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Abstract

Imaging Sensor Nets:
Scalable architectures for data collection and localization in sensor

networks

Bharath Ananthasubramaniam

We present imaging sensor nets that provide scalable architectures by moving

the complexity from the sensor, which plays the role of pixels, to the collec-

tors. This analogy to imaging addresses the key issues of data collection and

localization in large-scale randomly deployed sensor networks; in such networks,

conventional multihop relay to extract the data is often inapplicable and sensor

geolocation capability is expensive. The sensors can be made extremely “dumb”

and low-cost with minimum functionality (no geolocation and networking). In one

instance of an imaging sensor net, a sophisticated airborne collector node queries

the sensor field with a radio frequency beacon. Sensors electronically reflect the

beacon adding low-rate data, thus, creating a virtual radar geometry, which pro-

vides fine-grained localization, and conveying data to the collector. We show that

these reflecting sensors can be located using a Synthetic Aperture Radar-like two

dimensional matched filtering algorithm and its decision-directed extensions.

This concept is translated into a millimeter-wave prototype, where a stationary

collector sweeps a sensor field with a spread-spectrum beacon that is reflected

by an RFID-like sensor after imposing data on it. The collector is built from

viii



off-the-shelf components and the semi-passive sensors are implemented on low-

cost printed circuit boards. We develop low-complexity algorithms for collector

baseband processing to demodulate the data and locate the sensor. Preliminary

experimental results demonstrate the feasibility of our approach and ability to

support data rates up to 100 kbps, while providing a few centimeters location

accuracy.

We investigate source localization based on angle of arrival (AoA) measure-

ments at a geographically dispersed network of collectors in real-world propaga-

tion environments. Accordingly, a sequential localization algorithm capable of

suppressing the outlying AoA measurements due to multipath is presented. This

algorithm achieves close to optimal performance at a complexity that is linear

in the number of measurements. A possible application of this algorithm is in

another instance of an imaging sensor net, where the sensor transmits its data

without prior coordination with a network of collectors that are responsible for

locating the sensor and decoding the data.
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Chapter 1

Introduction

The whole is greater than the sum of its parts. The part is greater than
its role in the whole.

Tom Atlee

A sensor network is a collection of devices with limited sensing, computa-

tional and communication capability that collaborate to observe the environment

in which they are placed[1]. Such networks find application in a wide variety

of areas such as habitat monitoring[2], meteorological and geophysical studies[3],

inventory management, smart homes[4], surveillance, vehicle tracking, early alert

systems[5] for fire or earthquake emergencies, to name only a few. The appeal

of these networks lies in their ability to pervasively sense and monitor desired

phenomena across a range of spatial and temporal scales using an assortment of

sensing modalities[6]. These networks are a natural outcome of the recent explo-

sion in wireless devices, along with the trend of miniaturization and functional

integration. Moreover, as the ability to measure or sense is an essential com-

ponent of most engineering systems, there are abundant future applications for

sensor networks.
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Chapter 1. Introduction

Very large-scale sensor networks arise naturally when low-cost microsensors

with small sensing range are used to provide coverage of a large area. Such

networks have a number of important applications, including border policing,

monitoring for biological or chemical agents over large urban areas, and even in-

terplanetary exploration. The ability to randomly deploy large numbers (hundred

to thousands) of sensors and operate them remotely (e.g., deployment and sub-

sequent monitoring from either aircraft or spacecraft) is key to their utility and

poses important challenges to the design of these networks. The extraction of data

from the network of sensors is a significant bottleneck, since communication is the

most energy-consuming sensor operation. Energy is at a premium, as the sensors

are expected to operate self-sufficiently for an extended period of time after de-

ployment, without intervention. Since the locations where the measurements were

gathered is an integral part of the data and the locations of randomly-deployed

sensors cannot be known a priori, localization of the sensors becomes vital.

The conventional approach of multihop forwarding of data through the sensor

network to a collection node is often ineffective in scenarios where the collector

node is remotely located. For example, in applications in which a distant sensor

field is monitored by an aircraft, low-earth orbit satellites or stationary monitor-

ing facilities, multihop relay does not significantly reduce distance to the collector.

Furthermore, multihop networking does not, in general, scale well with the size

of the network as demonstrated by the pioneering work of Gupta and Kumar[7]

and subsequent analyses of the capacity of wireless networks[8, 9, 10, 11], with

2



Chapter 1. Introduction

the throughput per node going to zero as the network size increases. In such

multihop networks, sensors need to be equipped with a networking stack and run

protocols for inter-sensor networking, while incurring the additional overhead for

addressing and routing. Moreover, multihop communication might not always be

the most energy-efficient method of data extraction from the sensor network[12].

Traditional localization solutions such as GPS[13] are expensive or might be un-

available due to jamming, and algorithms for sensor self-localization require added

functionality such as signal strength indicators or multiple antennas to compute

inter-sensor distances.

In this dissertation, we propose novel architectures to simultaneously address

the requirements of scale, localization and data collection in such randomly de-

ployed large-scale sensor networks. To this end, we draw inspiration from imaging

(ranging from passive optical to active radar) to develop a class of Imaging Sensor

Nets, interpreting sensors as pixels imaged by a sophisticated collector node. The

number of “pixels” in the image can be scaled to millions and is limited only by

the signal-to-noise ratio (SNR) and capability (e.g., aperture size) of the collec-

tor. Although conventional imaging is confined to phenomena with characteristic

electromagnetic signatures, sensors can be used as transducers to translate ar-

bitrary phenomena into data than can be recovered using radio-frequency (RF)

techniques. Further, the location of a “pixel” in an image of the sensor field is eas-

ily recovered, given knowledge of the location and orientation of the sophisticated

imaging node.

3



Chapter 1. Introduction

(a) Collector-driven System
Collector

Collector

Collector

(b) Sensor-driven System

Figure 1.1: Examples of Imaging Sensor Net architectures

We now present two complementary instances of Imaging Sensor Nets that are

akin to synthetic aperture radar (SAR)[14] imaging and radio interferometry[15],

respectively:

1. An airborne collector initiates communication by illuminating a part of the

sensor field with an RF beacon, as shown in Figure 1.1(a). Sensors il-

luminated by the beacon and with data to send electronically reflect the

beacon and modulate it with local data, resulting in a virtual radar geome-

try. Multiple overlapping illuminations of the sensor field called ‘snapshots’

are jointly processed by the collector using radar and imaging techniques

to achieve fine-grained localization of the reflecting sensor, and multiuser

demodulation algorithms are used to recover the sensor data. Although a

single collector is sufficient, localization and demodulation gains can be had

with multiple collectors. A key feature of this architecture is that the data

4



Chapter 1. Introduction

collection is collector-driven, having serious implications on data storage and

representation, and latency in data recovery.

2. The sensor-driven paradigm, on the other hand, offers a complementary

approach to data collection. In a sensor-driven network (see Figure 1.1(b)),

the sensor transmits data as soon as it observes an ‘interesting’ event with-

out prior coordination with a geographically dispersed network of collectors

that constantly monitor for sensor transmissions. The onus is on the net-

work of collectors to cooperatively detect, demodulate and locate the sensor

transmission. Due to the absence of a virtual radar geometry, multiple col-

lectors are necessary to locate the sensor and are not just a performance

enhancing feature as in the collector-driven system.

These asymmetric system architectures allow drastic reduction in the sensor node

functionality by moving the complexity to the collector nodes. The sensors can

be “dumb” without incurring additional functional overhead for inter-sensor net-

working and geolocation. Since this functional reduction helps pare down the

data sent by the sensor to a bare minimum, link-budgets to communicate over

long distances (upto 200 km for a satellite-based collector) are feasible even with

severely energy constrained nodes.

5



Chapter 1. Introduction

1.1 Dissertation Overview

In this dissertation, we restrict our attention to the design of the communica-

tion link between the sensors and collector(s) for data collection and localization in

these large-scale imaging sensor nets. The detailed design of sensing systems that

utilize these architectures are not addressed here, but some key issues involved

are highlighted in the conclusions (Section 5).

We first focus on the fundamental localization capabilities of a collector-driven

network monitored by an airborne collector. Consequently, we consider an ideal-

ized sensor communication model, where the sensor transmits one bit using on-off

signaling, which is applicable even if the sensor modulates low-rate data. The

sensors are either active and reflect the collector’s beacon, or inactive and do not.

The standard SAR algorithm applied to this system performs poorly due to the

lack of phase synchronization between the collector and sensor.

Hence, we develop a ML localization algorithm for a single active sensor and

show that it is a modification of standard SAR processing. ML localization reduces

to two-dimensional matched filtering across time and across multiple snapshots.

Since the ML estimator for multiple active sensors is computationally intractable,

we resort to a decision-directed approach to sequentially locate all the active

sensors. The noise-limited performance of these algorithms compares well with

the Cramer Rao bound and the localization resolution scales with the SNR at

the receiver, the bandwidth of the beacon, and the spatial sampling rate of the

6



Chapter 1. Introduction

collector. In dense deployments with inter-sensor interference, the ability to locate

at least one sensor is each cluster of active sensors is demonstrated.

We, next, describe a millimeter-wave prototype based on this collector-driven

architecture, in which a stationary collector sweeps the sensor field with a me-

chanically steered antenna. The collector transmits a periodic spread-spectrum

(SS) location code that is reflected by a semi-passive sensor after low-rate mod-

ulation and frequency translation to avoid backscatter. The collector is built

using off-the-shelf components consisting of a brassboard collector and low-cost

printed circuit board (PCB) semi-passive sensors (similar to Radio Frequency

identification (RFID) tags[16]). This prototype is currently under development in

collaboration with our colleagues Munkyo Seo and his advisor Prof. Mark Rodwell

in electronics at UCSB.

Using the insights gained from the idealized model, we develop a low-complexity

algorithm for processing the prototype collector baseband outputs to demodulate

the sensor data and locate the sensor. We report on preliminary experiments

characterizing the data demodulation and range estimation performance of the

prototype, and demonstrate the capability of this architecture to provide good lo-

calization resolutions while sustaining data rates of several kbps. We also discuss

sources of observed losses in performance and suggest possible solutions.

Finally, we investigate cooperative localization of a source using a network of

geographically dispersed receivers using AoA. Source localization using a network

of receivers has numerous applications including localization of the transmitting

7
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sensor in a sensor-driven network, which was the initial motivation for this work.

We present a sequential algorithm for updating source location estimates in the

presence of line-of-sight (LOS) between the source and the receivers. However,

multipath scattering and reflections are often encountered in practical propagation

environments and this non-line-of-sight (NLOS) multipath often results in outliers

in the AoA measurements. Using the sequential algorithm as a building block,

we develop an algorithm that estimates the source location while suppressing the

effect of these outliers. ML localization in such scenarios requires exhaustive test-

ing of estimates from all possible subsets of measurements. We avoid this by

utilizing a randomized algorithm that approaches the ML performance at a com-

plexity that is only linear in the number of measurements. The localization error

is proportional to the AoA error variance and search area, and can be reduced by

increasing the number of receivers. Our results also show that the capability of the

receiver to resolve multiple incoming paths is vital to achieving good performance

in NLOS settings.

1.2 Literature Review and Related Work

We now review some of the important developments on data collection and

localization recognizing that a rich history of sensor network literature on this

topic exists. This is followed by a discussion of systems very similar to those

proposed in this dissertation.

8



Chapter 1. Introduction

As mentioned earlier, multihop relay is the method of choice for data collec-

tion in wireless sensor networks and traces its origins to early developments in

wireless ad hoc networks. Much of the research in data collection has focussed on

optimizing multihop networking in the specific context of sensor networks. These

include application-specific routing [17, 18, 19, 20], medium access control (MAC)

layer optimization [21, 22], topology control [23, 24], quality of service [25, 26],

distributed source coding and aggregation[27, 28, 29, 30], and distributed signal

processing and estimation [31, 32].

Despite the limits on scalability derived by Gupta and Kumar [7] and others, it

is conceivable that in certain settings, the redundancy in the information gathered

by the sensor nodes may be such that the net information to be conveyed to a data

collection center scales up slowly enough to fit within the Gupta-Kumar bounds

[33, 34]. However, as noted earlier, even if the problems of scale and overhead in

multihop networking could be circumvented, it is inapplicable to a large class of

applications served by imaging sensor nets, namely, those in which the nodes in

the sensor field are more or less at the same distance from the collector node, and

all nodes have comparable energy/power constraints.

For more conventional multihop architectures, there has been a great deal of

activity in the important problem of localization[1], broadly classified into two

categories. The majority of schemes fall into the first category of anchor-based

localization [35, 36, 37, 38, 39, 40], in which a subset of the sensors know their

locations, and the information from their beacons is used by other sensor nodes

9



Chapter 1. Introduction

to infer their own locations in an iterative fashion. In the second category of

anchor-free localization [41], the nodes compute their locations iteratively in a

consistent coordinate system. It must be noted that in contrast to the “dumb”

nodes in an imaging sensor net, all of the preceding methods require some form

of ranging (at different degrees of sophistication) in the sensor nodes, followed by

distributed collaborative iterations.

Related Work: The proposed collector-driven paradigm is closely related to the

work of the SAR research group at Sandia National Labs [42], Hounam et al.[43]

and Colpitts et al.[44]. These passive RF tags that respond to queries from a radar

transmitter are used for identification and localization in [42, 43] and for insect

tracking in [44]. These tags are restricted to respond to a radar transmission

by modulating a fixed data or identification sequence, as the tags draw all the

needed power from the radar signal. On the other hand, in the proposed semi-

passive sensors, the addition of a power source at the sensor provides low-rate

data modulation capability.

Our prototype is similar, in principle, to the work of Stoleru et al.[45] and the

global positioning system (GPS)[13]. Sensors are coarsely localized by a collec-

tor using a spot beam in [45]. However, our objective is to obtain an accurate

estimate of the sensor locations without stringent requirements on the collector’s

beams. In GPS, low-rate navigational data modulated on a coarse/acquisition SS

code is transmitted by satellites, and the GPS receiver on earth locates itself using

differential range measurements from the SS code in conjunction with the nav-

10
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igational data. There are, however, some key differences between the proposed

prototype design and GPS. In the imaging sensor net prototype, the collector

transmits the SS signal and then locates the reflecting sensor transceiver without

the sensor computing or knowing its own position. Moreover, unlike GPS only

a single collector is necessary to locate the sensor, although multiple collectors

could be used to augment performance. Further, we aim for larger bit-rates of the

order of 100s of kbps as against the 50 bps in GPS, while suffering from residual

frequency and timing offsets due to the data modulation and location code being

imposed on the signal at different locations.

An example of a sensor-driven network is the Remote Battlefield Sensor Sys-

tem (REMBASS) and its improvement (IREMBASS)[46] used by the US Depart-

ment of Defence for surveillance and situational awareness. Although REMBASS

networks consist of transmit-only sensors, the sensor locations are determined

during deployment, thus, limiting the size and speed of deployments. Locating

a transmitting source using a network of receivers is a historically well studied

source localization problem with several sensor network based applications such

as bird habitat monitoring using bird calls and surveillance using camera net-

works. Source localization algorithms have been proposed for utilizing a variety

of measurement modalities such as RSS [47, 48, 49] and TDOA [50, 51], despite

the unreliability of RSS and the difficulty in achieving synchronization between

receivers. However, acoustic systems can capitalize on better receivers and slower

propagation speeds of sound, and TDOA has been used in underwater [52] and

11



Chapter 1. Introduction

sensor network applications[53, 54, 55]. However, all these algorithms require

LOS channels between the source and the collectors with no multipath. In prac-

tice, errors in TDOA, AoA or RSS due to multipath scattering effects dominate

performance[56].

As explained earlier, the outliers produced by NLOS multipath must be disre-

garded before the emitter can be reliably located. The two approaches common

in the estimation literature [57] involve either identification and removal of the

outliers before location estimation or robust estimation of the position while si-

multaneously limiting the effect of outliers. Using the former approach, outliers

are eliminated using statistics of the NLOS estimates [58, 59, 60] and proba-

bilistic combining of estimates [61, 62]. We adopt, however, the latter robust

estimation approach that is most similar to the work of Chen [63] and Casas et

al.[64]. Chen[63] proposes a weighted least-squares localization using range mea-

surements, where the weights are iteratively varied to assign the lowest weights to

outliers and highest to the LOS estimates, but suffers from exponential complex-

ity in the number of measurements. Casas et al. [64] solve the multilateration

by a least median squares algorithm on time-of-flight (TOF) estimates, which

simultaneously eliminates outliers and estimates the emitter location. Although

this least median squares approach produces the “best” robust estimate of the

source location using three “good” TOF measurements, the algorithm does not

utilize all the “good” TOF measurements to enhance the localization. On the con-

trary, we propose a robust estimation-based approach that has linear complexity

12
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in the number of measurements and tries to estimate the sensor location using

the maximal set of non-outlying measurements.

1.3 Organization

This dissertation is organized as follows. An instance of a collector-driven

imaging sensor net with an airborne collector is described and localization al-

gorithms for such a system are developed in Chapter 2. The hardware design

and baseband signal processing algorithms for a prototype imaging sensor net

with a stationary collector are presented in Chapter 3. In Chapter 4, we develop

low-complexity algorithms for cooperative localization of a source using AoA mea-

surements that are also capable of suppressing outliers due to NLOS multipath.

Finally, concluding remarks and future directions of research are provided in Chap-

ter 5.

13



Chapter 2

SAR-like Localization in Imaging
Sensor Nets

A picture is worth a thousand words.

Chinese proverb

In this chapter, we elaborate on the collector-driven architecture with an air-

borne collector for scalable data collection and localization in very large-scale

sensor networks. Since, accurate localization of the sensors that detect an event,

or have data to report, is an essential feature of an imaging sensor net, we focus

on developing fundamental insight into the localization performance achievable in

an imaging sensor net, using an idealized model which ignores data modulation.

This is a good approximation when low-rate data modulation is imposed on, say,

a spread spectrum beacon being reflected by the sensor, as is the case in the

imaging sensor net prototype presented in Chapter 3. Indeed, the insights gained

from this idealized model are used to design the prototype, with the localization

algorithms developed here serving as fundamental blocks in the collector baseband

processing. This work was presented previously in [65] and [66].

14
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Under this idealized model, sensors respond using one-bit, on-off keying to the

airborne collector’s beacon. Sensors are either “active” or “inactive”, with only

the active sensors electronically reflecting the beacon, thereby creating a geometry

as in Synthetic Aperture Radar (SAR) [67, 68, 14]. However, two-dimensional

matched filtering used in standard SAR processing performs poorly because of

the lack of carrier synchronization between the sensor nodes and the collector as

shown in Section 2.2.4.

Our main results are as follows.

1. We provide a Maximum Likelihood (ML) formulation for localization, con-

sidering first an isolated active sensor, which leads to a noncoherent decision

statistic based on a simple modification of the two-dimensional matched fil-

ter. The model is similar to that in noncoherent radar tomography [69, 70].

Our ML algorithm also applies to multiple active sensors, provided that

they are spaced far enough apart that their two-dimensional responses at

the collector do not overlap.

2. Since ML localization for multiple active sensors that are closely spaced is

computationally intractable, we develop a suboptimal decision feedback al-

gorithm, in which the estimated response of each active sensor is subtracted

out once it is detected. A criterion for terminating the algorithm is provided,

based on an analysis of the probabilities of false alarm and miss.
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3. Key tradeoffs governing localization performance are investigated analyti-

cally. Simulation results are provided, and compared with analysis when

applicable.

The chapter is organized in the following manner. The system model is pre-

sented in Section 2.1. The optimal ML single sensor localization algorithm and

a decision-directed joint localization of multiple sensor are developed in Sections

2.2.2 and 2.2.3. Noise-limited localization performance, assuming a single active

sensor, is considered in Section 2.3. This is used to gain insight into the effect

of appropriately chosen dimensionless parameters on performance measures. The

performance with multiple active sensors is explored in Section 2.4. Finally, Sec-

tion 2.5 contains concluding remarks.

2.1 System Model

In this section, we describe the system model corresponding to an airborne

collector (e.g., an aircraft or UAV), in direct analogy to swath-mode SAR, as

shown in Figures 2.1(a) and 2.1(b). However, these concepts extend directly to

other geometries, such as terrestrial vehicles moving along the edge of the sensor

field, or stationary collectors with steered beams as illustrated in Section 2.1.3.

The collector node illuminates a part of the field with a beacon using a side-looking

antenna. Each such illumination is called a snapshot. As seen in Figure 2.1(b),
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the collector moves along one edge of the sensor field at a fixed altitude, and the

movement of the collector causes the beacon to sweep the entire field.

Ignoring sensor data modulation, we obtain an idealized one-bit model of the

sensor data. Sensors are either “active” or “inactive,” and the objective is to

localize the active sensors (i.e., to image the activity in the sensor field). Active

sensors that hear the beacon respond to it by transmitting a wideband signal, tim-

ing their response precisely with respect to a trigger sequence in the beacon. This

creates a SAR-like geometry. The collector node processes the net received signal

over multiple snapshots using SAR-like [67][68][14] and noncoherent tomography

based [70] techniques to generate an image of the activity in the sensor field. The

collector node knows its own location at the time of different snapshots (e.g., an

aircraft may know its own GPS location, and its height relative to the sensor field).

Thus, the collector can estimate the absolute locations of the active sensors, up

to the resolution of this virtual radar system.

2.1.1 Received Signal Model

Each active sensor sends back a complex baseband signal, s(t), modulated

on a sinusoidal carrier of frequency f0. Nevertheless, the techniques presented

here can be easily extended to settings where each active sensor sends back a

different signal (e.g., waveforms randomly chosen from a near-orthogonal set) in

order to mitigate inter-sensor interference. The transmitted passband signal is

s̃(t) = Re{s(t)ej2πf0t}. Suppose, there are K active sensors, indexed by k, on the
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Figure 2.1: Imaging sensor net with a moving collector
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field, and the collector takes J snapshots, indexed by j, of the field. Note that

the time reference for each snapshot is different: at each snapshot, at the instant

the collector’s beacon is transmitted, the time variable is reset to zero to simplify

subsequent notation. The complex baseband received signal, rj(t), at the collector

node at snapshot j is

rj(t) =
K∑

k=1

hj,k Ĩj,k s(t− τj,k)e
−j2πf0τj,k + nj(t), j = 1, . . . , J,

where hj,k is a complex channel gain, τj,k is the round-trip propagation time

between active sensor k and the collector node at snapshot j, Ĩj,k is the antenna

gain function (AGF) of the collector antenna, which is the antenna gain to sensor

k in snapshot j, and nj(t) is the noise. Note that rj(t) will be a vector if the

collector has multiple receive antennas.

