We first discuss the estimation of a single sinusoid, and
then build upon it to generalize to a mixture of sinusoids.
Single Frequency: We have y = gx(ω) + z. The Maximum
Likelihood (ML) estimate of the gain and frequency are
obtained by maximizing the function

S(g, ω) = <{yHgx(ω)} − 0.5|g|2||x(ω)||2. (2)

Directly optimizing S(g, ω) over all gains and frequencies
is difficult. Therefore, we adopt a two stage procedure: (1)
Detection stage, where we find a coarse estimate of ω by
restricting the frequencies to a discrete set, (2) Refinement
stage, in which we iteratively refine gain and frequency
estimates.

For any given ω, the gain that maximizes S(g, ω) is given
by ĝ = (x(ω)Hy)/||x(ω)||2. Substituting ĝ in S(g, ω) give
us the generalized likelihood ratio test (GLRT) estimate of ω
(treating g as a nuisance parameter), as the solution to the
following optimization problem

ω̂ = arg max
ω
|x(ω)H y|2

/
‖x(ω)‖2 . (3)

We use this observation to find a coarse estimate of (g, ω) in
the Detection stage.

Detection: We obtain a coarse estimate of ω by
restricting the frequencies to a finite discrete set denoted
by Ω , {k(2π/γN) : k = 0, 1, . . . , (γN − 1)}, where γ is

the over-sampling factor relative to the DFT grid. For our
simulation results, we set γ = 4. The outputs of this stage
are ωc ∈ Ω that maximizes the GLRT cost function (3), and
the corresponding gain (x(ωc)

Hy)/||x(ωc)||2.

Refinement: Since true frequencies can take any value in
interval [0, 2π), we add a Newton-based refinement stage for
estimation on the continuum. Let (ĝn, ω̂n) denote the estimates
after n rounds of refinement. The Newton step is given by

ω̂n+1 = ω̂n − Ṡ(ĝn, ω̂n)/S̈(ĝn, ω̂n) (4)

where

Ṡ(g, ω) = <{(y − gx(ω))Hg(dx(ω)/dω)} (5)
S̈(g, ω) = <{(y − gx(ω))Hg(d2x(ω)/dω2)} (6)

−|g|2||(dx(ω)/dω)||2.

The gain update for the new frequency value is given by
ĝn+1 = (x(ωn+1)Hy)/||x(ωn+1)||2. We perform multiple
such refinement steps.
Refinement acceptance condition: We accept a refinement
only if it leads to a decrease in the overall residual energy. This
is a sufficient condition for the convergence of the proposed
sequential algorithm.
Multiple Frequencies: Let Pm = {(gl, ωl) , l = 1, . . . ,m}
denote the set of estimates of the parameters of the sinusoids
in the mixture. Let

yr(Pm) = y −
l=m∑
l=1

glx(ωl) (7)

denote the residual measurement corresponding to this esti-
mate. The following procedure is a direct generalization of the
single sinusoid estimation algorithm to multiple frequencies.

1: Procedure EXTRACTSPECTRUM(y, τ ):
2: m← 0, P0 = {}

3: while max{abs{Fyr(Pm)}} >
√
τ do

4: m← m+ 1
5: Find ω̂ = arg maxω∈Ω

∣∣(x(ω)Hyr (Pm−1)
)∣∣2/‖x(ω)‖2

6: Compute corresponding gain
ĝ ←

(
x(ω̂)Hyr (Pm−1)

)/
‖x(ω̂)‖2

7: Pm ← Pm−1 ∪ {(ĝ, ω̂)}
8: Refine parameters in Pm one at a time:

For each (ĝl, ω̂l) ∈ Pm we treat yr(Pm \ {(ĝl, ω̂l)}) as
the measurement y, and apply single frequency Newton
update algorithm.

9: return Pm

Stopping Criterion: The stopping point of the algorithm is
determined by the maximum of the absolute value of the
residual signal in the DFT domain. This is a natural conse-
quence of the proposed iterative algorithm: at the detection
stage we are correlating the residual signal with normalized



x(ω), which is equal to the output of the DFT operator for
ω = k(2π/N), for k ∈ Z. If all existing sinusoids have
already been detected and subtracted out from y, then the
residual is yr ≈ z. Therefore, z̃ = Fyr ∼ CN (0, σ2IN ).
Next we use the simple observation that for w ∼ CN (0, σ2),
we have |w|2 ∼ exp(1/σ2) and E[|w|2] = σ2. For noise-
only observations, the maximum magnitude squared of the
DFT (not considering oversampling) is given by MN ,
max{wi : i = 1, 2, . . . , N}, where wi’s are iid exponential
random variables with mean σ2. We can now set a stopping
criterion such that Pr {MN > τ} ≤ p0, where p0 is a
nominal false alarm rate. This can be explicitly computed,
since Pr {MN > τ} = 1−

(
1− exp

(
−τ
/
σ2
))N

, which gives
τ = log 1

1−(1−p)1/N . However, a more transparent expression
can be obtained by considering asymptotics for large N (which
provide excellent approximations for even the moderate values
of N considered in our numerical results). Specifically, we
have E[MN ] = σ2

∑N
k=1

1
k ≈ σ2 logN , and the asymptotic

distribution of E ,MN − σ2 logN is given by

Pr{E ≤ x} = exp(− exp(−x/σ2)). (8)

We can now set τ = σ2 log(N)+e0, where Pr {E > e0} = p0.
This gives

e0 = −σ2 log log (1/(1− p0)) . (9)

and
τ = σ2 log(N)− σ2 log log (1/(1− p0)) . (10)

Thus, we terminate the algorithm whenever the magnitude of
the residual in the DFT domain is smaller than

√
τ . In our

simulation results, we have found that setting the nominal false
alarm rate to p0 = 10−2 works very well in both low and high
SNR regimes.