The channel gain, hj,k, captures the effects of multipath fading, signal path

loss, and lack of synchronization between the local oscillators (LOs) at the sensors

and the collector. We assume an Additive White Gaussian Noise (AWGN) channel

with line of sight (LOS) communication. The path loss in the signal is ignored for

two reasons: (i) the path loss exponent can vary significantly (between 2 and 6)

depending on factors such as atmospheric conditions, aperture-medium coupling,

frequency of operation, and (ii) incorporating this exponent into the estimator

does not provide significant improvement in performance, as, in practice, estimates

of the exponent are coarse. Since the path loss is ignored, the received signal-to-

noise ratio (SNR) is the same for all sensors. Nevertheless, to account for path

loss, this SNR can be replaced by the minimum SNR, seen by the farthest sensor,
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to obtain a conservative estimate of performance. (Fading and shadowing effects,

if any, can be accommodated by an outage analysis not undertaken here.)

The LOs at the sensors and the collector are not synchronized. However, the

frequency offset between the oscillators is assumed to be small enough that the

relative phase is constant over the duration of the transmitted pulse. The relative

phases from one snapshot to another are modeled as independent and identically

distributed (i.i.d.) over [0, 2π]. Note that this is a worst case scenario, where

no attempt is made to track the frequency drift and phase offset of the sensor

LO. Tracking the frequency and phase offsets of the sensor LO provides improved

performance at the cost of more computation at the collector. Under the preceding

assumptions, the complex gains for this noncoherent AWGN LOS channel are

hj,k = ejθj,k k = 1, ..., K, j = 1, ..., J ,

where θj,k are i.i.d. and uniform over [0, 2π]. Absorbing all deterministic phases

into the random phase factor, the received signal reduces to,

rj(t) =
K∑

k=1

Ĩj,k s(t− τj,k)e
jθj,k + nj(t), j = 1, . . . , J . (2.1)

The round-trip delay τj,k =
2Rj,k

c
, where Rj,k is the distance between the col-

lector node and sensor k in snapshot j, and c is the speed of light. This is identical

to conventional radar: the start transmission field reaches active sensor node k at

a time
Rj,k

c
after it is generated by the collector node, and the response of sensor

k reaches the collector node at a time
Rj,k

c
after it is transmitted by active sensor

k.
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2.1.2 Spatial Representation for an Airborne Collector

The received signal model in (2.1) is used to develop localization algorithms

in Section 2.2. It is sometimes convenient to use a spatial received signal repre-

sentation, to view the sensor field as an ‘image’ or to analyze performance. The

y-axis of the coordinate system is chosen to be the airborne collector’s flight path.

The locations of the K active sensors are {(xk, yk)}Kk=1, and the location of the

collector at snapshot j is (0, zj = jD), where the distance between snapshots is

D. The round-trip delay between the sensor and the collector in snapshot j is

τj,k =
2Rj,k

c
=

2
√
x2
k + (yk − zj)2

c
=

2xk
c

√
1 +

(yk − zj)2

x2
k

.

The AGF Ĩj,k = I(zj − yk) and the beamwidth of the antenna, 2B, is such that

I(y) ≤ ǫ ∀ |y| > B , (2.2)

for some chosen antenna gain ǫ. Generally, ǫ can be chosen to include the first

side-lobes or a significant part of the main lobe. However without any loss of

generality in the algorithms in Section 2.2, we assume an antenna with only a

main lobe. In practice, an antenna is characterized by an angular beamwidth

ΘBW (defined analogously with B in (2.2)) and B varies with distance from the

antenna, R, as B = RΘBW . We consider, here, two AGFs: (a) an ideal beam

which has unity gain within the beamwidth. Therefore, the AGF Ĩj,k = 1 when

sensor k is active and is illuminated by the beacon in snapshot j, and 0 otherwise.

(b) A more realistic Gaussian beam approximation of a parabolic antenna,

I(y) =

√
2√

πB3dB

e
−2y2

B2
3dB , |y| < B,

21



Chapter 2. SAR-like Localization in Imaging Sensor Nets

where B3dB is the half-power beamwidth of the antenna (ǫ = 0.5) and B = B3dB.

The number of times an active sensor is illuminated by the collector, N , is the

ratio of the antenna beamwidth and the distance between snapshots,

N =
2B

D
.

By the standard far-field approximation employed in SAR, and assuming a

highly directional antenna, xk ≫ B, the round-trip delay can be approximated as

τj,k ≈
2xk
c

= τk , (2.3)

observing that only active sensors illuminated by the beacon, satisfying |yk −

zj | ≤ B, respond. In other words, a sensor’s distance from the collector node is

approximated by the ‘x’ coordinate of the sensor, and sensors at the same range

in a given snapshot lie approximately on a line parallel to the y-axis. The error

due to this approximation is

τj,k − τk ≈
(yk − zj)

2

cxk
≤ B2

cxk
, (2.4)

since |yk − zj| ≤ B.

Each sensor is now associated with a single delay τk. Hence, (2.1) becomes

rj(t) =
K∑

k=1

Ĩj,k s(t− τk)e
jθj,k + nj(t), j = 1, ..., J. (2.5)

By a coordinate transformation that maps the time-coordinate at each snapshot

(recall the time variable is reset at each snapshot) to the ‘x’ coordinate, and the

location of the collector node zj to the ‘y’ coordinate, i.e.,

t =
2x

c
and zj = y , (2.6)
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equation (2.5) becomes

r(x, y) =
K∑

k=1

I(y − yk)s

(
2(x− xk)

c

)
ejθk(y) + n(x, y) . (2.7)

Note also that the snapshot index j is incorporated into the variable y, i.e., y =

{jD : j = 1, ..., J}. In practice, the received signal is sampled leading to a

received signal matrix, whose rows and columns represent discrete values of ‘x’

and ‘y’ respectively. This provides an elegant way of mapping the entire sensor

field to a matrix and to visualize the output of the processing as an image. The

received signal representations in (t, j) and (x, y) are equivalent, and either (2.5)

or (2.7) is used in Section 2.2.

2.1.3 Spatial Representation for a Stationary Collector

In this section, we demonstrate the similarity between the spatial representa-

tion derived in (2.7) and corresponding representation for a system with a station-

ary collector. Indeed, this similarity will be exploited to design signal processing

algorithms for the prototype in Chapter 3.

A stationary collector sweeps the sensor field by steering the beacon as shown in

Figure 2.2 and illuminations along different directions generate multiple snapshots.

In other words, an angular sweep produces an effect equivalent to the movement

of the airborne collector. Hence, the model in (2.1) can be utilized with the

understanding that the snapshot index j now refers to the orientation of the
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Figure 2.2: A collector-driven system with a stationary collector.

stationary collector’s antenna and Ĩj,k is the angular AGF:

rj(t) =

K∑

k=1

Ĩj,k s(t− τj,k)e
jθj,k + nj(t), j = 1, . . . , J .

We now define the location of the K sensors as {(Rk, φk)}Kk=1 in polar coordinates

centered at the collector, the choice of which will become shortly become obvious.

Since the distance between the collector and sensor remains constant, τj,k = τk =

2Rk/c without the need for the standard far field approximation in (2.3) and we

arrive at a model,

rj(t) =

K∑

k=1

Ĩj,k s

(
t− 2Rk

c

)
ejθj,k + nj(t), j = 1, ..., J.

analogous to (2.5). If the orientation of the collector antenna is Φ then Ĩj,k = I(Φ−

φk). Mapping the time-coordinate at each snapshot to a range coordinate, t = 2R
c

,
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as in (2.6) the spatial representation for the stationary collector is obtained:

r(R,Φ) =
K∑

k=1

I(Φ − φk) s

(
2(R− Rk)

c

)
ejθk(Φ) + n(R,Φ). (2.8)

We observe from (2.7) and (2.8) that the received signal representations for the

airborne and stationary collector vary only in their choice of coordinate framework.

This implies that the localization algorithms presented in this chapter are all

directly applicable to the stationary collector setting as well as long as the received

signal represented appropriately.

2.2 Imaging Algorithms for Sensor Localization

Although the virtual radar system geometry is analogous to that of SAR, the

standard SAR reconstruction algorithm (presented in Section 2.2.1) for sensor lo-

calization is inapplicable due to the lack of coherence between the local oscillators

at the sensors and the collector. The effect of this lack of coherence on the SAR

algorithm is shown in Section 2.2.4. In Section 2.2.2, we present an ML formula-

tion of the problem, assuming a single active sensor, which leads to a noncoherent

decision statistic. The ML single sensor algorithm is then used in Section 2.2.3

as a building block for a suboptimal decision feedback algorithm for localizing

multiple active sensors.
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2.2.1 Two Dimensional Matched Filtering

We now develop the standard SAR processing for the virtual radar model

in (2.7). In standard SAR, due to true reflection at the target, there is phase

coherence (only deterministic phases due to propagation delay remain) and (2.7)

reduces to

r(x, y) =

K∑

k=1

I(y − yk)s

(
2(x− xk)

c

)
e−jkxk + n(x, y)

= ρ(x, y) ⋆ h(x, y) + n(x, y) ,

where

h(x, y) = I(y)s

(
2x

c

)
and ρ(x, y) =

K∑

k=1

δ(x− xk, y − yk)e
−jkxk.

with ⋆ representing convolution. ρ represents the locations of the active sensors

along with the deterministic phases, and h is the impulse response of this virtual

radar system. Recovering ρ(x, y) involves deconvolution or inversion of the filter

h(x, y). Thus, the received signal is matched filtered against h(x, y), i.e. r(x, y)

is convolved with h∗(−x,−y),

ρ̂(x, y) = ρ(x, y) ⋆ h∗(−x,−y). (2.9)

Since h is separable in the x and y coordinates, the two-dimensional (2-D)

matched filtering can be decomposed into two sequential one-dimensional filtering

operations. In the first step, the received signal is processed using a filter matched

to the transmitted signal, s(2x
c
). The output of the first step is passed through a

filter matched to the AGF, I(y). These operations along the x and y directions
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are commonly termed range correlation and azimuth correlation respectively in

the SAR literature.

When this processing is used in the virtual radar system, it does not perform

well, as seen from the simulations in Section 2.2.4. This performance degradation

due to the unaccounted random phase terms, ejθj,k , can be eliminated by an ML

formulation that accounts for these terms, which is developed now in Section 2.2.2.

2.2.2 Maximum Likelihood Single Sensor Localization

From (2.5), the received signal in snapshot j due to a single active sensor at

X = (x0, y0) ≡ (τ, {Ĩj}Jj=1) is

rj(t) = Ĩj s(t− τ) ejθj + nj(t), j = 1, ..., J, (2.10)

where θj are i.i.d. uniform random variables, Ĩj = I(jD− y0) is the antenna gain

to the sensor in snapshot j, and τ = 2x0

c
is the propagation delay between the

sensor and the collector in snapshot j. The received signal vector is

r = s + n , (2.11)

where

r =




r1(t)

...

rJ(t)




, sj = Ĩj s(t− τ) ejθj ,

n is an AWGN vector, and s is the active sensor response in the absence of noise.
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The location estimate is obtained by maximizing the log-likelihood function,

or equivalently, minimizing the Euclidean distance between the received signal

and transmitted signal vectors jointly over X and θj ,

X̂ML(y) = arg min
X,{θj}

‖r − s(X)‖2

= arg min
X,{θj}

J∑

j=1

‖rj − Ĩj s(t− τ) ejθj‖2

= arg max
X,{θj}

J∑

j=1

Ĩj |〈rj, s(t− τ)〉| cos(θj − φj),

φj = ∠{〈rj, s(t− τ)〉} . (2.12)

To maximize (2.12), the cos(θj)’s are replaced by their maximum likelihood esti-

mates, i.e., θj = φj. The simplified likelihood function is

X̂ = arg max
X

J∑

j=1

Ĩj |〈rj, s(t− τ)〉| . (2.13)

The decision statistic is
∑J

j=1 Ĩj |〈rj, s(t − τ)〉|, and the sufficient statistic is

〈rj, s(t− τ)〉.

In (2.12), Ĩj = I(jD − y0) is independent of x0. However in reality, Ĩj is a

function of x0 too, due to the broadening of the beam with distance from the

antenna described in Section 2.1.2. This dependence does not change the form of

(2.12), and (2.13) can be modified following the same procedure as

X̂ = arg max
X

J∑

j=1

Ĩj(τ) |〈rj, s(t− τ)〉| − Es

J∑

j=1

Ĩj(τ)
2 . (2.14)

where Ĩj(τ) = Ĩ(jD − y0, x0) and Es = 〈s, s〉. We infer from (2.14) that the

filter used for the azimuth correlation must be varied (lengthened) as a function
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of the delay τ , which makes the processing more computationally intensive but

maintains the simple 2-D filtering structure.

Although a filter matched to s(t) produces the sufficient statistics as in SAR,

the optimal processing is nonlinear. The unknown phases, {θj}, cause the optimal

processing to be noncoherent, using only the magnitudes of the range correlation

for the azimuth processing. These magnitudes are processed using a filter matched

to the AGF defined in (2.2). Thus, a minor modification of the standard SAR

algorithm produces the ML-estimation rule for a single active sensor localization.

Moreover, if the active sensors are sparsely distributed in the sensor field, then

there is no interference between active sensor transmissions. Consequently, the

multi-event localization can be performed by repeated application of the single

sensor algorithm until all the sensors are detected. A suboptimal algorithm to

perform multiple sensor localization, in the presence of interference, is presented

in Section 2.2.3.

2.2.3 Decision-directed Localization of Multiple Sensors

The received signal from K active sensors in snapshot j is

rj =
K∑

k=1

Ĩj,ks(t− τk)e
jθj,k + nj(t), j = 1, ..., J, (2.15)

where {θj,k} is the set of all unknown random phases at the active sensors. When

the active sensors are sparsely distributed on the sensor field with no inter-sensor

interference, the single sensor algorithm in Section 2.2.2 is optimal for multi-

sensor ML localization. Two active sensors interfere with each other when their
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transmissions are overlapping in the 2-D received signal space consisting of one

temporal and one spatial dimension (see Section 2.1.1). In the presence of inter-

sensor interference, the optimal ML joint localization algorithm is computationally

intractable. Hence, we now present a suboptimal joint detection and localization

algorithm that trades off optimality for a lower computational cost.

We adopt a sequential zero-forcing decision-feedback approach where, when

an active sensor is detected, it is localized, and the influence of its transmission

on the received signal is estimated and subtracted out. This updated received

signal is then used to detect (and localize) the next active sensor. The number of

active sensors, K, is not known a priori, hence this process is continued until a

termination criterion is met.

The sequential detection algorithm is initiated by assuming a single active

sensor in the field. The ML localization algorithm for a single sensor is used to

obtain an estimate of that sensor’s location as

X̂1 = (τ̂1, {Îj,1}) = arg max
X

J∑

j=1

Ĩj |〈rj, s(t− τ)〉| , (2.16)

where the estimates, τ̂ and {Îj,1}, uniquely determine the location of the sensor.

Assuming the estimate X̂1 is the true location, the effect of this active sensor

on the received signal is subtracted out. The response of this active sensor also

depends on the phases, {θj,1}, for which ML estimates were obtained in (2.12) as

θ̂j = ∠{〈rj, s(t− τ)〉}.

30



Chapter 2. SAR-like Localization in Imaging Sensor Nets

The updated received signal after detecting the first active sensor is

r
(1)
j = rj − Îj,1 s(t− τ̂1)e

jθ̂j , j = 1, ..., J.

In general, we denote the updated received signal after detecting k sensors by r
(k)
j ,

k = 0, 1, 2, ..., where r
(0)
j = rj is the original received signal. We continue with the

detection process after the kth step as long as the following criterion is met:

max
X

J∑

j=1

Ĩj |〈r(k)
j , s(t− τ)〉| > T, (2.17)

where T is a threshold, whose choice is discussed in Section 2.4.1. If the preceding

criterion is satisfied, then the (k + 1)th sensor is localized as follows:

X̂k+1 = (τ̂k+1, {Îj,k+1}) = arg max
X

J∑

j=1

Ĩj |〈r(k)
j , s(t− τ)〉| ,

Violation of the criterion (2.17) leads to termination of the algorithm. The thresh-

old T is chosen (see Section 2.4.1) such that the probability of missing a true peak

and the probability of false alarms or false peaks under a noise-limited setting meet

user-defined tolerances. The algorithm obtained thus is far from optimal and suf-

fers from error propagation, but the alternative of joint ML location estimation is

computationally infeasible.

2.2.4 Standard SAR Algorithm versus ML Algorithm

In this section, we compare the performances of the ML and standard SAR

algorithms, and attribute the poor performance of the latter to the random phase

terms {ejθj,k}. For 5 active sensors at locations seen in Figure 2.3, Figures 2.4
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Figure 2.3: Active sensor locations for comparing standard SAR and ML lo-
calization. The sensor field is divided into a grid of 500 by 1000 samples in the
azimuth and range dimensions respectively.

and 2.5 are the outputs of the processing using standard SAR and the modified

SAR processing at an SNR = 4 dB respectively. Each image is the magnitude

of the 2-D matched-filter output, |ρ̂(x, y)| in (2.9) and the decision statistic in

(2.13), evaluated at the 500x1000 candidate locations in sensor field. The im-

ages are shown in grayscale with white representing the smallest and black the

largest magnitudes. The elongated dark features in Figure 2.5 correspond to the

responses of the active sensors to the beacon. In Figure 2.4, with the standard

SAR processing, the responses of the active sensors are completely lost due to a

combination of noise and destructive interference between snapshots that is caused

by the random phase terms. However, in Figure 2.5, using the noncoherent tech-
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niques in Section 2.2.2, the active sensor responses are clearly distinguishable at

their respective locations.
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Figure 2.4: Output of standard SAR processing (|ρ̂(x, y)| from (2.9)) for scenario
of Figure 2.3.

In addition to the preceding visual illustration of the limitations of standard

SAR processing, we now compare sequential decision feedback using the standard

and modified SAR decision statistics shown in Figures 2.4 and 2.5. We estimate

the number of active sensors as a function of the threshold T , and plot it in Figure

2.6. With noncoherent modified SAR processing, the true number of sensors (5)

are detected for any threshold between 50 and 60 (below T = 50, the estimated

number of active sensors increases rapidly due to spurious noise peaks). On the

other hand, with standard SAR processing, the difference between peaks due

to signals and noise is difficult to detect, since the sum of signals with random
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Figure 2.5: Output of ML algorithm (|ρ̂(x, y)| obtained by coordinate transfor-
mation of (2.13)) for scenario of Figure 2.3.
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Figure 2.6: Comparison between standard SAR and ML techniques: Number of
sensors detected is plotted versus the threshold. The dashed line shows the true
number (5) of active sensors.
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phases is noise-like. Thus, the estimated number of active sensors is dominated

by spurious noise peaks for all values of T .

2.3 Noise-limited Localization Performance

In this section, we focus on noise-limited performance, in order to understand

the dependence of the range and azimuth localization resolution on parameters

such as SNR, antenna beamwidth, signal bandwidth and antenna beamshape.

That is, we analyze the performance of the optimal ML localization algorithm

(derived in Section 2.2.2) for a single sensor, ignoring inter-sensor interference.

2.3.1 Scale-Invariant System Dimensions

The description of system dimensions and characterization of system perfor-

mance in terms of scale-invariant quantities enables prediction of the performance

of another system with different physical dimensions, but the same relative di-

mensions. To this end, we introduce two normalizing parameters or so-called

‘units’ for the range and azimuth directions, respectively. For the range, the re-

ciprocal of the nominal RMS signal bandwidth, Wrms, expressed as a distance,

mx = c/Wrms where c is the speed of light, is used as the normalizing parameter.

For the azimuth, my = D, the distance between successive snapshots, is used.

The normalized distances along the ‘x’ and ‘y’ coordinates are X = x/mx and

Y = y/my. The choice of mx and my are based on the resolution analysis in
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Sections 2.3.2 and 2.3.3. The simulation results in Section 2.3.5 are presented in

terms of these dimensionless quantities.

2.3.2 Range Resolution

The analysis of the range resolution using the Cramer-Rao Lower Bound

(CRLB) is only valid when the signal from an active sensor is acquired and the

peak is within a half chip length of the actual location. The localization error

depends on the distance between the true and estimated locations of the active

sensors, and is therefore ill-defined, if the active sensor is not detected, or if there is

a false detection. We present in this section a lower bound on the range resolution

of the single sensor ML algorithm for an ideal brickwall AGF, under the assump-

tion of sufficiently high SNR such that, the sensor is detected and its transmission

acquired within one half-chip interval.

The received signal in (2.7) from a single active sensor is

r(x, y) = I(y − y) s(x− x) ejθ + n(x, y),

where n is AWGN, θ(y) is the random phase, I is the AGF, and s(x) = s(ct/2) is

the transmitted signal. We formulate range estimation as a 2 parameter estimation

problem, where the range coordinate x and unknown random phase θ(y) are the

parameters estimated. Since the sensor has been detected, I(y − y) is, or the

snapshots with a signal component are known. We use a notation where we drop
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the independent variables and write the received signal as

r = I.s.ejθ + n,

and

p(r|x, y, θ(y)) =
1

2πσ2
e−

‖r−I s ejθ‖2

2σ2 .

The CRLB for the 2 parameter estimation, under the condition that both I and

s are real, is 


2σ2

‖I‖2‖s′(x)‖2 0

0 2σ2

‖I‖2‖s(x)‖2


 .

Defining the RMS bandwidth of the signal s(t), and noting that s′(x) = 2
c
s′(t),

W 2
rms =

∫
f 2|S(f)|2df∫
|S(f)|2df =

‖s′(t)‖2

4π2‖s(t)‖2
=

c2‖s′(x)‖2

16π2 ‖s(x)‖2
,

where |S(f)|2 is the power spectral density of s(t), and c is the speed of light.

Observing that ‖I‖2 = N for the ideal AGF, which is the number of times the

active sensor is illuminated by the beacon, and that ‖s‖2

2σ2 is the transmit SNR per

snapshot when n ∼ CN(0, 2σ2), the CRLB for the error variance of the range

estimate is

σ2
xx =

c2

16π2W 2
rms SNR N

. (2.18)

The right hand side of (2.18) has the dimension of c2/W 2
rms since the other factors

are dimensionless. This motivates the choice of mx = c/Wrms and X = x/mx in

Section 2.3.1. The error variance of the dimensionless variable X is

σ2
X =

σ2
xx W2

rms

c2
=

W2
rms

16π2W 2
rms SNR N

(2.19)
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The use of delay estimation to determine the sensor range in the virtual radar

system is evident from the dependence of the performance on the RMS signal

bandwidth and transmit SNR in (2.19). The additional factor N accounts for the

SNR improvement achieved by averaging out noise in the delay estimates from

multiple snapshots, and N.SNR can be regarded as the effective range estimation

SNR.

The CRLB provides insight into the tradeoffs between various system param-

eters by exposing performance trends as a function of these parameters. Since

time-delay estimation is asymptotically efficient [71], the CRLB is achievable only

at high SNR. However, we do not expect to attain the CRLB even at high SNR,

since the CRLB does not account for the far-field approximation error (2.4): this

is perhaps the most important effect at high SNR. Further, the localization error

whose size is measured by the CRLB is not well-defined in the event of false alarms

and misses, which become more likely at lower SNR.

2.3.3 Azimuth Resolution

We next evaluate an upper bound on the azimuth resolution for the ideal brick-

wall AGF (the performance improves for more realistic Gaussian shaped beams,

as shown in the numerical results later in this section). The azimuth estimate is

quantized into bins whose size equals the distance D between snapshots, so that

there is an irreducible quantization error taking values in [−D
2
, D

2
]. In addition,

there are errors that can result from the choice of the wrong bin. In this analysis,
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we focus on characterizing the latter. For convenience, we label the correct bin

as bin 0, as shown in Figure 2.7. We also assume that the range uncertainty has

been resolved exactly, and that the active sensor has been detected (otherwise the

localization error cannot be defined).�
1
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......
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True location is in
this bin

Figure 2.7: Random variables and errors in azimuth processing.

We define the snapshot statistic for snapshot l as

Zl = |
∫
rl(t)s(t− τ)dt|, (2.20)

where τ is the true round-trip delay and rl(t) is the received signal corresponding

to snapshot l. Since an active sensor influences N = 2B
D

snapshots, we see from

Figure 2.7 that Zl contains contributions from the desired signal (plus noise) for

|l| ≤ N
2
, and contains contributions from noise only for |l| > N

2
. The azimuth

estimate is given by

l̂ = argmaxl Yl,

where

Yl =

l+ N
2∑

k=l−N
2

Zk, (2.21)
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is the accumulation of the snapshot statistics over a beamwidth centered around a

hypothesized bin l (For simplicity, we make a slight change in notation, assuming

that the normalized beamwidth, or the number of snapshots affected by a sensor,

is N + 1, where N is even. The mean squared error thus derived is actually an

upper bound for the case when the normalized beamwidth is N .) Since bin 0 is

the correct bin, the azimuth error if bin l is chosen is lD. The mean squared

azimuth localization error due to choosing the wrong bin can therefore be written

as

E[|(l̂ − 0)D|2] = E[|l̂|2]D2.

We have

E[|l̂|2] =
∑

k

k2pk, (2.22)

where

pk = P [choose bin k] = P [k = argmaxl Yl]

is the probability that bin k has the maximum accumulated statistic. Since the

probability of attaining a maximum for an accumulated statistic containing noise-

only snapshot statistics is very small, we limit the summation in (2.23) for |k| ≤ N
2

(for |k| > N
2
, Yk has contributions from noise alone). Thus, we wish to evaluate

E[|l̂|2] =

N
2∑

k=−N
2

k2pk = 2

N
2∑

k=1

k2pk, (2.23)
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by symmetry. For k 6= 0, we can bound pk by using pairwise comparison with the

accumulated statistic corresponding to the correct bin 0 as follows:

pk ≤ Pk = P [Yk > Y0]

= P [ZN
2

+1 + ...+ ZN
2

+k > Z−N
2

+ ...+ Zk−1−N
2
].

Note that ZN
2

+1 + ...+ZN
2

+k is a sum of k snapshot statistics containing contribu-

tions from noise alone, while Z−N
2

+ ...+Zk−1−N
2

is a sum of k snapshot statistics

containing signal as well as noise contributions. Under our model, the received

signal in the lth snapshot is of the form

rl(t) = s(t− τ)ejθl + nl(t)

signal present: sensor falls in beam.

In what follows, we label snapshot statistics corresponding to this “signal-present”

scenario as Z
(s)
l .

rl(t) = nl(t)

noise only: sensor does not fall in beam.

We label snapshot statistics corresponding to this “noise-only” scenario as Z
(n)
l .

Note that the WGN processes nl are independent for different l, so that the

snapshot statistics (conditioned on the sensor location) are independent random

variables. Under these assumptions, it is easy to see from (2.20) that Z
(s)
l are

i.i.d. Rician random variables for “signal-present” snapshots, while Z
(n)
l are i.i.d.

Rayleigh random variables for “noise-only” snapshots.
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Since the azimuth error scales with D, a convenient normalization factor along

the ‘y’ direction is my = D. Defining the normalized azimuth coordinate Y = y
my

,

we infer from the preceding that (ignoring the bin quantization error)

σ2
Y ≤ 2

N
2∑

k=1

k2Pk, (2.24)

where Pk, defined in (2.24), is rewritten below to emphasize the dependence on

presence or absence of signal:

Pk = P [Z
(n)
N
2

+1
+ ...+ Z

(n)
N
2

+k
> Z

(s)

−N
2

+ ...+ Z
(s)

k−1−N
2

].

It remains to compute Pk. Computer simulations are a straightforward means

of estimating Pk, since the values of k being considered are not very large. For

moderately large k, an accurate alternative to computer simulations is the cen-

tral limit theorem (CLT): since Z
(s)
l , Z

(n)
l are independent random variables, the

random variable Uk =
(
Z

(n)
N
2

+1
+ ... + Z

(n)
N
2

+k

)
−
(
Z

(s)

−N
2

+ ... + Z
(s)

k−1−N
2

)
can be ap-

proximated as a Gaussian random variable with the same mean and variance.

Define µs, σ
2
s as the mean and variance of Z

(s)
l , respectively, and µn, σ

2
n as the

mean and variance of Z
(n)
l , respectively. (The dependence of these parameters on

SNR has been suppressed from the notation.) Then

E[Uk] = k(µn − µs), V ar(Uk) = k(σ2
n + σ2

s ),

and

Pk = P [Uk > 0]

≈ Q

(√
k|µs − µn|√
(σ2

s + σ2
n)

)
CLT approximation.
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In our computations, we use computer simulations for estimating Pk for k ≤ 5,

and the CLT approximation for k > 5. An alternative approach is to employ

a Chernoff bound for Pk, but we find it to be less accurate than the method

employed.

Since {Pk} decay with SNR, so does the variance σ2
Y . However, Pk also decays

exponentially with k, as evident from the CLT approximation as well as from a

Chernoff bound analysis. Thus, the first few terms dominate in the summation

on the right-hand side of (2.24). Since the beamwidth of the antenna only affects

the number of terms being summed, the azimuth localization error variance is

expected to be insensitive to the beamwidth.

2.3.4 Running Example for Simulation Model

Our computer simulations are based on the following running example. The

sensor field contains 2500 sensors randomly deployed on a 500 m x 500 m square

grid. Active sensors that detect nearby events are randomly chosen from the

deployed sensors while ensuring that there are no edge effects. The aircraft flies

parallel to one side of the field at a distance of 1500 m and an altitude of 2500

m. When illuminated, each active sensor transmits a 11-chip Barker sequence,

s(t), using a BPSK constellation shaped with a square-root raised cosine pulse

with 50% excess bandwidth. The carrier frequency of the sensor transmissions is

75 GHz. The side-looking antenna has a nominal physical beamwidth (2B) of 60

m (parabolic antenna diameter of 0.51 m), and the distance between snapshots,
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D = 1 m (hence, N = 60). The antenna has either an ideal brickwall or Gaussian

beam pattern as described in Section 2.1.2. The nominal root-mean-square (RMS)

bandwidth of the transmitted signal is Wrms = 13 Mhz and receiver sampling rate

is 160 MS/s. The SNR at the receiver is defined as the ratio of the received power

from each sensor to the noise power added at the collector per snapshot, i.e.,

‖s‖2/2σ2, when the noise is CN(0, 2σ2). Due to oversampling of the received

signal, the noise power is appropriately scaled to maintain the correct SNR in the

signal band. The nominal operating SNR is 2 dB using the threshold calculated

in Section 2.4.1. The normalizing factors for the range and azimuth coordinates

to achieve scale invariance are c/Wrms = 16.4 m and D = 1 m respectively. The

choice and motivation for these normalizing factors are discussed in Section 2.3.1.

2.3.5 Trade-offs between Parameters

In this section, ML localization performance in studied with emphasis on trade-

offs between SNR, signal bandwidth, antenna beamwidth and antenna beamshape.

A single active sensor is localized using the algorithm in Section 2.2.2 using the

normalized RMS error (obtained from scale-invariant quantities) as the perfor-

mance metric. However, the absolute RMS errors are also shown on an alternate

y-axis in the plots. Due to the proportional relationship between antenna beam-

width and N (the number of times the sensor is illuminated), the two terms are

used interchangeably, while the results are presented in terms of N . The nom-
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inal values defined in Section 2.3.4 were used for any parameter not explicitly

mentioned in the simulation results.

Effect of Signal-to-noise Ratio
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Figure 2.8: RMS estimation error in the range estimate versus SNR for different
values of beamwidth: The RMS error in scale-invariant units and in meters are
shown on the 2 y-axes.

In Figures 2.8 and 2.9, the simulated RMS estimation error in the range and

azimuth coordinates are plotted against SNR. The CRLB for the ‘x’ estimate and

union bound (UB) for the ‘y’ estimate are also plotted for comparison. The bounds

predict the trends in the error variance accurately, confirming the insights gained

from the analysis in Sections 2.3.2 and 2.3.3. The RMS estimation error in both

the range and azimuth coordinates decrease with SNR, and the analysis accurately
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Figure 2.9: RMS estimation error in the azimuth estimate versus SNR for dif-
ferent values of beamwidth: The RMS error in scale-invariant units and in meters
are shown on the 2 y-axes.

predicts the expected performance improvement with SNR. Since delay estimation

is asymptotically efficient, the RMS error is expected to achieve the CRLB at

high SNR. However, we observe a gap to the CRLB in the simulations, which

can be attributed to two main factors. First, the validity of the approximation

error (2.4) becomes progressively worse as the beamwidth is increased. In the

far-field approximation (2.3), the effect of the range on the azimuth coordinate

of the sensor is neglected. At the nominal range R = 3000 m and beamwidth

2B = 60 m, the worst case error due to the approximation is B2/2R = 0.148

m, using (2.4) and recalling that the range estimate is the speed of light times

half the round trip time. Second, our localization algorithm finds the range bin
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closest to the true sensor range at high SNR, which leads to residual quantization

error. While this quantization error can be essentially eliminated by interpolation,

we do not attempt to do this here. Instead, we note that the quantization and

approximation errors do account for the gap to the CRLB for our system. For the

system parameters in Section 2.3.4, the quantization interval is ∆ = 0.578 m, and

leads to a quantization error variance of ∆2/12 = 0.0278 m2. According to Figure

2.8, at 5 dB SNR, the observed mean squared error is 0.0808 m2 and CRLB is

0.0455m2. The gap to the CRLB is 0.0353m2 which is well approximated by the

sum of the quantization and approximation errors as 0.0278+0.0217 = 0.0495m2.

Effect of Signal Bandwidth

In Figures 2.10 and 2.11, the RMS estimation error in the range and azimuth

coordinates is plotted versus the normalized RMS bandwidth of the transmitted

signal for different values of N at SNR = 2 dB. The normalized bandwidth is

the ratio of the true bandwidth and nominal bandwidth as defined in Section

2.3.2. The range estimate is inversely proportional to the RMS bandwidth of the

transmitted signal. This is reflected in Figure 2.10, which shows the RMS error

decreasing with the bandwidth and closely matches the CRLB in trend. On the

other hand, the azimuth estimate is independent of the signal bandwidth and

determined solely by the SNR. The agreement in trend between the estimation

error in the ‘y’ coordinate and analytic results in Figure 2.11 also validates this

analysis.
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Figure 2.10: RMS estimation error in the range estimate versus normalized RMS
bandwidth for different values of beamwidth: The RMS error in scale-invariant
units and in meters are shown on the 2 y-axes.

Effect of Antenna Beamwidth

According to the CRLB, the effective SNR for range estimation increases with

N due to noise averaging over multiple snapshots, thereby improving performance.

On the other hand for azimuth estimation, the error variances are dependent

strongly on the SNR and weakly on N . The azimuth resolution is expected to be

fairly insensitive to changes in antenna beamwidth. Figures 2.12 and 2.13, show

the RMS estimation in the range and azimuth coordinates versus N for different

values of SNR along with the analytical bounds, verifying that the dependence on

the beamwidth is as expected.

48



Chapter 2. SAR-like Localization in Imaging Sensor Nets

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
2

3

4

5

6

7

8

Normalized Root Mean Square Bandwidth(BW
rms

/nom. BW
rms

)

N
or

m
al

iz
ed

 R
M

S
 E

rr
or

 in
 Y

 e
st

im
at

e

 

 

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
2

3

4

5

6

7

8

R
M

S
 E

rr
or

 in
 Y

 e
st

im
at

e 
(in

 m
)N = 54

N = 60
N = 66
N = 54(UB)
N = 60(UB)
N = 66(UB)

Figure 2.11: RMS estimation error in the azimuth estimate versus normalized
RMS bandwidth for different values of beamwidth: The RMS error in scale-
invariant units and in meters are shown on the 2 y-axes.

Effect of Antenna Beam Shape

In Figures 2.14 and 2.15, the performance of a more realistic, smooth Gaus-

sian beam, defined in Section 2.1.2, is compared against the idealized rectangular

beam to gain insight into the effect of antenna beamshape. The Gaussian beams

approximate the beamshape of parabolic antennae in the far-field fairly well. The

beamwidth N of the rectangular and Gaussian beams are maintained equal, and

the beamshapes are normalized so that the received power at the collector from

each sensor is NPs in order to isolate the effect of the beamshape. The Gaussian

beam performs significantly better, and its better performance along the azimuth
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Figure 2.12: RMS estimation error in the range estimate versus beamwidth for
different values of SNR: The RMS error in scale-invariant units and in meters are
shown on the 2 y-axes.

direction can be explained by the following two observations. First, the Gaussian

beam has better autocorrelation properties (sharper autocorrelation peak) than

the rectangular beam. Second, with the rectangular beam when the ‘y’ coordinate

of a sensor lies between snapshots j and j + 1, the received signal at the collector

is exactly the same in the absence of noise, and this ambiguity causes performance

degradation. On the contrary, with the Gaussian beam since the received power

at various snapshots is a function of the sensor location, each location has a dis-

tinct received signal in the absence of noise, which leads to better performance.

The improvement in the range estimate is mainly due to the improvement in the

azimuth estimate. Although the algorithm is designed assuming that the range
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Figure 2.13: RMS estimation error in the azimuth estimate versus beamwidth
for different values of SNR: The RMS error in scale-invariant units and in meters
are shown on the 2 y-axes.

and azimuth estimate are decoupled (due to (2.3)), in reality they are not. This

result also justifies the study of the performance of the rectangular beamshape as

a worst case scenario and an upperbound on performance in a practical setup.

2.4 Performance with inter-sensor interference

We now evaluate the performance of the decision-directed localization algo-

rithm in Section 2.2.3. We first establish a termination criterion for the algo-

rithm based on our analysis of noise-limited performance. The performance of the

decision-directed algorithm and the optimal joint ML localization are compared
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Figure 2.14: RMS estimation error in the range estimate versus SNR for different
values of beamwidth for rectangular and Gaussian beams: The RMS error in scale-
invariant units and in meters are shown on the 2 y-axes.

for a small two-sensor example (the joint ML algorithm is too computationally

complex for a larger number of sensors). There is a moderate penalty due to

the loss of optimality, but this appears to be unavoidable, given the complexity

of the jointly optimal algorithm. Finally, we evaluate the performance of the

decision-directed algorithm for a dense sensor deployment.

For dense deployments, inter-sensor interference can cause significant degrada-

tion in detection performance. On the other hand, sensors that are close enough

to interfere with each other may have correlated observations, and it may suffice

to localize a subset of active sensors within such a cluster. This motivates us to

define the concept of detection radius Rd: if the localization algorithm detects a
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Figure 2.15: RMS estimation error in the azimuth estimate versus SNR for
different values of beamwidth for rectangular and Gaussian beams: The RMS
error in scale-invariant units and in meters are shown on the 2 y-axes.

sensor at a given locationX, then it is deemed to have been successful in localizing

any active sensor within a radius Rd of X. In practice, one might set Rd based on

the anticipated spatial correlation in the sensor readings. Thus, a miss occurs if

the decision statistics for all locations within radius Rd of an active sensor are be-

low a threshold. A false alarm occurs at a specific location if its decision statistic

exceeds the threshold, and it is not within Rd of an active sensor. In our numerical

results, the sensors are deployed using a uniform distribution to achieve a density

of 1 m−2 and Rd is measured in meters. In Section 2.4.1, where we determine the

threshold based on a noise-limited analysis, we choose a small value of Rd = 0.5.

In Section 2.4.3, where we investigate interference-limited performance for dense
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deployment, we consider the effect of increasing Rd on the probability of miss, in

order to understand how correlations between sensor observations can ease the

task of localization.

2.4.1 Termination Criterion for Decision-directed Algo-

rithm

We now describe a method to choose a threshold to terminate the sequential

detection algorithm in Section 2.2.3, when it is used to localize an unknown num-

ber of sensors. Under the detection algorithm, we repeatedly search for maxima

in the decision statistic (2.17) until the magnitude of the maximum is below a

threshold. It is difficult to analyze the effect of uncancelled interference on the

performance of the decision-directed algorithm, hence we set the threshold based

on noise-limited performance (i.e., it suffices to consider a single active sensor

when determining the threshold). Letting pmiss denote the probability of miss,

and pfa denote the probability of a false alarm, the tradeoff between pmiss and

pfa is characterized by the receiver operating characteristic (ROC), which plots

pmiss versus pfa along a curve parameterized by the threshold. We use this curve

to read off the threshold corresponding to desired levels of miss and false alarm

probabilities.

Receiver Operating Characteristic(ROC): We use the notation defined in

Section 2.3.3, and compare the accumulated statistics Yl versus a threshold T .

Suppose that there is an active sensor at bin 0, and suppose that bins l ∈ L are
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within radius Rd of bin 0. A miss occurs if Yl < T for all l ∈ L. We obtain an

upper bound on the probability of miss as follows:

pmiss = P (max
l∈L

Yl < T ) ≤ P (Y0 < T ),

Recall that Y0 =
∑N/2

l=−N/2 Z
(s)
l (for a normalized beamwidth of N+1), where Z

(s)
l

are i.i.d Rician random variables, each with mean µs and variance σ2
s . Thus, for

moderately large N , Y0 can be approximated as a Gaussian random variable with

the mean (N +1)µs and variance (N +1)σ2
s . Replacing N +1 by N for notational

convenience, we obtain the following approximation for pmiss:

pmiss ≤ P (Y0 < T )

≈ Q

(
Nµs − T√

Nσs

)
CLT approximation. (2.25)

We now compute an approximation to pfa, assuming that active sensors have

been detected and cancelled. In this case, the accumulated decision statistic Yk

at a location k which is not within Rd of an active sensor is a sum of decision

statistics due to “noise-only” snapshots: Yk =
∑k+N/2

l=k−N/2 Z
(n)
l . Under a central

limit theorem approximation, and replacing N+1 by N for notational convenience

as before, we obtain that

pfa = P (Yk > T ) ≈ Q

(
T −Nµn√

Nσn

)
. (2.26)

The parameters µs, µn, σs, and σn, which determine the ROC, depend on the

operating SNR alone, apart from an arbitrary scale factor (if both signal and

noise are scaled by a factor a, then all of the preceding parameters, as well as
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the threshold T , scale by a, but the SNR and ROC remains unchanged). Figure

2.16 shows the ROC for several values of SNR. The ROC is parametrized by

the threshold T : increasing the threshold increases pmiss and decreases pfa, and

vice-versa when decreasing the threshold.
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Figure 2.16: Receiver Operational Characteristic: pmiss vs pfa for different values
of SNR under the noise-limited setting.

The operating point, in terms of SNR and threshold, is determined by user-

defined tolerances for miss and false alarm. While pfa is the probability of false

alarm at a given location, what is experienced by the user is the false alarm rate

(FAR), defined as the probability that there is a false alarm at some location

which is not within Rd of an active sensor. If there are Mcand candidate locations
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in our discrete grid, a union bound on the FAR is given by

FAR ≤Mcand pfa. (2.27)

Example choice of threshold: Consider user-defined tolerances for the proba-

bility of miss and the false alarm rate as follows: pmiss ≤ 10−2 and FAR ≤ 10−1.

The sensor field is discretized into Mcand = 500000 candidate locations for run-

ning the localization algorithm, so that the requirement on FAR translates to

pfa ≤ FAR/Mcand = 2×10−7. From the ROC, the operating point must lie within

the area enclosed by the dotted lines, and this provides the minimum operating

SNR = 2 dB. To achieve the desired pmiss = 10−2, at this operating SNR of 2

dB (since energy is at a premium, the lowest possible SNR is chosen), a threshold

T is chosen using (2.25). This threshold and operating SNR are used to study

performance of the suboptimal scheme in Section 2.4.3.

While we have used upper bounds on pmiss and FAR in the preceding formula-

tion, this is still not sufficient to offset the effect of inter-sensor interference for a

dense deployment. Thus, in practice, it would be necessary to add a link margin

to the operating SNR determined by the ROC above.