III. SIMULATION RESULTS

Our performance measure is the mean squared error (MSE)
of frequency estimation, and we compare the performance of
our algorithm against a number of benchmarks in a variety of
settings.
Benchmarks: The MUSIC algorithm is implemented using
the MATLAB routine “rootmusic”. This method needs
an initial estimate of the number of the sinusoids in the
observation. In order to give it the best chance of success,
we provide the true value of K as the input to the MUSIC
algorithm. For sparse convex optimization, we consider Lasso
on an oversampled frequency grid [11], using the highly
optimized `2 − `1 software package SpaRSA [18]. We set
the tolerance parameter to be 10−4 (other than that, we use
the default parameters). The regularization parameter in Lasso
formulation, suggested in [11], is set to

reg = σ

(
1 +

1

log(N)

)√
log(N) + log(4π log(N)).

The oversampling factor for the Lasso solver and for the
proposed sequential algorithm are set to 10 and 4, respectively.

Minimum Frequency Separation: When two frequencies,
say ω1 and ω2 come “very close”, intuitively, the mixture
g1x(ω1) + g2x(ω2) is explained “very well” by a single
frequency, say as (g1 + g2)x(ω1). Thus, a natural metric
to characterize regimes for testing algorithms for mixture
frequency estimation is the minimum frequency separation
between any two sinusoids. We denote this by ∆ωmin =
mink 6=l dist(ωk, ωl), where

dist(ωk, ωl) , min
a∈Z
|ωk − ωl + 2πa|.

We would like our algorithms to work well even for small
values of ∆ωmin.
Simulation set-up: We consider a mixture of K = 16
sinusoids of length N = 256. We perform 300 simulation
runs for each of three scenarios characterized by ∆ωmin

and SNR values. The settings for different scenarios are
summarized in Table I.

Scenarios SNR (dB) ∆ωmin/∆dft
1 25 2.5
2 25 0.5
3 Uniform[15, 35] 0.5

TABLE I: Settings of different Scenario

For Scenarios 1 and 2, the SNR for each sinusoid is set as
25 dB, whereas for Scenarios 3 the SNR values are chosen
uniformly from [15, 35] dB, with mean equal to the nominal
SNR of 25 dB. In each simulation run, the gain magnitudes
are set to |gl| = σ

√
SNRl, while the phases ∠gl are chosen

uniformly from [0, 2π). The frequencies are chosen uniformly
at random from [0, 2π) while respecting the minimum separa-
tion constraints specified by ∆ωmin (if the minimum separation
criterion is not met, we sample again from [0, 2π)K). The
number of refinement steps for the sequential algorithm is
set to 8. We plot the complementary CDF of the MSE for
all algorithms, along with the CRB (also a random variable,
since it differs across realizations), and also compare against
the DFT spacing, which is the resolution provided by coarse
peak picking.

In all three scenarios, the proposed sequential algorithm out-
performs both Lasso and MUSIC in terms of frequency MSE.
In fact, the algorithm is nearly optimal and closely follows the
CRB in all settings. Table II summarizes the time needed for
running 300 simulations for each of the algorithms in different
scenarios. We see that MUSIC algorithm is extremely fast but
does not provide enough estimation accuracy. On the other
hand, as we increase the difficulty of the estimation scenario,
Lasso tends to take more time, while the sequential algorithm
is unaffected.

Time [sec] Sequential Lasso MUSIC
Scenario 1 30.90 37.78 3.26
Scenario 2 31.09 37.95 3.27
Scenario 3 30.91 49.39 3.36

TABLE II: Time [sec] for 300 runs of each algorithm
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Fig. 1: CCDF of the frequency MSE for Scenario 1.
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Fig. 2: CCDF of the frequency MSE for Scenario 2.
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Fig. 3: CCDF of the frequency MSE for Scenario 3.

It is also interesting to see the effect of increasing the
oversampling factor for Lasso on the estimation accuracy and
computational complexity. Fig. 4 corresponds to Scenario 1,
when the oversampling factor for Lasso is increased to 20 (that
of our sequential algorithm remains at 4). We observe that
sequential algorithm is still better in terms of MSE, while the
computation time for Lasso increases significantly (to about
89.60 seconds for 300 runs).
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Fig. 4: CCDF of the frequency MSE for Scenario 1 and highly
over-sampled grid for Lasso (γ = 20).

IV. CONCLUSIONS

We have presented a fast, near-optimal algorithm for the
fundamental problem of line spectral estimation. The algo-
rithm has a natural “decision feedback” interpretation, while
providing MSE performance far superior to classical methods
such as MUSIC, somewhat superior to Lasso techniques, and
approaching fundamental estimation-theoretic bounds. The
complexity of the proposed algorithm is smaller than that
even highly optimized implementations of Lasso, especially
as the setting for estimation becomes more challenging. We
note that our sequential detection plus refinement approach
is compatible with compressive measurements, as illustrated
by earlier versions of the algorithm applied for compressive
spatial channel estimation [15], [16], as well as according to
a general theory of compressive estimation [17].

There are a number of topics for future work. While our
stopping criterion is based on a nominal false alarm probabil-
ity, the actual false alarm and miss probabilities are sensitive
to the definition of detecting a frequency (i.e., the size of the
bin around a true frequency that is considered adequate), and
further study is needed to characterize ROCs.
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