2.4.2 Decision-directed algorithm versus Optimal ML Lo-

calization

The suboptimal decision-directed detection procedure in Section 2.2.3 for mul-

tiple sensor localization was adopted due to the computational complexity of the
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optimal ML algorithm. In Figure 2.17, the performance of this suboptimal al-

gorithm is compared against the optimal algorithm for the simple instance of

two active sensors in the field (when the optimal algorithm is still computation-

ally tractable). The RMS estimation error in the azimuth coordinate is plotted

against SNR for the two algorithms. When there is no overlap between the re-

ceived signals corresponding to the two sensors in either the range or azimuth

directions, then there is no inter-sensor interference. In this case, the suboptimal

and optimal algorithms are identical and have the same performance. Further-

more in our examples, the bandwidth of the transmitted signal is large enough to

provide adequate resolution in the range (or ‘x’) direction. Hence, to study the

effect of inter-sensor interference, we focus on the scenarios where the two sensors

have the same ‘x’ coordinate and are closely enough spaced in the ‘y’ direction to

cause interference.

The simulations were performed on the system described in Section 2.3.4 with

all parameters at their nominal values. In Figure 2.17, the RMS azimuth estima-

tion error in scale invariant units is plotted versus SNR for the two algorithms.

As expected the optimal ML algorithm performs much better and the disparity

increases with SNR. However, at SNR = 4 dB the performance loss is about one

unit, which is acceptable, considering that the computational complexity of the

optimal algorithm is many orders of magnitude larger. As with a single sensor, the

performance for both algorithms improves with SNR. In Figures 2.18 and 2.19,

two instances of multiple sensor detection and localization using the suboptimal
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Figure 2.17: RMS estimation error in the azimuth coordinate versus SNR for
the suboptimal and optimal ML algorithms with two active sensors.

algorithm are presented at SNR = 4 dB such that pmiss = 10−2 and pfa = 2×10−8

(false alarm rate of 10−2).

2.4.3 Simulation Results for Dense Sensor Deployment

In this section, we investigate the algorithm performance in dense deployments,

such as the scenario with 50 active sensors depicted in Figure 2.19. In such sce-

narios, we find through our simulations that a significant subset of active sensors

are not detected, either due to destructive interference between the responses of

nearby sensors (this is found to be the dominant effect in our simulations), or due

to imperfect cancellation of the responses of the detected sensors. As mentioned
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Figure 2.18: Detection and localization performance of suboptimal algorithm
for 10 active sensors: The plot shows the 500m x 500m sensor field with true and
estimated sensor locations.

earlier, it may be acceptable to detect a subset of the active sensors in a cluster

if their observations are spatially correlated. We therefore explore the influence

of the detection radius Rd on the probability of miss, as shown in the simulation

results presented in Table 2.4.3. While we are interested in miss probabilities

of the order of 1-10%, the threshold is chosen based on a noise-limited analysis

for pmiss = 10−3 in order to provision for the additional inter-sensor interference.

From Table 2.4.3, we see that spatial correlation can significantly simplify local-

ization, noting the significant reduction in pmiss as we increase Rd. For Rd = 1, 2

m, the observed pmiss increases with the number of sensors due to increase in the

interference. However, for Rd = 3 m, the pmiss decreases marginally with the
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Figure 2.19: Detection and localization performance of suboptimal algorithm
for 50 active sensors: The plot shows the 500m x 500m sensor field with true and
estimated sensor locations.

number of sensors, since Rd = 3 m is large enough that some undetected non-

interfering sensors randomly fall within Rd of a detected sensor,thus increasing

our count of the number of ‘detected’ sensors. For instance, 2 sensors located

about 3 m apart in the range direction do not interfere with each other. However,

if one sensor went undetected due to noise alone, for Rd = 3 m, this sensor would

be denoted as being detected, reducing the observed pmiss.
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No. of Sensors Rd = 1 m Rd = 2 m Rd = 3 m
10 0.0254 0.0270 0.0151
50 0.1168 0.0518 0.0143
100 0.1818 0.0719 0.0138

Table 2.1: The probability of miss decreases significantly with detection radius
Rd.

2.5 Conclusions

We have shown, using an idealized model, that accurate localization is possible

in large-scale imaging sensor nets with “dumb,” severely energy-constrained, sen-

sor nodes. The localization algorithm amounts to simple two-dimensional matched

filtering for a single responding sensor, which can be extended to locate multi-

ple sensors using successive interference cancelation. The localization algorithm

was also shown to be applicable to a stationary collector with a mechanically or

electronically steered antenna array and required only an appropriate choice of

coordinate system to represent the received signal. Hence, the ML localization

algorithm derived here is used as a significant block in the baseband algorithms

in the imaging sensor net prototype presented in Chapter 3.

The localization accuracy in the range dimension can be improved by the in-

creasing bandwidth of the beacon and in the azimuth dimension by decreasing the

spacing between snapshots, when the effective synthesized aperture is sufficiently

large. Moreover, most realistic antenna beam patterns give better azimuth per-

formance than the ideal rectangular antenna beamshape. In dense deployments,

where responses of proximal active sensors are lost to inter-sensor interference, we
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have shown that the decision-directed algorithm can locate at least one active sen-

sor in each group of closely spaced active sensors. We also studied the detection

of a responding sensor under this idealized one-off keying model in the presence

of multiple sensor interference and characterized the ROC for the detector.
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Chapter 3

Signal Processing for a
Millimeter-wave Prototype

In theory, there is no difference between theory and practice. But, in
practice, there is.

Jan L. A. van de Snepscheut (1953-1994)

In this chapter, we describe a millimeter-wave prototype of an imaging sensor net

and report on the preliminary experimental results demonstrating the capabil-

ity of this architecture to provide good localization resolutions while sustaining

data rates of several kbps. The prototype consists of a stationary collector with

a mechanically steered antenna and extremely rudimentary sensors, and is anal-

ogous to a system with an airborne collector as shown in Section 2.1.3. The

initial implementation of the prototype was a “proof-of-concept” with the col-

lector transceiver built using off-the-shelf components and a printed circuit board

(PCB) sensor. Our goal is to gain a thorough understanding of the imaging sensor

net system so as to design sensor and collector ICs, and develop the associated

signal processing algorithms for data demodulation and sensor localization. In

64



Chapter 3. Signal Processing for a Millimeter-wave Prototype

order to focus on our contribution to the prototyping effort, we present this work

from a signal processing perspective and only describe the prototype hardware in

sufficient detail to gain a functional understanding of its components. Moreover,

we restrict our attention to the data demodulation and range resolution capability

of the prototype since, the sensor can thereafter be localized in three dimensions

by simple application of the localization algorithm presented in Chapter 2.

The main contributions in this chapter are:

1. We provide a system-level description of the millimeter-wave prototype hard-

ware and discuss some of the design choices made.

2. Replacing the hardware components by functional blocks, we design algo-

rithms for processing the collector receiver baseband outputs to demodulate

the sensor data and locate the sensor in range.

3. The methodology, design and preliminary results of our experiments on this

prototype to characterize the data demodulation and range localization per-

formance are presented. These results indicate the feasibility of both the

imaging sensor net concept and the chosen system implementation. How-

ever, the system performance is worse than predicted and reasons for this

discrepancy are discussed.

The organization of this chapter is as follows. The various components of the

millimeter-wave prototype, along with our system design choices, are described in

Section 3.1. The collector receiver baseband algorithms are presented in Section
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3.2. In Section 3.3, experimental results on the data demodulation and range

localization performance are provided. Some of the primary sources of perfor-

mance loss are discussed in Section 3.4 and finally, concluding remarks are made

in Section 3.5.

3.1 The Millimeter-wave Prototype

We begin with an overview of the prototype hardware. While the abstractions

from the localization model in Chapter 2 remain essentially applicable, significant

modifications to the design are necessary to arrive at an implementation with

truly simple sensor transceivers.

Instead of packetized reflection at the sensor, the collector transmits a peri-

odic SS localization code that is continuously reflected by the illuminated sensor.

The sensor also imposes low-rate data modulation on the electronically reflected

collector beacon along with a frequency shift to distinguish the sensor reflection

from backscatter. Correlation of the reflected beacon against the collector’s copy

of the location code creates a radar geometry for range estimation. Further, a

stationary collector with a mechanically steered antenna sweeps the sensor field

to produce a SAR-like three-dimensional response for each reflecting sensor that

is utilized for sensor localization in azimuth and elevation.

The preceding paradigm is applicable to both active sensors, which amplify

the beacon during reflection, and semi-passive sensors that do not. The term
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“passive” refers to the lack of amplification at the sensor, but is qualified by the

term “semi” as there is, nevertheless, a power supply on the sensor to run the

low-power baseband electronics. This terminology is the same as that in lower

frequency RFID systems[16]. Accounting only for free-space propagation, the

use of a semi-passive sensor incurs a 1/R4 loss, where R is the sensor range,

whereas the loss in only 1/R2 for an active sensor. As shown in the link budget

in Section 3.1.1, this enables a range of less than 500 m with the semi-passive

sensor, while ranges of several kilometers are easily achievable with few milliwatts

of transmit power at an active sensor. However, the design of the active sensor

is more challenging, as it must effectively isolate the sensor transmit and receive

chains to prevent oscillation. Hence, in this first generation prototype, we employ

semi-passive sensors.

We chose to employ millimeter wave carrier frequencies in our prototype for the

following reasons. A millimeter-wave design allowed us to miniaturize the sensor

antenna, which remains the largest single component in the sensor even after

integration of the sensor RF circuitry. There is also unlicensed spectrum available

in the 60-70 GHz band that can be used for prototype development. Although

this band suffers significant losses due to oxygen absorption, it is sufficient for

the purpose of demonstrating the feasibility of a typical system. For long-range

applications, we would avoid the oxygen absorption band, using, for example,

millimeter wave frequencies above 70 GHz. Finally, millimeter-wave antennas
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with very narrow angular beamwidth can be obtained that are useful for spatially

separating responses of multiple sensors.

After a discussion of the link budget in Section 3.1.1, the choice of the location

code and sensor parameters are explained in Section 3.1.2. Finally, the collector

transceiver and sensor designs are presented in Section 3.1.3 and Section 3.1.4

respectively.

3.1.1 Radio Link Characterization for Semi-passive and

Active Sensors

The power budget for the communication link between the sensor and the

collector is computed using the Friis’ equation. For the semi-passive sensor, the

transmitted beacon power is received at the collector after attenuation in the

downlink and uplink, and the ratio of the received Pr and transmitted power Pt

at the collector is

Pr
Pt

=

(
Pr
Pt

)

up

(
Pr
Pt

)

down

=

(
DTXDsensλ

2
down

e−αR

(4πR)2

)(
DRXDsensGsensλ

2
up

e−αR

(4πR)2

)
, (3.1)

where DTX and DRX are the collector transmitter (TX) and receiver (RX) antenna

gains, Dsens is the sensor antenna gain, Gsens is the sensor modulation loss, λdown

and λup are the downlink and uplink wavelengths, R is the distance between the

sensor and the collector, and α is the atmospheric attenuation constant, which

takes values in the range 6 − 16 dB/km in the 60 GHz band depending on the
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atmospheric conditions. This computation does not account for losses such as

mismatches, near-field effects and polarization. For a given data rate of r bits/s,

the Eb/N0 = Pr/rFNth, where Nth is the thermal noise density and F is the

receiver noise figure.

On the other hand, when an active sensor is operated in the power-limited

regime (fixed sensor output power), the uplink becomes the bottleneck from the

perspective of power. Therefore, the power received at the collector is a fraction

of the sensor output power Ps:

Pr
Ps

=

(
Pr
Pt

)

up

= DRXDsensλ
2
up

e−αR

(4πR)2
. (3.2)

It is seen from (3.1) and (3.2), that the active sensor has a more favorable

1/R2 fall-off in received power than the 1/R4 fall-off with a semi-passive sensor

with sensor range R. With the collector transmitting at the maximum legal

transmit power of 200 mW (determined by FCC regulation), the system can be

operated at a range of 250 m with a semi-passive sensor sending data at 100

bps and Eb/N0 of 11 dB. On the other hand, an active sensor transmitting 1

mW of power, can be employed up to a range of 5 km and communicate at 100

kbps with an Eb/N0 of 11 dB, even if the oxygen absorption band is employed.

These ranges are computed with the remaining parameters taking the following

values: DTX = 40 dB, DRX = 40 dB, uplink frequency fup = 60.5 GHz, downlink

frequency fdown = 60.55 GHz, Gsens = −5 dB,α = 10 dB/km and receiver noise

figure of 15 dB.
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For the current experimental prototype setup, DTX = 23 dB, since a horn

antenna is used at the collector transmitter (as seen in Figure 3.1), with all other

parameters taking the values defined above. The maximum operating range for

100 kbps data rate at BER = 10−4 is about 9 m using (3.1) with thermal noise.

3.1.2 System Parameter Choices

We discuss here the choice of the location code bandwidth, the sensor frequency

offset and data rate of operation.

The range resolution of the system is dependent on the location code band-

width as seen from the range estimation analysis in Section 2.3.2. Since a periodic

location code is used, a sensor reflection causes periodic peaks in the output of the

range correlator. Therefore, two sensors, whose propagation times to the collector

differ by exactly one length of the location code, cause the same peak pattern

and cannot be separated. This phenomenon is called “range ambiguity” and is

a common shortcoming with radar-like systems that employ periodic signals for

range estimation. In practice, prior information on permissible range , or other

measurements such as received signal strength, may be used to overcome this

problem.

In this experimental setup, a location code that is a pseudo-random noise (PN)

sequence of length N = 26 − 1 = 63 chips (generated using a 6 bit shift register)

with a bandwidth of 20 MHz (chip time Tc = 50 ns) is used. A difference in the

arrival times of reflections of one chip is equivalent to a distance of cTc/2 = 7.5 m,
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where c = 3× 108 m/s is the speed of light. Although a chip time corresponds to

7.5 m, range resolutions significantly smaller than the chip time can be achieved

at sufficiently high SNRs, as illustrated in Section 2.3.5. The location code is

repeated every NTc = 3.15 µs and guarantees unambiguous operation in a sensor

field with a dimension of 472.5 m, which is much smaller than our intended 9 m

range of operation.

To maintain sufficient frequency separation between uplink and downlink (each

has a bandwidth of 20 MHz), a sensor frequency shift of 50 MHz is chosen. Also,

the sensor modulates differentially coded BPSK (DBPSK) data at 100 kbps on

the beacon.

3.1.3 Prototype Collector

The prototype collector shown in Figure 3.1 consists of three modules: an

up/down converter, steerable high-gain antennas, and algorithms for data recovery

and localization. The collector signal processing is discussed extensively in Section

3.2 and hence, the discussion here focuses on the remaining components.

Up/Down Converter

The collector up/down converter translates the location code from baseband to

the carrier frequency on the transmitter side and decomposes the received signal

into the inphase (I-) and quadrature (Q-) channels at baseband on the receiver

side. The location code is upconverted to the transmitter intermediate frequency
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Figure 3.1: Block diagram of the 60 GHz prototype collector (Courtesy: Munkyo
Seo)

(TX-IF) of 20.166 GHz (from a signal generator (S/G)) followed by a frequency

triplication to the ultimate carrier frequency (TX-RF) of 60.5 GHz with a tripler

output power of 7 dBm.

The reflection from the sensor at 60.5 GHz ± 50 MHz is received by a high gain

collector antenna; the double sideband mixer used at the sensor produces a return

at 50 MHz above and below the carrier frequency. A harmonic mixer and block-

downconverter are used to translate the sensor return down to the first receiver
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IF (RX-IF1 = 4.25 GHz) and subsequently the second receiver IF (RX-IF2 = 900

MHz), respectively. This corresponds to demodulating the lower sideband of the

sensor return. Finally, an I/Q demodulator operating at RX-IF2 generates the I-

and Q- channels of the baseband received signal that are digitized using a multi-

channel oscilloscope for subsequent offline signal processing in MATLABr. The

transmitted location code is also captured in a third channel of the oscilloscope

to provide a timing reference for range estimation (as discussed further in Section

3.2.1).

Steerable High Gain Antennas

The benefits of the high gain antennas used in this prototype are twofold.

First, the high gain antennas have proportionally smaller beamwidths as evident

from the relation

D ≈ π

Θ1 Θ2
, (3.3)

where D is the antenna gain, and Θ1 and Θ2 are angular beamwidths (in radians)

of the antenna along two orthogonal directions, respectively. The narrow angular

beamwidths permit spatial separation of responses of multiple reflecting sensors.

Second, the collector can transmit the beacon to sensors farther away with higher

antenna gain at a given operating frequency. For a semi-passive sensor, with the

1/R4 power fall-off with sensor range, this additional gain is vital to prototype

operation. The gain of the TX and RX antennas are DTX = 23 dB and DRX = 40

dB. The antenna patterns of the TX and RX antennas are circularly symmetric
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Figure 3.2: A photograph of the collector brassboard setup. (Courtesy: Munkyo
Seo)

with half-power beamwidths of 14 degrees and 2 degrees, respectively. Notice,

in Figure 3.1, that the TX chain has a horn antenna whereas the RX chain has

a Cassegrain antenna. The TX and RX antennas are mounted on a motorized

mount, using which the beacon can be steered in the azimuth and elevation with

sub-degree accuracy. Figure 3.2 is a picture of the collector brassboard setup.
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3.1.4 Prototype Sensor

At the sensor, the incident collector beacon is modulated with the local sensor

data and frequency shifted (to distinguish it from direct ground returns at the

collector), before being re-radiated back towards the collector. There is no attempt

to recover the timing of the location code in the beacon to align the symbol

transitions with location code chip transitions or to lock on to the carrier frequency

to ensure phase synchronicity.

The block diagram of the 60 GHz prototype sensor is shown in Figure 3.3.

The sensor consists of the RF circuitry implemented on low-cost Rogers 4005C

substrate and a data generator built using digital logic ICs. A linearly-tapered

open-slot antenna (LTSA) is chosen for its wideband operation and frequency-

independent geometry that makes it robust to manufacturing errors. The designed

antenna has > 10 GHz bandwidth centered at 60 GHz. This antenna provides an

effective gain (accounting for losses) of 7 dB within a half-power beamwidth of 40

degrees.

The LTSA is terminated by a PIN diode. The impedance presented to the

incident collector beacon is switched between two states with approximately 180

phase difference by turning the input bias on the diode on and off. Thus, the

beacon is reflected with a relative phase shift of 0 or 180 degrees, which is equiva-

lent to modulating the beacon with binary antipodal data (consisting of +1 or -1

symbols). Instead of implementing the data modulation and the frequency shift

separately, the local data and 50 MHz digital clock for the frequency shift are
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Figure 3.3: A prototype 60-GHz low-cost passive sensor with a wideband antenna
and BPSK modulator. The size of RF circuitry is 15mm by 10mm. (Courtesy:
Munkyo Seo)

jointly imposed on the diode bias via an XOR gate. The frequency shift is, hence,

introduced digitally and results in a reflected signal at 50 MHz above and below

the carrier frequency.

The digital logic on the sensor can be used to generate a repeating 16-bit

sequence (selected by switches on the sensor) at the designated data rate (one

of 1,10 or 100 kbps). In the current version of the sensor, the PIN diode draws

a significant amount of current (∼ 7 mA of dc current from a 3 V supply when

forward biased), which retracts from our assumption of a low-power sensor. The

dc power consumption will be significantly lower (in the µW), however, when the
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RF circuitry is transitioned on to silicon with the exception of the LTSA, which

must remain off-chip due to its considerable size.

3.2 Collector Baseband Processing

In this section, we develop algorithms for data collection and localization in the

millimeter-wave prototype. The algorithm must operate on the I- and Q- channel

data captured with the collector antenna pointing along different directions and

extract the data modulated on the location code, in addition to locating the

sensors in range, azimuth and elevation. Since the receiver outputs from multiple

snapshots sampled at several times the chip rate need to be processed jointly

at real-time speeds, non-decision directed “one-shot” estimation strategies are

adopted whenever possible.

We formulate this coupled demodulation and location estimation problem ac-

counting for two important factors. First, due to component tolerances, there

is variation in the frequency offset applied at the sensor. This leads to residual

frequency modulation when fixed IFs are used at the receiver. Second, the lack

of synchronization between the symbol transitions of the sensor BPSK data and

chip transitions of the location code makes the demodulation tightly coupled with

the range correlation (despreading), which is unlike a standard SS system.

We present only the part of the baseband processing for data collection and

range localization, but we indicate how the output of the range processing directly
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leads to the sensor location in azimuth and elevation through application of the

algorithms in Chapter 2. Furthermore, we simplify the exposition by assuming a

single reflecting sensor placed along the direction of maximum collector antenna

gain.

A model for the signal received at the collector after reflection at the sensor

is derived in Section 3.2.1. After initial delay and frequency estimation, the data

is demodulated as shown in Section 3.2.2. Finally, the demodulated data and

estimated frequency offset are used to estimate the location of the sensor in Section

3.2.3.

3.2.1 Received Signal Model

We now develop a collector received signal model for the purpose of designing

the signal processing algorithm, while assuming ideal models for the hardware

components and LOS propagation between the collector and sensor. The signals

are represented in complex baseband notation using the second IF frequency (IF2)

as reference, with time and phase origins referred to the collector. Thus, the real

and imaginary parts of the complex baseband received signals are the in-phase

(I-) and quadrature (Q-) channel outputs of the receiver. Since the output of

the receiver is oversampled sufficiently, we present the algorithms assuming a

continuous-time receiver output.

Let one period of the SS location code transmitted by the collector be s(t) of

length N chips and chip time Tc. The SS location code has a duration Tlc = NTc
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and each chip is encoded using BPSK. A sensor at a range RS imposes a frequency

shift fOFF on the beacon and sensor DBPSK data is

b(t) =
∑

l

dl p(t− lTb − δ), (3.4)

where {bl} are the BPSK symbols that are differential coded as {dl = d∗l−1bl},

p(t) is the symbol pulse shape, Tb is the symbol interval (duration of p(t)), and

δ is timing offset between the collector and sensor clocks. The effective symbol

pulse shape resulting from the semi-passive sensor design is an ideal brickwall of

length Tb. Recall also that the sensor and the collector are not time synchronized.

Suppose that the nominal receiver LO frequency fOFF is ∆f Hz from the actual

frequency of the sensor reflection due to uncertainties in the magnitude of the

sensor frequency shift.

Using the above notation and grouping together unknowns wherever possible,

the signal at the output of the collector receiver chain can be written as

yC-Rx(t) = A b(t)︸︷︷︸
Data

e2π∆ft+ψ
∑

k

s(t− kTlc − 2τ)︸ ︷︷ ︸
Range

+n(t). (3.5)

where A is the cumulative amplitude of the received signal, ψ is the phase offset

between the collector and sensor LOs, τ is the one-way propagation time between

the collector and the sensor, and n(t) is the AWGN in the received signal from

both the collector receiver and sensor transceiver. It is clear from (3.5) that the

sensor data and sensor location information are tightly coupled in the received sig-

nal, and the residual frequency modulation must also be undone before the data

or the range can be estimated. The angular location of the sensor is estimated by
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leveraging the variation in the received signal amplitude A with different orienta-

tions of the collector antennas. Although joint estimation of all the unknowns is

optimal, it is computationally intensive.

The system parameters are chosen such that the bandwidth of the location

code ∼ 1/Tc is much higher than than the residual frequency offset ∆f and data

rate 1/Tb. Such a choice ensures that the phase change caused by the frequency

offset over one period of the location code Tlc is not significant (∆fTlc ≪ 1), and

that there are a large number of the location code repetitions in one bit period

(i.e., Tb ≫ Tlc). Since there are a large number of location code repetitions in one

bit period, the phase coding in only a small fraction of location code repetitions

is disrupted by symbol transitions (Recall that the chip transitions in the location

code and bit transitions are not aligned).

The matched filtering with the location code can, thus, be performed without

significant influence from the residual frequency offset and data demodulation.

The received signal is first processed to estimate the residual frequency offset, and

then the data. Soft estimates of the range can be obtained after removing the

influence of the data and the residual frequency modulation. When data from

multiple snapshots are available, these soft estimates can be combined across

snapshots to estimate the ultimate sensor range and angular location. The block

diagram of the complete signal processing algorithm is shown in Figure 3.4 and

each block is elucidated below.
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Figure 3.4: Block diagram of the Signal Processing Algorithm

Location Code Matched Filter: The received signal yC-Rx(t) is matched filtered

against the location code s(t) neglecting the effects of the residual frequency mod-

ulation and data:

yMF(t) = yC-Rx(t) ⊗ s(t)

≈ A b(t)e2π∆ft+ψ
∑

k

Cs(t− kTlc − 2τ) + n′(t), (3.6)
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where ⊗ represents convolution and Cs(t) = s(t) ⊗ s(t) is the autocorrelation

function of the location code. If a sensor reflection is present, a peak in the

matched filter (MF) output corresponding to the sensor range (2τ) is obtained

for each cycle of the location code and these peaks are exactly separated by Tlc

seconds in the absence of noise, as seen from (3.6).

Location code Timing Reference: The definition of the propagation delay 2τ in

(3.6) assumes that the location code is timed by an ideal clock with no drift and

therefore, the periodicity of the transmitted beacon is exactly Tlc. To compensate

for this possible drift, the propagation delay 2τ is measured differentially between

the time each repetition of the location code is sent and the time it is received

after reflection. To aid with this measurement, the transmitted location code

is also captured on a separate oscilloscope channel yref(t) (see Section 3.1.3),

and is matched filtered against the location code. The peaks in this MF output

provide the time when each copy of the location code was transmitted. To keep

the notation simple, we retain the representation in (3.6) with each location code

repetition beginning at t = kTlc.

The peaks in the MF output yMF(t) in (3.6) are scaled by complex factors that

depend on the residual frequency offset and the modulating data during that loca-

tion code cycle. Since, by design, there are multiple peaks in each symbol interval

and residual frequency modulation period, this sequence of complex factors is an

oversampled version of the data stream with the residual frequency modulation.

When multiple sensors respond in a snapshot, each sequence of peaks in the MF
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output contains the data corresponding to different reflecting sensors and provides

multiple access interference suppression as in a standard SS system.

Coarse Delay and Frequency Offset Estimation: In order to extract this se-

quence of complex factors, an estimate of the location of the correlation peaks is

necessary. However, to reliably estimate the peak location and capture most of

the peak energy, it is necessary to average noise out over multiple repetitions of

the correlation peak, especially at low SNRs. But the presence of the unknown

data and frequency offset do not permit this averaging. Since the data rate is

low, the coarse delay and frequency can be jointly estimated. The MF output

yMF(t) is coherently averaged for each of several discrete hypotheses of the delay

and frequency offset, and the pair of hypotheses that captures most of the signal

energy is chosen to correspond to the reflecting sensors. In essence, we generate

a delay-frequency profile of the received signal and search for sensors in this two

dimensional space:

Ydelay-freq(t, w) = |
∑

k

yMF(t+ kTlc)e
−wk|2, t ∈ [0, Tlc),

≈ |A
∑

k

∑

l

Cs(t+ (k − l)Tlc − 2τ)

e(2π∆fTlc−w)k+ϕ + n′′(t)|2, t ∈ [0, Tlc), (3.7)

where ϕ = ψ + 2π∆ft and n′′(t) = n(t+ kTlc). For a single reflecting sensor, the

best pair of hypotheses for the coarse delay and and residual frequency offset is

(T̂ , ∆̂w) = arg max Ydelay-freq(t, w). (3.8)
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and the corresponding estimate of the phase offset is

ϕ̂ = ∠

∑

k

yMF(T̂ + kTlc)e
−∆̂wk.

We can now compute the peak location and parameters of the residual frequency

modulation as τ̃ = T̂ /2, and

∆̂f =
∆̂w

2πTlc
and ψ̂ = ϕ̂− 4π∆̂fτ̃ , (3.9)

respectively.

Since the I- and Q-channel signals are already sampled in time, these samples

naturally provide a set of coarse “delay bins” to search over. A periodogram

is constructed for each delay bin, which is efficiently computed using the FFT.

Moreover, as this FFT can be computed on the MF output spanning a length of

time smaller than the bit interval, the effect of data modulation on the frequency

and delay estimate can be kept to a minimum. This approach also provides an

additional dimension to separate sensors over, for e.g., two sensors with similar

ranges to the collector that would normally be hard to separate, could potentially

be separated now, if they are sufficiently apart in frequency.

Collection of Peaks in the MF output: The coarse estimate 2τ̃ can now be used

to extract the sequence of peaks in the MF output:

ypeaks[k] = yMF(kTlc + 2τ̃)

≈ A′ b(kTlc + 2τ̃) e2π∆f(kTlc+2τ̃)+ψ +N [k], (3.10)
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where N [k] is a discrete white noise sequence and A′ is the signal amplitude

including the MF gain. The noise is white as the output of the MF is sampled

every Tlc secs maintaining the independence between samples.

Frequency Offset Compensation: The residual frequency modulation in ypeaks[k]

can be canceled by appropriately rotating the phase of the peak samples using

the estimated residual frequency offset:

ydata[k] = ypeaks[k] e
−2π∆̂fkTlc−ϕ̂

= A′ B[k] +N ′′[k], (3.11)

where b(kTlc + 2τ̃) = B[k] is the datastream b(t) sampled at a rate 1/Tlc. We

are, thus, left with the problem of decoding DBPSK data in AWGN. Our design

choices ensure that the sampling rate 1/Tlc is larger than twice the data rate 1/Tb,

and hence, ypeaks[k] reliably represents the data.

Next, data is demodulated from ydata[k] in (3.11) (outlined in Section 3.2.2).

Finally, using the demodulated data and estimated residual frequency offset, an

estimate of the sensor range is obtained (described in Section 3.2.3).

3.2.2 Data Extraction

We describe, in this section, the symbol timing recovery and data demodula-

tion algorithms.

Symbol Matched Filter: The datastream in (3.11) that is embedded in AWGN

can be recovered by matched filtering with the symbol pulse shape p(t). Define
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the sampled symbol pulse shape P [k] as

P [k] = p(kTlc) k = 1, . . . , Nb,

and Nb =
⌊
Tb

Tlc

⌋
as the number of samples per symbol interval. The output of the

symbol MF (SMF) is

ySMF[k] = P ∗[−k] ⊗ ydata[k]. (3.12)

But, the optimal times for sampling the SMF output are not known. Therefore,

the data symbol clock must also be recovered from the SMF output.

Symbol Clock Recovery: In [72], a detector for a timing recovery loop in a

BPSK system is presented that requires only two samples of the SMF output per

symbol, one of which is used to make symbol decisions. The averaged error signal

from the detector is used to adjust the symbol clock that samples the SMF output.

The error signal is generated from the SMF output sampled at rate 2/Tb, y[k]:

ut[k] = y∗[k − 1](y[k] − y[k − 2]). (3.13)

The clock produces the samples for optimal symbol decisions when the average

of this error signal ut[k] is driven to zero. This approach for clock recovery also

does not require phase synchronization, which provides added robustness against

errors in canceling the residual frequency modulation.

However, in the prototype, the output of the SMF yMF[k] is already “sampled”

at a rate 1/Tlc, which is, nevertheless, much higher than the required sampling

rate of 2/Tb. Implementation of the timing recovery loop[72] in a discrete system

(with some fixed sampling rate) requires interpolation and resampling to compute
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the SMF output values at the optimal sampling instants (see [73] for details). This

approach is beneficial, however, only when the system sampling rate is comparable

to the symbol rate.

We take a simpler approach here, in which the continuous-time timing recovery

loop in [72] is implemented directly using the oversampled SMF outputs. The

necessary error signal at a rate of two samples per symbol is generated from

yMF[k]:

u[k] = ySMF[k − ⌊Nb/2⌋](ySMF[k] − ySMF[k −Nb]). (3.14)

The error signal is averaged (recall the loop filter operates on the error signal at

two samples per symbol) using a moving average filter of length Nloop as

uavg[k] =

Nloop∑

l=1

u[k − l ⌊Nb/2⌋].

This uavg[k] is a clock signal of period Nb for sufficiently large Nloop. As in a

standard clock recovery loop, the zero-crossing of the clock signal with a negative

slope is a stable operating point. Instead of interpolating the signal yMF[k] to

obtain the MF output at the precise zero-crossing of uavg[k], we pick the sample

index k0 closest to the negative going zero-crossing during each period of the clock

signal uavg[k].

Let the sequence of optimal sampling instants recovered by the loop be

I = {k+ ǫ : uavg[k] > 0 and uavg[k+1] < 0, ǫ =
1 + sgn(|uavg[k]| − |uavg[k + 1]|)

2
}.

I will be an arithmetic progression with increments of about Nb, if the clock

recovery is functioning properly.
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Symbol Decisions: The BPSK data coded differentially as DBPSK symbols in

B[k] can be decoded as

b̂l = Re { y∗MF[I[l − 1]] yMF[I[l]] } , l = 2, . . . , |I|. (3.15)

The differential encoding makes the demodulation resilient to errors in the residual

frequency cancelation in (3.11).

3.2.3 Locating the Sensor in Range

The residual frequency estimate and demodulated data are now used to esti-

mate the sensor range.

Data and Frequency Offset Compensation: For the purpose of data demodula-

tion, the coarse delay was estimated using the delay-frequency profile. Although

this approach is sufficient to extract the sample sequence containing the data, for

range estimation, sub-sample delay resolution becomes necessary. As a first step,

effects of the data and residual frequency modulation on the MF output (3.6) are

undone:

ycomp(t) = yMF(t) b̂(t) e−2π∆̂ft−ψ̂

≈ A
∑

k

Cs(t− kTlc − 2τ) + n′(t), (3.16)

where ∆̂f = ∆̂ω/Tlc and ψ̂ = ϕ̂ + 4π∆̂f τ̃ from (3.10). Although it appears from

(3.16) that ycomp(t) is equivalent to the output of the MF in the absence of data

and residual frequency offset, (3.16) is strictly an approximation. The symbol
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transitions in the data alter the phase coding on the location code destroying its

autocorrelation properties. The output of the MF in such situations is unsuitable

for the purpose of accurately estimating τ .

Soft Delay Estimation: One approach to overcoming this problem involves

compensating for the data and residual frequency modulation prior to the MF

and repeating the location code matched filtering step in (3.6) on this corrected

data. This approach clearly incurs a huge computational penalty due to the

repeated MF operation. In order to avoid this added computational burden, we

use the compensated MF output in (3.16), but drop all the cycles of the location

code that contain a symbol transition. Since there are sufficiently many location

code cycles in every symbol interval and the residual frequency modulation causes

very little phase variation in a cycle duration Tlc, the cycles with no symbol

transitions are equivalent to MF outputs in the absence of data and residual

frequency modulation. Since the modulating data sequence b̂(t) has already been

estimated, the instants when symbol transitions occur are also known.

Let J denote the set of indices of the transmitted location code cycles that do

not contain symbol transitions,

J = {k : sgn(b̂(t)) = ǫ, ∀ t ∈ [kTlc, (k + 1)Tlc), and ǫ = ±1}.
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It is now simple to average multiple periods of the MF output that are aligned in

phase to obtain one period of the MF output that can be used for localization:

yrange(t) =
∑

k∈J

ycomp(t+ kTlc) t ∈ [0, Tlc)

= A
∑

k∈J

∑

l∈J

Cs(t+ (k − l)Tlc − 2τ) + n′(t+ kTlc), t ∈ [0, Tlc)

= A |J |Cs(t− 2RS/c) + ñ(t), (3.17)

where the variance of the noise ñ(t) is 2|J |σ2 and we make explicit the dependence

of the averaged MF output on the sensor range RS. The effective SNR for estima-

tion of τ , thus, improves by a factor |J |. The peak in yrange(t) gives the estimate

of the round-trip delay 2τ̂ and hence, the range estimate is given by R̂S = cτ̂ ,

where c is the speed of light. With sampled receiver outputs, the resolution in

this estimate is limited by the sampling interval, but the range estimate can be

improved by interpolating the MF output using the autocorrelation function of

the location code Cs(t).

Observe that yrange(t) is identical to the output of the range correlation in our

idealized model in Section 2.2 with the exception of the frequency offset, which

has been already compensated for in (3.16):

yrange(t) = 〈r(t), s(t)〉. (3.18)

As the range correlation output is available in the form of yrange(t), an azimuth

and elevation matched filtering across multiple snapshots, as indicated in Section

2.1.3, can be used to locate the sensor in three dimensions.
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3.3 Experiments on the Prototype

In this section, the preliminary results of single sensor experiments performed

on the prototype described in Section 3.1 using the algorithms in Section 3.2

are presented. The aim of these experiments were primarily to demonstrate the

feasibility of the collector-driven imaging sensor net concept. In addition, the

experiments were used to (a) verify the power-budgets for the communication link,

(b) understand the bottlenecks involved in the development of the sensor ICs and

(c) development and testing of signal processing algorithms. The experimental

design and methodology chosen to characterize the performance of the prototype

are described in Section 3.3.1. The results of the data demodulation and range

estimation performance tests are presented in Section 3.3.2.

3.3.1 Experimental Methodology

We begin by describing the apparatus for capturing the received signal from

the prototype. As seen in Figure 3.1, the I- and Q- channel outputs of the de-

modulator, and the transmitted location code (as a timing reference) are captured

using the Agilent 6104 oscilloscope as an analog-to-digital converter (ADC). The

received signals are sampled at 80 MS/s, which is four times the chosen location

code chip rate of 20 MHz, at a resolution of 8 bits per sample. Since the oscillo-

scope does not operate in a real-time capture mode, the desired channels need to

be sampled and stored in the oscilloscope memory first before the sampled signals
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can be transferred to a computer running MATLAB using a USB link. We are,

therefore, limited in our capture capability by the oscilloscope memory depth to

50 ms of signal per channel at this sampling rate, and multiple captures of 50 ms

became necessary to obtain sufficient number of bits for BER performance testing.

These preliminary experiments were designed to study the data collection and

range localization performance of the prototype and the effect of one on the other.

These single-snapshot experiments are important for understanding the working

of the multi-snapshot azimuth and elevation processing. The experiments were

performed with the sensor at different distances from the collector, which gives

rise to links with different effective Eb/N0.

We perform a variety of experiments at each sensor location. The system is

operated in four settings with the collector either transmitting the location code on

a carrier (upconversion ‘on’) or a single carrier frequency tone (upconversion ‘off’),

and with the sensor either modulating (data modulation ‘on’) or not modulating

the beacon (data modulation ‘off’). The frequency shift at the sensor, however,

is always imposed on the reflection.

1. The Pilot Mode: There is no data modulation at the sensor and the location

code upconversion is also turned off. This setup is used to measure the Eb/N0

for the communication link at each range. The received signal consists of

only the sensor frequency offset in AWGN. The parameters of the sinusoid,

noise variance and finally theEb/N0 at the desired data rate can be estimated

using the standard ML method in [74].
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2. The Continuous-wave (CW) Mode: The data modulation at the sensor is

turned on but the location code upconversion remains off. This setup is

used to measure the BER at each range independent of the location code.

3. The Ranging Mode: This is complementary to the CW mode, and is equiv-

alent to the idealized system in Chapter 2. The range estimate in this mode

is used to observe the effect of data modulation on ranging.

4. The Nominal Mode: The system is operated in the standard setting with

both the data modulation and location code.

3.3.2 Results

The experiments were performed at a data rate of 100 kbps. Since we focus on

the data collection and range estimation performances, the collector was manually

oriented to point directly at the sensor with the aid of a spectrum analyzer. We

exploited the fact that the sensor reflection has maximum power when the collector

antenna is pointed directly at the sensor. At each sensor location, 100000 bits

of data were captured to measure BER with. The experiments were performed

in a long rectangular hallway in the Engineering Sciences Building (ESB) that

measures 2 m×50 m. The sensor was located at distances between 3.6 m (12 ft)

and 8.54 m (28 ft) from the collector in steps of 0.61m (2ft). The signal captured

at the receiver also incurs circuit delays that adds an offset to the range estimates.

This offset remains reasonably constant (there is some variation with temperature)
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and can be calibrated by estimating the range of a sensor at a known distance.

The offset is calibrated using the range estimate at the highest SNR, and this

computed offset is subtracted out of the range estimate.

In Figure 3.5, a comparison of the BER performance of the prototype under

the nominal and CW mode at 100 kbps is shown. The Eb/N0 for each sensor

location is measured from the pilot mode experiments, with the smallest Eb/N0

in the plot corresponding to the maximum range of 8.54 m. The measured BER

for distances less than 5.5 m was less the 10−5 (no errors were found in 100000

bits). We observe that the BER measured in the nominal mode is only marginally

worse (< 1 dB) compared to the CW mode, and we can, therefore, conclude that

data demodulation is not significantly affected by the presence of the location

code. Nevertheless, the BER in the nominal mode is about 6-7 dB worse than

the expected BER for DBPSK modulation[75] at the same Eb/N0. We discuss the

possible causes for this gap in Section 3.4.

In Figure 3.6, the Eb/N0 measured using the pilot mode is plotted against the

expected Eb/N0 using the radio link characterization in Section 3.1.1 with thermal

noise and receiver noise figure of 15 dB (tests of the receiver hardware showed that

the noise figure is rather high). We, thus, verify that the collector received power

does indeed fall as the fourth power of the range of the reflecting sensor. For

instance, we can see, from Figure 3.6, that the Eb/N0 drops by approximately 12

dB (16 times) when the range is doubled from 4 m to 8 m. Another factor that

has been incorporated into the calculation is the power loss due to the “near-field”
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Figure 3.5: Prototype BER performance at 100 kbps: The observed BER under
the nominal and CW modes were compared using the pilot mode to estimate the
Eb/N0.

effect. The Friis’ formula for free space propagation holds good only in the far-

field of the antenna. But, the operating sensors ranges in these experiments are

not large enough to be considered far-field, and hence result in approximately 3

dB and 0.5 dB loss compared to the link-budget at 3.6 m and 8.5 m, respectively.

The mean estimated sensor range from the 20 captures is plotted against the

actual sensor collector distance in Figure 3.7. The soft range estimate for each

capture was obtained by averaging and interpolating 500 repetitions (free of bit

transitions) of the location code using the algorithm described in Section 3.2.3.
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Figure 3.6: Verification of Radio Link Characterization: The Eb/N0 measured
from the pilot mode and computed using the link budget in Section 3.1.1 for
different sensor ranges.

The offset due to circuit delays can be seen and remains roughly constant at dif-

ferent ranges as expected. Moreover, the mean estimated range from the ranging

and nominal modes are in close correspondence, highlighting a negligible influence

of data modulation on the range correlation and estimation.

The offset in the range estimate is computed to be 12.7 m using the mean range

estimate at the highest Eb/N0 (at 3.6 m). Using this offset correction, the RMS

localization error for the ranging and nominal modes is shown in Figure 3.8. Our

conclusion that the localization is not significantly affected by data modulation is
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Figure 3.7: Variation of estimated range with sensor collector distance: Mean
estimated sensor range versus true sensor collector distance under the ranging and
nominal modes. The straight line (for reference) has unit slope and passes the
through mean estimated range for 3.6 m range.

reinforced by this plot. We achieve about 10 cms range accuracy at all ranges with

300 interpolation points in every chip length. We observe that the performance is

interpolation-limited (interpolation interval = 7.5/300 = 2.5 cms) and not noise-

limited, which is the reason for the constant performance at both low and high

SNRs.
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Figure 3.8: RMS localization error at different sensor locations: The RMS lo-
cation errors in the ranging and nominal modes are plotted at different sensor
locations. The offset in the range estimates is computed using the mean location
estimate in the nominal mode for a range of 3.6 m.

3.4 Discussion of Issues and Possible Fixes

The effective loss of about 6-7 dB in the data demodulation in the experimental

results can be attributed to a combination of several factors. We now discuss some

of the issues observed in this system:

1. Noise floor increase: The frequency triplication of the 20 MHz location code

in the collector upconverter shown in Figure 3.1 leads to spectral growth (in-

termodulation products) up to a bandwidth of 60 MHz. Since the uplink

and downlink frequencies are separated by only 50 MHz (sensor frequency
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shift) and the collector transmitter and receiver are co-located, there is leak-

age from the transmitter into receiver passband leading to an increase in the

noise floor. The increase in noise floor was experimentally measured as the

difference in the receiver output power between the ranging mode and the

CW mode in the absence of a sensor. This experiment revealed that there

was an increase of 2.2 dB in the noise floor due to leakage from the trans-

mitter.

This issue can be easily addressed by increasing the frequency shift at the

sensor or by replacing the tripler with a heterodyne upconverter. Although

the current PCB sensor does not permit an increase in the frequency offset,

the recently fabricated CMOS IC sensors are capable of producing frequency

shifts of several 100 MHz. Future design of the collector IC will also eliminate

the problem posed by the tripler.

2. Interference due to direct return: The direct return of the transmitted bea-

con from objects like walls and trees, has significantly more power than the

sensor return, especially when the sensor is far away. The transmitted sig-

nal and therefore, the direct return has a 60 MHz bandwidth due to tripler.

Further, the anti-aliasing filter at the input to the oscilloscope has a 3-dB

bandwidth of about 25 MHz (Recall sampling rate is 80 MS/s). Hence, the

frequency shift of 50 MHz is also not sufficient to prevent the direct return

(which is 10s of dB above the signal level) from entering into the receiver

passband and causing interference. The 2.2 dB increase in the noise floor
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could, possibly, have a contribution from the direct return as well. This

appears as spurious sensor peaks in the delay-frequency analysis disrupting

the signal processing algorithm. However, in practice, the knowledge of the

location of the aliased direct return can be used to eliminate these spurious

peaks. As with the noise floor increase, an increase in the frequency shift

should fix this problem.

3. Distortion from frequency tripler: The frequency triplication of the carrier

with the location code also distorts the location code affecting its autocorre-

lation properties. Simulations using an ideal frequency tripler showed that

correlation of the received signal with the undistorted location code tem-

plate can lead to a loss of about 1 dB in the worst-case. The solution to the

noise floor increase will alleviate this problem as well.

4. Lack of symbol pulse shaping: As described in Section 3.1.4, the sensor data

modulation is performed digitally using an XOR gate. The effective pulse

shape for this design is standard brickwall, which is not bandlimited. At a

data rate of 100 kbps, the symbols have significant spectral components up

to a bandwidth of about 300 kHz. The location code repetition rate (317

kHz) is the effective “rate” at which the symbol MF is sampled (see Section

3.2.2). Therefore, aliasing of the high frequency spectral components of

the data symbols into the lower frequencies occurs, and causes inter-symbol

interference. Unfortunately, this is the cost of having extremely minimalist
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sensor design and the best immediate solution is to operate the system at

data rates significantly lower than the location code repetition rate.

5. Range Correlation loss: In the signal processing algorithm, the received

signal is correlated against the location code template neglecting the effect

of the bit transitions. As mentioned earlier, symbol transitions destroy the

correlation properties of the location code. At a data rate of 100 kbps, there

are about 3.1 periods of the location code in every symbol interval. Since

the correlation peaks of the location code are used as symbol samples for the

bit demodulation, the loss of signal correlation peaks due to bit transitions

can reduce the energy per bit especially at these high data rates. Moreover,

since symbol matched filtering cannot be performed using 3.1 samples, about

10 log10(3.1/3) = 0.2 dB is lost by using a symbol width of 3 samples.

Correlation of the received signal using subsequences (for instance, two

halves) of the location code, and then combining these partial correlations in

a decision directed manner (based on the observed bit transitions) can help

recover a large fraction of the lost energy in the correlation peaks. There is,

nevertheless, a higher computational and storage cost for manipulating MF

outputs using multiple subsequences.

6. Non-decision-directed signal processing: The single shot estimation proce-

dures adopted in the signal processing algorithm clearly perform worse com-

pared to decision-directed or iterative procedures, although we are unaware
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of the exact loss due to this suboptimality. A simple improvement to the

algorithm would be to replace the timing recovery and symbol demodulation

by the decision-directed scheme suggested in [75]. As suggested in the discus-

sion on the range correlation loss, especially at data rates close to the loca-

tion code repetition rate, an iterative loop involving range matched filtering-

frequency estimation-data demodulation is necessary to operate close to the

theoretical limits.

3.5 Conclusions

We have successfully demonstrated the feasibility of this “proof-of-concept” of

an imaging sensor net with a stationary collector. Baseband processing algorithms

for the collector receiver were developed for data demodulation and range localiza-

tion. The output of the range localization can be used to locate the sensor in three

dimensional space with the ML localization algorithm developed in the Chapter 2.

We simplified the signal processing by choosing system parameters appropriately

and achieved low algorithmic complexity by resorting to non-decision-directed

schemes.

The proposed algorithms were used to perform indoor single sensor experi-

ments on the prototype. The results, although promising, indicate a 6-7 dB loss

in the BER performance. The range localization, on the the other hand, is lim-

ited by the interpolation resolution, since the localization SNR is high. The loss
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in performance can be attributed to a combination of several factor both in the

hardware and in the signal processing, and possible solutions to several issues

are discussed. The 1/R4 variation in the reflected power received from a sensor

at range R and the radio link characterization were both verified experimentally.

Nevertheless, these are but initial steps in our greater goal of deploying an imaging

sensor net in the real-world and these preliminary results have provided us with

many insights into designing the next generation of this prototype.
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Angle-of-Arrival-based
Localization using a Network of
Collectors

Our goal, in this chapter, is to gain fundamental insight into cooperative lo-

calization of a source by a network of geographically-dispersed receivers using

AoA measurements. Such source localization problems have attracted a lot of

attention particularly in the context of cellular systems, where the network of

base stations (BSs) is required to locate a transmitting cell phone in emergency

situations in accordance with the E-911 FCC mandate. The state-of-the-art local-

ization solutions in cellular systems can be classified into the collector/BS-based

or handset-based categories. In the former, the network of BSs locate the phone

using time-difference-of-arrival (TDOA), AoA, time-of-flight (TOF), and multi-

path profiling while in the latter, TDOA is measured at the phone rather than

the BSs. These techniques provide localization accuracies between 50 to 200 m

depending on the environment.
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In this chapter, we consider AoA measurements alone, since they only require

that each receiver has a calibrated antenna array with known orientation and loca-

tion. It is assumed that the receivers can coordinate to pool all the AoA estimates

corresponding to a given source (e.g., using coarse timing synchronization between

the receivers to associate AoAs from a given source based on time-stamps). These

receivers can, therefore, be implemented at low cost without the need for the

stringent time-synchronization as required by TOF and TDOA. Although RSS

can also be measured using low-cost receivers, RSS measurements are known be

notoriously unreliable.

Moreover, LOS between the receivers and the source is typically a prerequi-

site for accurate source localization. In practice, due to scattering and reflection

at surfaces, NLOS multipath can cause large deviations (outliers) in the mea-

surements that can result in poor localization performance, if not accounted for.

Hence, we develop models and algorithms for the AoA measurements for han-

dling NLOS scenarios considered here. Performance improvements possible by

using additional forms of location information such as TOF or RSS measurements

requires further exploration and is left as a topic of future work.

Although our initial investigation of this problem was in the context of a

sensor-driven network, this work has applications in a wide variety of source lo-

calization applications such as sonar and multimedia systems. Therefore, we use

the terms ‘source’ and ‘sensor’, and ‘collector’ and ‘receiver’ interchangeably. We

also omit here a discussion of the receiver front-end algorithms for detection and
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acquisition of the source signal (see our prior work[76] for discussion), and in-

stead focus on the AoA estimates generated by the receivers’ array processing

algorithms. We present a class of models representative of the AoA estimates ob-

tained under different LOS and NLOS settings with typical estimation techniques,

and use these models to develop localization algorithms.

Our main results are:

1. A sequential algorithm for aggregation of AoA estimates to estimate the

sensor location under LOS scenarios (minimal multipath scattering) is pre-

sented. The collectors only need to exchange sensor location and covariance

estimates, and the algorithm has linear complexity in the number of collec-

tors. The location uncertainity grows with the size of the coverage area and

the variance of the AoA estimates, but is reduced by increasing the number

of collectors.

2. Since ML localization of the sensor under NLOS propagation requires ex-

haustive search of exponential complexity over all possible subsets of col-

lectors, we propose a randomized algorithm for outliers suppression using

the sequential algorithm as a building block that has complexity O(MN),

where M is the number of randomizations and N is the number of receivers.

3. The proposed algorithms are numerically shown to achieve the ML perfor-

mance under different propagation models. We also illustrate with specific

examples that a wideband system, with its capability to resolve the LOS and
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NLOS multipath, along with the proposed outlier suppression algorithm,

greatly outperforms a narrowband system, which is without this capacity.

This chapter is organized as follows. The AoA measurement models under

different propagation environments are described in Section 4.1. The sequential

algorithm for localization under LOS scenarios along with performance bench-

marks are presented in Section 4.2. We derive an extension to the sequential

localization to suppress NLOS AoA estimates in Section 4.3. The proposed al-

gorithms are numerically investigated in Section 4.4. Finally, concluding remarks

are made in Section 4.5.

4.1 Models of AoA Estimates

The collectors are equipped with an uniform linear array (ULA) to estimate

the direction of arrival of the sensor transmission. In this section, we develop

models to capture the effects of LOS and NLOS propagation environments on

the AoA estimates produced by the collectors, and use these models to design

network-level localization algorithms in Sections 4.2 and 4.3.

The classical AoA estimation techniques like MUSIC and ESPRIT[77] are

based on LOS propagation from the sensor to the collectors, where the sensor is

modeled as a point source. This point source propagation model is often unrealistic

since they do not account for multipath scattering. A number of models for sources

with local scattering and methods of AoA estimation under those models have
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been proposed [78, 79, 80, 81, 82], in which the propagation is characterized by

a mean arrival angle (corresponding to the true bearing) and a spatial spreading

parameter (quantifying the spatial extent of the multipath effects). The resulting

AoA at the antenna array have been represented by a Gaussian [81] and Laplacian

distributions [83]. On the basis of these ideas, we propose the following models:

LOS Model: We characterize the spatial spreading in LOS propagation sce-

narios by zero-mean symmetric finite variance “noise” models like the Gaussian

and Laplacian. The AoA estimation under LOS propagation in the presence of

additive white Gaussian noise results in zero-mean Gaussian errors, whose vari-

ance grows with the signal-to-noise ratio [84]. Additional degradation to the AoA

measurements, is effected by local scattering in the vicinity of the sensor that,

as mentioned earlier, also leads to zero-mean symmetric distributions. Therefore,

the Gaussian and Laplacian error models can seamlessly transition between the

scenarios with and without local scattering by varying the spatial spreading pa-

rameter. These models represent situations where the received signal has a strong

LOS component along with limited scattering. For a sensor at location X along

a true bearing θ(X), the Gaussian LOS model with local scattering is

pGaus(θ̂/X) =
1√

2πσ(1 − 2Q( π
2σ

))
exp

(
−(θ̂ − θ(X))2

2σ2

)
θ̂ ∈

[
−π

2
,
π

2

]
, (4.1)

where σ2 is the error variance (spatial extent of scattering), Q(t) =
∫∞

t
exp(−t2/2)

dt/
√

2π is the normal tail distribution and all angles are measured with respect

to the antenna broadside. The Gaussian density is truncated as an antenna array

can only differentiate between AoA within ±π/2 of the direction in which the
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antenna broadside is pointing. Note also that as the variance σ2 increases, the

density become progressively long tailed and tends toward a uniform density.

Similarly, the Laplacian LOS model with spatial spreading factor σ is a model

with heavier tails than the Gaussian model:

pLap(θ̂/X) =
1

2
√

2σ exp(−|π/(
√

2σ)|)
exp

(
−
√

2|θ̂ − θ(X)|
σ

)
θ̂ ∈

[
−π

2
,
π

2

]
.

(4.2)

Worst-case NLOS model: In an extreme case of a NLOS propagation envi-

ronment, the LOS path to a collector might be blocked, for instance by structures

like walls or trees, and as a result, the received signal is composed exclusively

of multipath components that are “far” from the LOS path. AoA measurements

made from these scattered and reflected paths alone are fairly uncorrelated with

the true bearing of the sensor. In such worst-case events, the AoA estimate is

drawn uniformly from the feasible set:

pNLOS(θ̂/X) =
1

π
, θ̂ ∈

[
−π

2
,
π

2

]
. (4.3)

When there are significant contributions from both the LOS path and the

NLOS multipath, the model depends on whether the receiver is capable of resolv-

ing these contributions spatially. This resolving capability is also dependent on

the whether the sensor (source) transmits a narrowband or wideband signal.

Narrowband multipath model: With narrowband sensor transmissions,

the collector receiver is capable of resolving the arriving combination of LOS path

and NLOS multipath in the spatial domain only. For collectors with relatively
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small number of antenna elements, the receiver can only measure the AoA of

the strongest arriving path (or strongest superposition of paths). Hence, each

receiver produces a single AoA estimate that, depending on the relative strengths

of the LOS and NLOS components, will provide an estimate close to or very “far”

from the true bearing of the sensor. Accordingly, we model a typical narrowband

scenario as follows: Let α be the fraction of collectors that experience significantly

stronger reflected and scattered multipath than the LOS component. In this event,

the AoA appears to correspond to the LOS path being blocked and hence, is drawn

from the worst-case NLOS model in (4.3). In the remaining instances, when the

LOS path is strong, the AoA is drawn from one of the LOS models, for instance

(4.1), and we arrive at the following narrowband model:

pnarrowband(θ̂/X) = α pNLOS(θ̂/X) + (1 − α) pGaus(θ̂/X). (4.4)

This model also represents the least favorable multipath environment, where the

LOS component is either present and significant, or is blocked (completely absent),

and serves as our candidate model for developing the NLOS suppression algorithm.

Note, that distributions with heavy-tails like the Laplacian AoA model in (4.2) or

a Cauchy model can also be used to model the narrowband setting, where some

AoA estimates are “far” from the true sensor bearing. We numerically investigate

these alternate models in Section 4.4.2.

Wideband multipath model: On the other hand, with wideband sensor

transmissions, the receiver has an additional degree of freedom and can resolve

paths in time as well. When the scattered or reflected paths are sufficiently
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temporally or spatially separated from the LOS path, the collector is capable

of resolving both the LOS path and possibly multiple NLOS paths. Using an idea

similar to the narrowband model, the multiple AoA estimates produced by the

collector are modeled as follows: one corresponds to the LOS path and is drawn

according the LOS models, and the remaining estimates are drawn uniformly from

the feasible set, similar to the worst-case NLOS model, as they correspond to

multipath with no LOS components (equivalent to LOS blockage). Suppose that

a collector resolves L paths, then the resulting estimates are generated according

to

pwideband(
ˆθ(1), ˆθ(2) . . . ˆθ(L)/X) = pGaus(

ˆθ(1)/X) pNLOS(
ˆθ(2)/X) . . . pNLOS(

ˆθ(L)/X).

(4.5)

Although the LOS path is resolved by the receiver in the wideband scenario, it

is not known which of the L AoA estimates corresponds to the LOS path. Note

that in this wideband model, actual blockage of the LOS might occur resulting in

none of the resolved paths being close to the true sensor bearing.

4.2 Localization in LOS scenarios

We consider, in this section, the problem of sensor localization in situations

where the channels between the sensor and all the collectors have LOS compo-

nents and suffer spreading only due to local scattering. We present an algorithm

for sequential aggregation of the available AoA estimates (generated according to
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the LOS model in Section 4.1) to produce the sensor location. Each collector per-

forms linear minimum mean squared error (LMMSE) updates on the prior sensor

location estimate (received from a previous collector) with its own AoA estimate,

and passes the updated estimate to the next collector. This process is continued

until all the available AoA estimates are aggregated into the estimate. Before

we describe the sequential algorithm in Section 4.2.2, we develop the LMMSE

updates at each collector and some coordinate transformations needed to com-

municate estimates between different collectors in Section 4.2.1. The ML method

and the Cramer-Rao Lower Bound (CRLB), which are both used to benchmark

the performance of our algorithm, are presented in Section 4.2.3. Finally, some

properties of this algorithm are provided in Section 4.2.4.

4.2.1 LMMSE Updates & Transformations

The LMMSE update, described next, only requires knowledge of the second

order statistics of the sensor location estimate. Therefore, the priors received by

each collector consists of the latest estimate of the error covariance of the sensor

location in addition to the estimate of the location. As each collector measures an

AoA, it is convenient to work in the polar coordinates centered at that collector.

This choice of polar coordinates has the added advantage of making the LMMSE

update optimal under Gaussian measurement error models like the LOS model in

Section 4.1. The AoA θ is always measured from the x-axis of the global cartesian

system (see Figure 4.1).
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Figure 4.1: Sensor field with 8 collectors on its perimeter: The geometry used
to compute the “bootstrap” sensor estimate from AoA estimates of collectors C1
and C2 is shown.

Consider a collector that receives the following prior information: sensor loca-

tion estimate µ̂old = [R̂old θ̂old]
T and error covariance Σ̂old, where

Σ̂old =




Σ
(o)
RR Σ

(o)
Rθ

Σ
(o)
Rθ Σ

(o)
θθ


 .

The AoA estimate at the collector is θ̂new with error variance Σ
(n)
θθ . We desire a

linear update of the sensor location of the form,

µ̂new = µ̂old +K(θ̂new −Aµ̂old), (4.6)
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where K is the Kalman gain and A = [0 1] (only new AoA estimates are available

at the collector). Requiring that the innovation (θ̂new − Aµ̂old) be orthogonal to

the estimate µ̂new, we can compute the Kalman gain,

K = AΣ̂old (Σ
(n)
θθ + AΣ̂oldA

T )−1. (4.7)

Therefore, inserting (4.7) into (4.6), the updated location estimate, µ̂new, is ob-

tained as

R̂new = R̂old +
Σ

(o)
Rθ(θ̂new − θ̂old)

Σ
(o)
θθ + Σ

(n)
θθ

,

θ̂new =
Σ

(o)
θθ θ̂new + Σ

(n)
θθ θ̂old

Σ
(o)
θθ + Σ

(n)
θθ

. (4.8)

The update for the covariance matrix can be obtained using (4.6) as

Σ̂−1
new = Σ̂−1

old +




0 0

0 (Σ
(n)
θθ )−1


 (4.9)

and the entries of the updated covariance matrix, therefore, are

ΣRR = Σ
(o)
RR − Σ

(o)
Rθ Σ

(o)
θR

Σ
(o)
θθ + Σ

(n)
θθ

,

Σθθ =
Σ

(o)
θθ Σ

(n)
θθ

Σ
(o)
θθ + Σ

(n)
θθ

,

ΣRθ =
Σ

(n)
θθ Σ

(o)
Rθ

Σ
(o)
θθ + Σ

(n)
θθ

. (4.10)

When the observations θ̂new have Gaussian errors as in the LOS model presented

in (4.1), the LMMSE updates in (4.8) are also the optimal minimum mean squared

error updates. Under other non-Gaussian error models, the LMMSE updates are

the optimal linear updates from the perspective of mean squared error.
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In this manner, given priors on the sensor location and new AoA estimates, an

updated sensor location estimate µ̂new and error covariance Σ̂new can be produced

in a polar coordinate system centered at the collector. This location estimate

and error covariance must then be transformed to the global cartesian system (a

common frame of reference) to provide the information in a form accessible to

the next collector. The next collector then transforms these estimates into its

own polar coordinate system. We now describe transformations between the local

polar coordinate and global cartesian coordinate systems.

Suppose that the collector is located at [xc yc]
T in the global cartesian system,

and µ̂ = [R θ]T is the estimated sensor location with error covariance Σ̂pol in polar

coordinates. The estimated sensor location in the cartesian system, [xs ys]
T , is




xs

ys


 =




xc

yc


 +




R cos(θ)

R sin(θ)


 . (4.11)

Therefore, errors in [R θ]T can be mapped to errors in [xs ys]
T as




dxs

dys


 = Tpol(R, θ)




dR

dθ


 ,

where

Tpol(R, θ) =




cos(θ) −R sin(θ)

sin(θ) R cos(θ)


 ,

and the error covariance in the cartesian system is

Σ̂car = Tpol(R, θ) Σ̂pol Tpol(R, θ)
T . (4.12)

115



Chapter 4. Angle-of-Arrival-based Localization using a Network of Collectors

Similarly, given the collector location [xc yc]
T and the sensor estimate [xs ys]

T

in cartesian coordinates, the estimate and covariance can be transformed to the

collector’s polar coordinates as

R =
√

(xc − xs)2 + (yc − ys)2

θ = arctan

(
yc − ys
xc − xs

)
, (4.13)

and

Σ̂pol = Tcar(R, θ) Σ̂car Tcar(R, θ)
T , (4.14)

where Tcar(R, θ) = T−1
pol (R, θ).

4.2.2 Sequential Localization Algorithm

We now describe the steps involved in sequentially aggregating collector AoA

estimates to produce a location estimate. Let N collectors be located at Xc
k =

[xk yk]
T indexed by k, and let the sensor be at Xs = [xs ys]

T . Collector k’s AoA

estimate is θ̂k measured from the x-axis of the global cartesian system. Further,

the polar coordinate system with collector k at its origin is designated Pk. For

ease of exposition, we assume that the collectors are indexed in the order in which

their estimates are combined.

The Bootstrap procedure: The algorithm is initialized by considering the first

two collectors in the combining order, which are collectors 1 and 2 by convention.

Their AoA estimates θ̂1 and θ̂2 are used to obtain an initial estimate for the sensor

location and error covariance to “bootstrap” the Bayesian algorithm (see Figure
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4.1). The estimated range of the sensor from collector 1 is

R̂1 =
(y2 − y1) cos(θ̂2) − (x2 − x1) sin(θ̂2)

sin(θ̂1 − θ̂2)
. (4.15)

Therefore, we can get an initial sensor location estimate X̂
(1)

s = [x̂s ŷs]
T in carte-

sian coordinates from µ̂(1) = [R̂1 θ̂1]
T using (4.11). Errors in estimates of sensor

range from collector 1 and 2 can be computed from the errors in the AoA estimates

as



dR̂1

dR̂2


 =

1

sin(θ̂1 − θ̂2)




−R̂1 cos(θ̂1 − θ̂2) R̂2

−R̂1 R̂2 cos(θ̂1 − θ̂2)







dθ̂1

dθ̂2


 .

(4.16)

Using (4.16) and independence of the estimates θ̂1 and θ̂2, the entries of the initial

covariance matrix ΣRR, Σθθ, and ΣRθ can be computed in polar coordinates P1.

This initial error covariance Σ̂
(1)
pol in P1 is transformed to the global cartesian

coordinates as Σ̂
(1)
car using (4.12) and µ̂(1). Note that the initial covariance matrix

could have been computed in P2 instead of P1, but both would ultimately lead to

the same Σ̂
(1)
car. We term these preceding steps the ‘bootstrap procedure’.

Since this bootstrap procedure is used to initialize the algorithm, care must be

taken in choosing the collectors to bootstrap in order to avoid ‘bad’ initial condi-

tions. It is evident from (4.15) and (4.16) that the initial estimates for the range

and covariance become unbounded if (θ̂1 − θ̂2) ≈ nπ due to the sin(θ̂1 − θ̂2) term

in the denominator of both equations. Geometrically, this condition is equivalent

to the direction of arrivals to two different collectors being roughly parallel (or

antiparallel), in which case, the point of intersection of the two directions is very
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far from the collectors and the sensor field. Therefore, the algorithm is always ini-

tialized with a pair of collectors with θ̂1 − θ̂2 significantly different from nπ, which

also ensures that the initial estimate is mostly within the sensor field. This idea is

similar to the concept of dilution of precision in GPS[13] that describes the effect

of the satellite configuration on the location accuracy. Thereafter, the collectors

can be combined in any random order and effect of this order on performance is

studied in Section 4.4.1.

The sequential algorithm for sensor localization has the following steps:

Step 1 (Bootstrap): Estimate the initial location µ̂(1) and error covariance Σ̂
(1)
pol

in P1, the polar coordinates of collector 1, using (4.15) and (4.16). Transform the

location and error covariance into the global cartesian coordinates as X̂
(1)

s and

Σ̂
(1)
car respectively using (4.11) and (4.12). Pass [X̂

(1)

s , Σ̂
(1)
car] as prior to the next

collector.

Step 2 (Transformation): Let the index of the current collector be k. Trans-

form the priors [X̂
(k−1)

s , Σ̂
(k−1)
car ] to [µ̂(k−1), Σ̂

(k−1)
pol ] in the local polar coordinate

system, Pk, using (4.13) and (4.14).

Step 3 (Aggregation): Update the prior estimates [µ̂(k−1), Σ̂
(k−1)
pol ] with the AoA

estimate of kth collector, θ̂k, using the LMMSE procedure in (4.8) and (4.10).

Transform updated estimates [µ̂(k), Σ̂
(k)
pol] into estimates in the global cartesian

coordinates as [X̂
(k)

s , Σ̂
(k)
car].
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Step 4 (Termination): If unaggregated AoA estimates exist, pass priors on to

the next unaggregated collector and go to Step 2, otherwise output the location

estimate and Stop.

Since only a mean and covariance need to be passed on from one collector to the

next, this algorithm can be implemented in a completely distributed manner, with

each collector needing to know only its own location and orientation. While we

consider AoA estimates here, this sequential algorithm is quite general, and can,

for example, incorporate probabilistic information on the sensor range obtained

from signal strength measurements. Further the complexity of this algorithm

grows linearly in the number of collectors. This scalability is required to realize

the improvement in localization performance with the number of collectors, details

of which are given in Section 4.2.3.

4.2.3 ML Estimate and Cramer-Rao Bound

We now develop the ML estimator and Cramer-Rao bound on the localization

performance of the best minimum variance unbiased estimator. For analytical

simplicity, we work with the Gaussian AoA model in (4.1), however, corresponding

bounds for other models like the Laplacian in (4.2) can be easily derived. For

the Gaussian AoA error model, the log-likelihood function (within scale factors

and constants) for the observed AoA estimates {θ̂i}Ni=1 given the sensor location
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X = (x, y) is

L(θ̂1, θ̂2, . . . , θ̂N/X) = −
N∑

k=1

(θ̂k − θk(X))2

σ2
k

, (4.17)

where θk(X) is the true bearing of the sensor from collector k and σ2 is the

AoA estimation error variance at collector k. The ML estimator searches for the

location X that maximizes the log-likelihood function in (4.17). For small σ2
k,

the cost function in (4.17) can be shown to be approximately concave. We have

observed numerically that the cost function has an unique global maxima for the

parameter values of interest and a gradient ascent approach produces the ML

estimate. The ML estimate is shown to achieve CRLB in Section 4.4.1, thus,

validating this gradient ascent approach.

The Fisher information matrix (FIM) J(X) for this location estimation is

J(X) =




Jxx Jxy

Jyx Jyy


 =




−E
(
∂2L(θ̂/X)

∂x2

)
−E

(
∂2L(θ̂/X)
∂x∂y

)

−E
(
∂2L(θ̂/X)
∂y∂x

)
−E

(
∂2L(θ̂/X)

∂y2

)


 , (4.18)

where θ̂ = (θ̂1, θ̂2, . . . , θ̂N ). Define Rk and θk as the range and bearing of sensor

at location X measured from collector k. Then the entries of the FIM for the

Gaussian LOS model in (4.1) are

Jxx =
N∑

k=1

sin2(θk)

σ2
kR

2
k

Jyy =

N∑

k=1

cos2(θk)

σ2
kR

2
k

Jxy = −
N∑

k=1

cos(θk) sin(θk)

σ2
kR

2
k

Jyx = Jxy, (4.19)
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and the CRLB is ΣCR(X) = J−1(X). The total localization error variance is the

sum of the variances along the x and y coordinates. The lower bound on the total

localization error is

σ2
tot(X) ≥ Tr(ΣCR(X)) =

∑N
k=1

1
R2

k
σ2

k∑N
k=1

∑N
l=k+1

sin2(θk−θl)

R2
l
R2

k
σ2

k
σ2

l

. (4.20)

Observe that the CRLB is dependent on the location of the sensor X. To gain

insight into the factors determining the localization error, consider an example of

N collectors equally spaced on the perimeter of a disc of radius R (as in Figure

4.1). We simplify the analysis further by computing the bound in (4.20) for a

sensor at the center of the disc with the assumption that the AoA error variance

is the same for all collectors. In fact, it can be easily verified numerically that the

CRLB is maximized at the center of disc, and hence, corresponds to the worst

sensor position from a localization standpoint. By realizing that θk = 2πk/N for

a sensor at the center of the disc, the lower bound on the localization error at the

center of the disc is

σ2
tot ≥ NR2σ2

∑N
k=1

∑N
l=k+1 sin2(θk − θl)

≈ 2R2σ2

π2(N − 1)
, (4.21)

using the fact that sin(θ) ≤ 1. We note, from (4.21), that the localization error

increases linearly with the AoA estimation error variance. Also, the localization

error increases with distance from the collector; a given angular error produces

increasing location errors at increasing distances from the collector. This, in addi-

tion to the observation that the CRLB decreases with distance from the center of

the sensor field, points toward the benefits of having at least a few collectors prox-

121



Chapter 4. Angle-of-Arrival-based Localization using a Network of Collectors

imal to every part of the sensor field. In other words, AoA estimates from nearby

collectors provide the most spatial information. Finally, even with a conservative

bound, we observe that the localization error goes down at least as the inverse of

the number of collectors providing a method of reducing the localization error in

the LOS scenario.

4.2.4 Properties of the Sequential Algorithm

The log-likelihood function in (4.17) is a nonlinear function of the sensor lo-

cation and the ML estimate is the solution to this non-linear least squares (LS)

problem. The solution to this LS problem is asymptotically (in the number of

collectors N) consistent and efficient when the observation noise is Gaussian (e.g.,

LOS AoA error model in (4.1)), and the LS solution is asymptotically consistent

even when the noise is non-Gaussian, but with no guarantees on efficiency [71].

The ML estimate can be computed maintaining the asymptotic consistency and

efficiency with the following recursive algorithm[71]:

X̂n = X̂n−1 + J−1(X̂n−1)
∂L(θ̂n/X̂n−1)

∂X
, n = 2, ..., N (4.22)

where X̂n is the sensor location after combining the first n collector AoA esti-

mates, J(X̂n−1) is the FIM for localization with only the first n − 1 collectors,

and L(θ̂n/X̂n−1) is the contribution of the nth observation to the log-likelihood

function in (4.17). As in Section 4.2.3, let Rn and θn represent the current loca-

tion estimate X̂n−1 in the polar coordinates centered at collector n. We can now
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rewrite the recursion for this localization problem as

X̂n = X̂n−1 + J−1(X̂n−1)




Rn sin(θn)

−Rn cos(θn)


 (θ̂n − θn(X̂n−1)), n = 2, ..., N.

The above equation has exactly the same form as the LMMSE update in (4.6) with

the only difference being that this is an update in the global cartesian coordinates

rather than the local polar coordinates of collector n. The hessian-like FIM J is

also updated at each step and new FIM J(Xn) can be computed using (4.19):

J(X̂n) = J(X̂n−1) +




sin2(θn)
σ2

nR
2
n

− cos(θn) sin(θn)
σ2

nR
2
n

− cos(θn) sin(θn)
σ2

nR
2
n

cos2(θn)
σ2

nR
2
n




= J(X̂n−1) + (T−1
pol (Rn, θn))

H




0 0

0 1
σ2

n


T−1

pol (Rn, θn), (4.23)

where Tpol(Rn, θn) is the unitary matrix in (4.12) used to convert covariance es-

timates from local polar coordinates to global cartesian coordinates. Recalling

that the FIM is the inverse of the covariance matrix, observe that the covariance

update in (4.23) is equivalent to the update in the sequential algorithm in (4.9)

with appropriate transformations to cartesian coordinates. Thus, the sequential

algorithm is an alternate formulation of this recursive ML computation and hence,

inherits its properties. However, LS solutions are very sensitive to outliers in the

observations, and we present a robust algorithm next in Section 4.3.
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4.3 Localization in NLOS settings

We now address the narrowband multipath scenario, described in Section 4.1,

in which the collector receiver can only resolve the stronger of the contributors

between the LOS path and reflected or scattered multipath. In the worst-case,

the received multipath at some collectors corresponds to LOS blockage, and the

resulting AoA are determined solely by NLOS components that are inconsistent

with AoAs seen by collectors with strong LOS paths. The NLOS AoA estimates

are “far” from the true sensor bearing and direct application of the sequential

algorithm in Section 4.2.2 produces poor results. These NLOS AoA estimates

act as outliers in the LS algorithm and corrupt the location estimate. Since

the collectors experiencing strong NLOS paths are not known a priori, robust

techniques are necessary to detect the outliers and estimate the sensor location

using only the ‘good’ LOS AoA estimates.

On the other hand, with wideband sensor transmissions, the receiver can re-

solve both the LOS and NLOS components, and produces multiple possible esti-

mates of the sensor bearing, (see wideband multipath model in Section 4.1). In

this event, the algorithm must utilize the LOS AoA estimates, but reject estimates

that are strongly influenced by multipath. We present in Section 4.3.2 an algo-

rithm capable of outlier suppression to handle both the narrowband and wideband

scenarios. However, we focus on the former due to its simplicity and indicate how

the algorithm can incorporate multiple AoA estimates at each collector as well.

But, before we develop this extension of the sequential algorithm in Section 4.2.2,

124



Chapter 4. Angle-of-Arrival-based Localization using a Network of Collectors

it is instructive to study the ML method, although the optimal ML approach is

computationally intensive. We first develop the ML algorithm in Section 4.3.1

and use the ML algorithm to motivate the outlier suppression algorithm.

4.3.1 ML Localization

Let α be the fraction of collectors that experience stronger contributions to

the received signal from the NLOS components than the LOS components. We

modeled this narrowband scenario in (4.4) as a mixture of the LOS model and

the worst-cast NLOS models. Under this model, the log-likelihood function for

the sensor location X is

L(θ̂/X) =
N∑

k=1

log

[
1 − α

σ
√

2π(1 − 2Q( π
2σ

))
exp

(
−(θ̂k − θk(X))2

2σ2

)
+
α

π

]
, (4.24)

where θ̂ is the vector of observed AoAs. Equation (4.24) can be approximated

using log(ea + eb) ≈ min(a, b) as

L(θ̂/X) ≈ −
N∑

k=1

min
[
(θ̂k − θk(X))2,Θ2

max

]
, (4.25)

where

Θ2
max = 2σ2 log

( √
π(1 − α)

σ
√

2α(1 − 2Q( π
2σ

))

)
. (4.26)

Then the ML location estimate X̂ is

X̂ = arg maxL(θ̂/X) ≈ arg min
N∑

k=1

min
[
(θ̂k − θk(X))2,Θ2

max

]
. (4.27)

The ML algorithm in (4.27) is a standard LS minimization with angular errors

bounded by a threshold Θmax. This cost function ensures that there is no incentive
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to reducing angular errors larger than the threshold and therefore, outliers or

NLOS estimates only have limited effect on the location estimate. As desired,

the ML estimator in (4.27) reduces to the ML method for the LOS scenario (see

(4.17)) in the absence of outliers (α → 0), and the threshold Θmax → ∞. To

extend the sequential algorithm to the NLOS scenario, we impose this constraint,

Θmax, on the largest observed angular error at each step in the algorithm and

describe this modified algorithm in the following section.

4.3.2 Sequential Aggregation with Outlier Suppression

In NLOS scenarios, the localization algorithm must identify the subset of col-

lectors with LOS channels and use these AoA measurements to estimate the sensor

location. However, the collectors with NLOS channels (outliers) are unknown and

arbitrary in number. The problem of finding the subset of collectors with LOS

channels amounts to finding the largest subset of collectors that are in mutual

agreement. This search is of exponential complexity as it must explore every sub-

set of the N collectors. Therefore, we resort to a randomization of the algorithm

in Section 4.2.2, in which we randomize the choice of the first two collectors used

in the bootstrap phase. Thereafter, each subsequent collector’s AoA estimate is

combined ensuring that angular errors in all the aggregated collectors remain be-

low the threshold Θmax from (4.26). This procedure is terminated if no further

AoA estimate can be aggregated without causing some angular errors to exceed

the threshold. Thus, by bootstrapping with different pairs of collectors, this ran-
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domized algorithm produces sensor position estimates corresponding to different

subsets of collectors that mutually agree, leading to a list of possible explanations

for the observed θ̂.

The outlier suppression algorithm is an extension of the sequential algorithm

in Section 4.2.2 with 2 key differences: First, at each step, the next collector

chosen for aggregation is the one with the smallest angular error. The angular

error at a collector is the discrepancy between the bearing of a hypothetical sensor

at the current estimated location, X̂s, and the AoA estimate measured at that

collector, i.e., e(θ̂, X̂s) = |θ̂ − θ(X̂s)|. The error e can be understood as the

empirical estimate of the error in (4.27). The collector with the smallest angular

error is the collector whose AoA estimate is most consistent with the current

location estimate. Second, after combining a new AoA estimate, the updated

sensor location is retained only if the angular errors for the aggregated collectors

are below the threshold Θmax. This ensures that outliers are eliminated using

the criterion in (4.27) and simultaneously, the collectors with LOS are used to

compute the sensor location using a LS computation. Note that the threshold

Θmax is dependent on the AoA error variance and could vary from one collector to

the next. Here, we assume that the AoA variance and hence the threshold are the

same for all collectors to simplify the description. Nevertheless, the variation in

AoA variances and the thresholds across the collectors can be easily incorporated

into this algorithm.

127



Chapter 4. Angle-of-Arrival-based Localization using a Network of Collectors

Sequential aggregation with outlier suppression involves repetitions of the fol-

lowing basic steps with multiple random bootstraps (for brevity, we use the phrase

“combine with θ̂” to designate the computation of the new location estimate and

error covariance using the appropriate coordinate transformations described in

Section 4.2.1):

Step 0 (Initialization): Set the list of collectors already aggregated A = ∅ and

list of collectors yet to be combined, C = {1, . . . , N}.

Step 1 (Bootstrap): Select a pair of collectors at random, say {i, j} that has

not been used previously. Compute the initial estimate X̂s and error covariance

Σ̂ using the bootstrap procedure. Add {i, j} to the list of aggregated (inlying)

collectors, A = A ∪ {i, j}, and remove from the list of remaining collectors C =

C − {i, j}.

Step 2 (Angular Error Computation): Compute angular errors e(θ̂, X̂s) over

the remaining collectors C, i.e.,

e(θ̂i, X̂s) = |θ̂i − θi(X̂s)| ∀ i ∈ C.

Step 3 (Candidate Selection and Aggregation): Find collector k with smallest

error e(θ̂k, X̂s). Combine X̂s with θ̂k to obtain new candidate estimate X̂ ′
s and

covariance Σ̂′.

Step 4 (Threshold Verification): If the angular error using the candidate loca-

tion X̂ ′
s is below the threshold for all the aggregated collectors, i.e.,

e(θ̂l, X̂
′
s) < Θmax, ∀ l ∈ A ∪ {k},
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then retain the candidate location and covariance, X̂s = X̂ ′
s, and Σ̂ = Σ̂′. Also

add collector k to the list of aggregated collectors, A = A∪ {k}.

Step 5 (Termination): Remove collector k from further consideration C =

C − {k}. If there are no remaining collectors (C = ∅) then Stop else goto Step 2.

The above algorithm is repeated M times with different random initial condi-

tions in order to detect the sensor with a high probability, and each run produces

a likely sensor location and a confidence (error covariance) in that estimate. If in

a wideband system, a collector resolves two arriving paths, the above algorithm

can still be used by introducing a second virtual collector at the same location

as the original collector and assigning to it the second arriving path. However,

care must be taken that both the original and virtual collectors are not part of

the same location estimate as it would not be physically possible for two different

paths to both contain a strong LOS component. Such a scenario is illustrated

with an example in Section 4.4.2.

Choice ofM and Θmax: The performance of the outlier suppression algorithm

is determined by the choice of the maximum angular error Θmax and the total

number of iterations, M . Assuming that the AoA estimation error variance is

known at each collector, the threshold Θmax can be computed using (4.26), if

the fraction of collectors with strong NLOS components α is known. In practice,

the largest expected fraction of collectors with strong NLOS components, αmax,

can be set based on knowledge of area of deployment and the worst case NLOS

scenario under which close to optimum performance is desired. The value of Θmax
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thus obtained using (4.26) is conservative for lower levels of multipath scattering,

as Θmax is monotonically decreasing with α. Although we expect that choosing a

smaller Θmax might prevent some ‘good’ LOS AoA estimates from being utilized,

it also ensures that NLOS measurements do not corrupt the location estimate.

During the bootstrap phase, two collectors are chosen randomly to seed the

sequential algorithm. Success in the sequential estimation depends on selecting

two collectors with LOS channels to initiate the algorithm. We have observed from

simulations that the algorithm always converges to a solution in the ‘vicinity’ of

the bootstrap location, and therefore an estimate using only LOS estimates is

produced if the algorithm is bootstrapped with collectors with LOS channels.

Hence, we hypothesize that the bootstrap failure is the predominant cause of

failure in the randomization (we verify this numerically in Section 4.4.2). We

now try to estimate this probability of failure as a function of M , the number of

iterations of the outlier suppression algorithm. Suppose the outlier suppression

algorithm is repeated with M different seeds, the probability of failure in the

bootstrap phase is the probability that at least one collector is an outlier in each

of the M attempts. The total number of bootstrap pairs is P =
(
N
2

)
and number

of pairs with at least one NLOS collector is K = P −
(
⌊(1−α)N⌋

2

)
, where ⌊(1−α)N⌋

is the number of collectors with LOS channels. Then,

P (bootstrap failure) =





(M
K)

(P

M)
if M ≤ K

0 if M > K

(4.28)
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When the collectors resolve multiple arriving paths, the above probability of failure

computation is modified by replacing the number of collectors by the total number

of resolved paths. Depending on the the probability of failure acceptable in the

system, (4.28) is used to choose the number of randomizations of the algorithm

that are necessary.

A practical issue of interest is to know how the number of randomizations

M has to be increased with the total number of collectors N to achieve a fixed

probability of bootstrap failure under similar NLOS propagation environments

(fixed α). A tight upper bound on the probability of bootstrap failure, presented

in the Appendix as (A.2), is given by

P (bootstrap failure) ≤
(
K

P

)M
.

Rearranging the terms, we get an tight upper bound on the possible value of M

as

M ≤ log(P (bootstrap failure))

log(K
P

)
,

where

K

P
= 1 −

(
⌊(1−α)N⌋

2

)
(
N
2

) = 1 − (⌊(1 − α)N⌋)(⌊(1 − α)N⌋ − 1)

N(N − 1)
≈ 1 − (1 − α)2,

for large N. Therefore,

M ≤ log(P (bootstrap failure))

log(1 − (1 − α)2)
. (4.29)

We observe that the probability of bootstrap failure is independent of N . This

ensures that the outlier suppression algorithm, which has complexity O(MN),

still scales linearly in the number of measurements.
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4.4 Numerical Results

We study the performance of the proposed algorithms via Monte-Carlo simu-

lations. The simulation setup is as follows: We consider a circular sensor field of

unit radius with N equally spaced collectors along the perimeter. As seen from

our analysis in (4.21), the localization error grows linearly with distance from the

collector. Therefore, by selecting a field of unit radius, we obtain scale-invariant

(only dependent on dimensionless quantities) measures of performance. Let the

collectors be located at [cos(2π(k−1)/N) sin(2π(k−1)/N)]T , k = 1, . . . , N . Each

collector performs AoA measurement on the signal received at its antenna array

and representative AoA estimates are generated according to the models described

in Section 4.1. We assume throughout that all the collectors have the same AoA

estimation error variance for convenience, although the algorithm does not re-

quire this. It is, further, assumed that only a single sensor transmits at any given

time. We use the Cramer-Rao bound (4.20) as a performance benchmark, but

this bound is dependent on the true location of the sensor. In order to have a

fair comparison, we run equal number of iterations on each of 25 candidate sensor

locations, and compare the total rms localization error against the average of the

CRLB at those 25 locations.
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Figure 4.2: Localization performance of the sequential estimation algorithm (in
dashed lines) in the LOS scenario for 6,8 and 12 collectors. The performance
is compared against the CRLB (in solid lines) and the ML estimator (in dotted
lines)

4.4.1 Performance under LOS scenarios

The performance of the sequential algorithm in Section 4.2.2 for different num-

ber of the collectors is shown in Figure 4.2. The algorithm achieves the CRLB for

small angular estimation errors even for as few as 6 collectors but the performance

deteriorates for large AoA error variances (spreads). The optimal ML estimator

in Section 4.2.3 can be shown to be approximately convex, and the likelihood

function has a unique maxima. The nonlinear coordinate transformations make

the sequential algorithm converge to slightly different solutions depending on the

order in which the AoA estimates are combined. This effect leaves a performance
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gap to the ML method, which is significant only at large variances as can be seen

from Figure 4.2.

2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

0.25

Std. deviation of AoA errors (in degrees)

N
or

m
al

iz
ed

 R
M

S
 lo

ca
liz

at
io

n 
er

ro
r

Improved performance of Sequential Algorithm in LOS scenarios for N = 8

 

 

1 trial
2 trials
3 trials
ML
CRLB

Figure 4.3: Improved performance of the sequential algorithm under LOS set-
tings using multiple random bootstraps (1,2 or 3) for N = 8 collectors

The remaining gap to the ML performance can be closed by using multiple

random bootstraps and selecting the estimate with smallest ML cost, as shown

in Figure 4.3. Therefore, we can also conclude that the combining order for

the sequential algorithm has a fairly limited effect on performance. This idea of

randomly seeding the sequential algorithm serves as a natural transition to the

NLOS localization algorithm in Section 4.3.2. The convergence of the sequential

algorithm to the ML solution within three random initializations (bootstraps) in

a system with 8 collectors and angular spread of 10◦ is illustrated with an example

in Figure 4.4(Note that a sensor field of radius 500 m is used instead of a unit
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disc in this illustration). This also supports our earlier finding that the sequential

algorithm can provide ML performance in as few as three random initializations.
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Trial 3
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Trial 1

Figure 4.4: Convergence of the sequential algorithm to the ML estimate in a
LOS setting with an angular spread of 10◦ in a system with 8 collectors.

The localization accuracy can also be improved by the addition of collectors

to the system. In Figure 4.5, we use a log-log plot to study the dependence of

the localization error on the number of collectors N . A linear fit of the simulated

data shows that the resolution scales linearly with N − 1, which agrees with

the dependence deduced from the Cramer Rao bound in (4.21). The reason the

resolution scales as N −1 and not N is due to the fact that at least two collectors

are needed to locate a source, and we receive the benefit of error averaging only

over the remaining N − 1 AoA estimates.
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Figure 4.5: Log-Log plot of the mean square localization error against number
of collectors N using the sequential algorithm with AoA standard deviation of 1o.
The Cramer-Rao bound is also plotted alongside.

4.4.2 Performance under NLOS scenarios

In this section, we explore the capabilities of the outlier suppression algorithm

under the narrowband and wideband multipath models.

Effect of multipath in a narrowband system

We first present numerical results for the narrowband multipath model, where

the collectors can only resolve paths spatially and each collector produces a single

AoA estimate corresponding to either the LOS path, or the reflected and scattered

multipath. In Figure 4.6, the localization error using the proposed outlier sup-

pression algorithm in Section 4.3.2 is compared against the optimal ML estimate
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in Section 4.3.1 for a system with 8 collectors. For different fractions of outliers, α,

the outlier suppression algorithm is run with the threshold Θmax chosen according

to (4.26), while the number of random bootstraps is chosen to ensure that the

probability of bootstrap failure is less than 10−3. This resulted in a choice of the

number of random seeds, M = {4, 7, 11, 15}, for α = {0.125, 0.25, 0.375, 0.5} or

{1, 2, 3, 4} outliers using (4.28). The algorithm puts out multiple solutions, one

corresponding to each random initialization. After pruning out the estimates that

placed the sensor outside the sensor field boundary, the ML cost function in (4.24)

is used to select the most likely estimate. The ML estimate was obtained by brute

force minimization of the same cost function. The algorithm performs very close

to the optimal ML estimator for the entire range of AoA error variances. How-

ever, it is interesting to note in Figure 4.7 that the ML estimate does perform

significantly worse compared to the ML estimate using only the good LOS AoA

estimates. This additional loss is the cost of identifying the NLOS collectors and

as the variance increases, it becomes progressively more difficult to differentiate

between the LOS and NLOS AoA estimates.

In practice, since the fraction of outlying collectors, α, is unknown, the algo-

rithm is operated with a threshold chosen using an upper bound on this fraction,

which in our simulations is chosen to be αmax = 0.5. For this choice of thresh-

old, the localization error is plotted against the ML estimation error for different

number ({0, 1, 2, 3, 4}) of NLOS collectors in Figure 4.8. The outlier suppression

algorithm achieves close to ML performance for smaller fractions of outliers even
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Figure 4.6: Localization performance with NLOS suppression for different frac-
tions, α, of collectors with NLOS channels with optimal thresholds chosen accord-
ing to (4.26). The location error variance (solid line) is compared against the ML
error variance (dash-dotted line).

for this conservative choice of threshold. Thus, we can conclude that this ap-

proach is quite insensitive to the exact choice of threshold, Θmax, which adds to

the robustness of this approach. The simulations results also indicate that the

algorithm in Section 4.3.2 is approximately ML (AML).

In Figure 4.9, the observed probability of failure of the outlier suppression

algorithm is plotted against the expected probability from (4.28) for N = 8 col-

lectors. A failure is declared if the location estimate is outside a circle of radius

three times the standard deviation of the ML algorithm. When the estimation

errors are normally distributed, as is expected from our analysis of the sequential

algorithm in Section 4.2.4, the probability of AoA measurement “noise” alone
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Figure 4.7: The ML localization performance for different number of collectors
with NLOS channels for the 2 situations when the collectors with NLOS channels
are known or unknown. The gap between the performance when the NLOS col-
lectors are known (dash-dotted line) and are unknown (solid line) represents the
performance penalty for outlier identification.

causing the estimate to lie outside this circle is exp (−32) ≈ 10−4. Hence, failures

due to bad bootstraps are significant only when the observed failure probability

is of the order of 10−3 and above. We observe from the figure that the expected

probability of the failure is greater than the observed probability over almost the

entire range of interest. However, for all three fractions of outliers, the failure

probability plateaus around 3 × 10−3. This, we believe, is due to the fact that

localization errors are not strictly normal in the presence of outliers leading to

a slightly higher failure rate due to AoA measurement “noise”. We can safely
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Figure 4.8: Localization performance with NLOS suppression in a realistic
scenario with threshold chosen with the maximum expected outlier fraction,
αmax = 0.5 for different fractions, α, of collectors with NLOS channels. The
location error variance (solid line) is compared against the ML error variance
(dash-dotted line).

conclude, therefore, that bootstrap failures dominate the failure probability over

the entire range of interest.

Effect of alternate narrowband multipath models

Although it is clear that this algorithm is AML for AoA estimates generated

using the LOS and narrowband multipath models developed in Section 4.1, it of

interest to investigate the sensitivity of the NLOS suppression algorithm to these

models. To this end, the algorithm was simulated with two heavy tailed AoA

error models, namely the Laplacian (in (4.2)) and Cauchy (the standard deviation
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Figure 4.9: The comparison between the observed probability of failure and the
expected probability due to bootstrap failures alone for a system with N = 8
collectors with different fractions of outliers α. The algorithm fails if the location
estimate lies farther than three times the standard deviation of ML estimator.

corresponds to the shape parameter here), for the AoA estimation errors with the

same choice of parameters as in the previous example. The resulting performance

is shown in Figure 4.10. Under the Laplacian model, which has smaller tails,

the algorithm attains the optimal ML performance for that model. But, with

a Cauchy model, the heavier tail generates many more outlying AoA estimates

leading to larger estimation errors, and the observed performance is equivalent to

that of our nominal model in (4.4) for α = 0.375.
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Figure 4.10: Localization performance of NLOS suppression when AoA esti-
mates are obtained from Laplacian and Cauchy models with threshold chosen
with the maximum expected outlier fraction, αmax = 0.5, as before.

Ray-tracing Illustrations

We now depict the performance of the outlier suppression algorithm in the

narrowband and wideband settings with the following two examples. In both

examples, we use a virtual point source (shown as a solid circle) model to trace

multipath generated by the reflectors; the LOS path from the virtual source to

a collector corresponds to the nominal direction of arrival of the reflected signal

from the true source. Note that in all the examples, AoA estimation errors of

standard deviation 0.5◦ are added to the nominal direction of arrival of the LOS

path and the multipath from the virtual source.
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Narrowband multipath setting: In figure 4.11, the four collectors (squares)

attempt to locate the sensor (‘+’ sign) in the presence of two reflectors (solid

gray lines). One wall blocks the LOS path to the collector C4, causing that

collector to only receive multipath reflected from the second wall. The collectors

C1 and C2 have LOS AoA estimates, while collector C3 receives both the LOS

path and multipath from the virtual source (i.e. reflecting wall). The narrowband

receivers generate one AoA estimate each, corresponding to the superposition

of all the arriving paths. Thus, collectors C1 and C2 have very reliable LOS

AoA estimates, C3 estimates an AoA with a large spatial spread and collectors

C4 ‘sees’ an outlying AoA measurement. The estimated sensor locations from

multiple runs (crosses) of the outlier suppression algorithm are shown in Figure

4.11. The availability of reliable LOS estimates from C1 and C2 produces good

estimates of the sensor location by eliminating the outlying AoA estimate from

C4 and also prevents the algorithm from mistaking the virtual sensor to be a real

source. Good performance can, therefore, be expected in the narrowband setting

even in the presence of LOS blockage if there are sufficiently many collectors

with LOS paths to the source. However, there are situations, like when all the

collectors experience NLOS propagation, where the narrowband system performs

poorly. We elaborate on this issue in the following example.

Wideband multipath setting: As described in Section 4.1, when the sensor

transmits a wideband signal, the collector receivers can additionally resolve ar-

riving paths in time, since multipath components suffer delay with respect to
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Figure 4.11: The multipath suppression capability of the algorithm in a narrow-
band setting is illustrated with an example. The collector C4 experiences LOS
blockage and receives only reflected multipath from the source. The output of
multiple runs of the outlier suppression algorithm with M = 7 is shown.

the LOS path due to reflections. This leads to multiple AoA estimates at the

collector corresponding to different directions and times of arrival. However, we

cannot always reliably conclude that the earliest arriving path is LOS. Instead, we

choose to apply our outlier suppression algorithm to all the estimated AoAs and

allow the algorithm to eliminate NLOS AoA estimates as outliers. We illustrate

this with an example in Figure 4.12. A sensor (‘+’ sign) is situated between four

collectors (squares) and a wall (solid gray line). Under the wideband setting in

Figure 4.12(a), each collector generates two AoA estimates, one due to the LOS

path and the other due to the reflected NLOS path. On the other hand, with

narrowband transmissions in Figure 4.12(b), the receivers estimate the AoA as
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a power-weighted superposition of the two directions of arrival. The output of

multiple runs of the outlier suppression algorithm is plotted for the wideband

and narrowband system. In the wideband system, the virtual source location

is identified as a likely position in addition to the true sensor location, and the

NLOS algorithm is not capable of differentiating between the true sources and

virtual sources arising due to correlated multipath. But in practice, the knowl-

edge of the environment can be used to eliminate the infeasible estimates like

sensor locations behind the wall. On the other hand, in the narrowband scenario,

the source is located in the region between the true and the virtual sources as the

multipath in effect increases the spatial spread in the AoA estimates and degrades

performance greatly. It is apparent, that the capability to resolve multipath is es-

sential to achieving satisfactory performance in NLOS environments and helps on

two counts: First, resolving multiple incoming paths reduces the effective spatial

spreading on each path. Second, since multiple estimates are available at each

collector, the total number of “good” LOS measurements to estimate the sensor

is higher.

4.5 Conclusions

We proposed a sequential algorithm for cooperative localization in sensor-

driven networks that nearly achieves the CRLB in the presence of LOS between

the sensor and the collectors. The localization accuracy (error variance) of this
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Figure 4.12: The working of the localization algorithm in the presence of a
virtual source due to a perfect reflector (wall) with wideband and narrowband
sensor transmissions. The output of multiple runs of the algorithm is shown.
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algorithm under these settings is linear in the spatial spread in the AoA measure-

ments and the size of the coverage area, and inversely proportional to the number

of collectors. For instance, in an outdoor environment of area 1 km2 with local

scattering (3◦ spatial spread, see [81]) at 870 MHz, the obtained localization accu-

racy using 8 collectors is about 6 m. Correspondingly, with an angular spread of

9◦ in an indoor environment at 5.2 GHz[85], an accuracy of 0.75 m can be obtained

in a room of size 30x30 m using just four receivers. In NLOS multipath scenarios,

although the outlier suppression algorithm is approximately ML, its performance

is heavily dependent on the specific type of environment and the capability of the

receivers to resolve the contributions of the LOS path and NLOS multipath in the

received signal.

In a narrowband system, where each collector only resolves a superposition of

the arriving paths, the algorithm can suppress outlying AoA estimates if there

are sufficient number of collectors with reliable LOS estimates. However, the

capacity of a wideband system to estimate AoA from the LOS and multipath

individually, is vital for good performance in settings where all the collectors

experience NLOS propagation. Nevertheless, there is a performance penalty for

having to “find” the outliers, which becomes progressively worse as the fraction of

outliers in the measurements increases. The proposed algorithms additionally have

linear complexity in the number of measurements and are amenable to distributed

implementation.
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Conclusions

We now discuss the engineering implications of this work and outline future

directions of research.

5.1 Summary

We presented and demonstrated the feasibility of the imaging sensor net ar-

chitectures for data collection and localization in large-scale sensor networks. We

utilized an analogy to imaging, treating the sensors as pixels imaged by a so-

phisticated collector node, to handle the issue of scale. This resulted in sensors

with bare minimum functionality, since the complexity is moved to the collectors.

These designs can, thus, provide extremely low-power devices at costs far below

the dropping price of today’s microsensors, once they are translated into CMOS

ICs.

Under this paradigm, there is a shift in emphasis to algorithm design for the

sophisticated collectors rather than on algorithms for the sensors themselves. Al-
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though this approach is different from the conventional philosophy, we have shown

that it can provide benefits such as localization capability in certain applications.

These architectures can, indeed, complement prevalent network designs with more

sophisticated sensors. A hierarchical network can be envisioned, where the cluster

heads gather data from nearby sensors using multihop relay and then communi-

cate this information to the collector using a collector-driven system.

We engineered the RF front-ends at the sensors and leveraged custom RF

designs for additional functionality, which, we believe, is a novel approach in the

area of sensor networks. Thus, there is potential for application-specific front-end

designs for optimized communication links in sensor networks. The fact that the

millimeter-wave prototype was built using off-the-shelf components shows that

custom front-end designs can be often be built and tested using standard RF

blocks. The prototype design also aptly demonstrated the concept of co-design of

hardware and algorithms to enable low-power minimalist sensor designs.

However, one important caveat in using RF techniques is that their perfor-

mance, in practice, is extremely dependent on the propagation characteristics

of the environment. Therefore, the system must be appropriately designed and

techniques such as those proposed in this dissertation for suppressing effects of

multipath (outliers in AoA measurements) need to be developed.

A practical advantage of these architectures is that many system performance

parameters can be altered at the collectors independent of the deployed sensor

network. For instance, the localization resolution of the collector-driven system

149



Chapter 5. Conclusions

can be improved by increasing the bandwidth of SS location code or increasing

the transmit power. Similarly, sensors can be added to replace worn out ones or

be removed at any time without any bearing on the functioning of the remaining

sensors.

By the very nature of imaging sensor nets, the sensor data and location have

been fused into one entity, which is very useful in real-time tracking and monitor-

ing applications. This fusion of data and location also presents other possibilities

such as location-based retrieval in a collector-driven system, where a selected por-

tion of the sensor field is queried for information.

5.2 Challenges and Future Work

Experiments on the millimeter-wave prototype revealed that power is the key

resource that determines the feasibility of this system; for instance, we can scale

our current system to operate over inter-planetary distances with sufficient trans-

mit power at the collector. Consequently, an important parameter to optimize is

the power-efficiency of the system, which can be improved either at the collector

or the sensor.

At the collector, more favorable power budgets can be achieved by capturing a

larger fraction of the power reflected by the sensors, which can be accomplished by

using multiple collectors to record the sensor responses. However, synchronizing

all the collectors in time to measure round-trip times or TDOA is both difficult
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and expensive to achieve in practice. An attractive alternative is for the additional

collectors to measure the AoA of the sensor reflection and demodulate the data.

Soft estimates of the location and data can be computed using, perhaps, the

sequential algorithm proposed in Chapter 4, which can then be incorporated into

the estimates of the primary collector. In essence, we have merged the collector-

driven and sensor-driven architectures, with the primary collector initiating and

providing energy for the sensor transmission.

The 1/R4 power fall-off with range of a semi-passive sensors prevents their

use in long-range deployments. As mentioned in Section 3.1.1, the additional RF

amplification at the sensor (termed an active sensor), can improve the fall-off to

1/R2, but at an additional energy cost at the sensors. The collector emits large

amounts of power in the beacon, only a small fraction of which gets utilized if

there are sensors with data to report. This transmitted energy could be salvaged

by sensors that do not have data to send to charge their batteries in a manner

similar to energy harvesting [86], and eventually be used for the RF amplification

to reach the remote collector. Similarly, the sensor RF circuitry also needs to be

turned off, when not in use, to conserve energy, using perhaps a separate wake-up

channel.

Alternately, the directivity gain at the sensor can be improved by choosing

other antenna designs such as retrodirective arrays [87]. However, the sensor an-

tenna must be (nominally) oriented towards the collector to receive the maximum
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reflected power, which becomes progressively more challenging with increasing

antenna directivity, especially if the sensor is randomly deployed.

The collector-driven system requires LOS between the sensor and the collector

to reliably estimate the sensor location, and NLOS multipath causes performance

losses. Multipath is particularly significant in the downlink, since at high transmit

powers, the sidelobes of the collector transmit antenna can contain a large amount

of power as well. Recall that the sensor will reflect the multipath it receives back

to the collector as well. Nevertheless, the use of multiple collectors, along with

NLOS suppression techniques could help alleviate the effects of multipath on the

localization accuracy.

Although we use a SS location code in the prototype, the system is, in principle,

capable of operating with other radar waveforms such as a frequency-modulated

chirp signal[43], with appropriate modifications. This finding, if confirmed, has a

couple of key implications. First, with a chirp signal, the initial range matched fil-

tering in the receiver baseband processing can be performed effectively and rapidly

in hardware, and can, thereby, reduce the computation burden on the receiver sig-

nificantly. Second, a sensor that can reflect a conventional radar waveform can

be used as an enhancement in standard imaging platforms. For instance, a SAR

remote-sensing system is useful for imaging objects with characteristic response

to radar frequencies only. A sensor that has different measurement modalities can

either directly modulate the analog measurements or an equivalent bitstream on

the radar signal. This side-channel can, thus, potentially provide images of better
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resolution and higher information content, at the minimal cost of deploying these

sensors.

Before the proposed imaging sensor net can be deployed, the sensors need to be

integrated with components for sensing, storage and possibly computation. This

raises interesting issues of data representation and storage at the sensor, until it is

retrieved (or queried for) by the receiver. Moreover, in dense sensor deployments,

multiple sensors would detect an event, and the measurements of this event made

by nearby sensors would also be highly correlated. Utilization of this spatial

correlation between the data transmitted by these nearby sensor for compression

(reduction in data sent) or reliability (using the redundancy) is an open problem.

In fact, the localization abstraction of the collector-driven system in Chapter 2

could provide a communication infrastructure for very simple sensing modalities

such as binary proximity sensors that have been shown to provide reasonable

tracking performance in large-scale deployments[88, 89], while utilizing the time

correlation between measurements at different sensors as well.

There are also several unresolved theoretical issues in our work on AoA-based

localization. Physical layer dependent models need to be extracted in order to

understand the effects of the number of antennas and RF front-end components

like automatic gain controllers on the localization performance. Such models

are also essential to develop techniques for localization of multiple sources that

are transmitting simultaneously. The AoA estimation performance is determined
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by the SNR at the receiver, which varies both with range (due to free-space

propagation) and multipath effects, and needs to be accounted for.
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[56] J. J. Caffery and G. L. Stüber, “Subscriber location in cdma cellular net-
works,” IEEE Transactions on Vehicular Technology, vol. 47, p. 406416, May
1998.

[57] R. A. Maronna, D. R. Martin, and V. J. Yohai, Robust Statistics: Theory
and Methods. Wiley, 2006.

[58] J. Borras, P. Hatrack, and N. Mandayam, “A decision theoretic framework
for nlos identification,” in Proceedings of IEEE VTC98, vol. 2, May 1998, pp.
1583–1587.

[59] L. Cong and W. Zhuang, “Non-line-of-sight error mitigation in tdoa mobile
location,” in IEEE Global Telecommunications Conference, vol. 1, Nov. 2001,
pp. 680–684.

[60] S. Venkatraman and J. C. Jr., “Statistical approach to nonline-of-sight bs
identification,” in Proc. 5th International Symposium on Wireless Personal
Multimedia Communications, vol. 1, Honolulu, Hawaii, Oct 2002, pp. 296–
300.

[61] S. Srirangarajan and A. H. Tewfik, “Sensor node
localization via spatial domain quasi-maximum likeli-
hood estimation,” in EUSIPCO, 2006. [Online]. Available:
http://www.arehna.di.uoa.gr/Eusipco2006/papers/1568979916.pdf

[62] B. L. Le, K. Ahmed, and H. Tsuji, “Mobile location estimator with nlos
mitigation using kalman filtering,” in IEEE Wireless Communications and
Networking, vol. 3, Mar. 2003, pp. 1969–1973.

[63] P. C. Chen, “A non-line-of-sight error mitigation algorithm in location esti-
mation,” in IEEE Wireless Communications and Networking Conference, no.
316-320, Sept. 1999.

[64] R. Casas, A. Marco, J. J. Guerrero, and J. Falc, “Robust estimator for non-
line-of-sight error mitigation in indoor localization,” EURASIP Journal on

160



Bibliography

Applied Signal Processing, vol. 2006, pp. Article ID 43 429, 8 pages, 2006,
doi:10.1155/ASP/2006/43429.

[65] B. Ananthasubramaniam and U. Madhow, “Virtual radar imaging for sensor
networks,” in Proceedings of the third international symposium on Informa-
tion processing in sensor networks. Berkeley, California, USA: ACM Press,
New York, April 2004, pp. 294–300.

[66] ——, “On localization performance in imaging sensor nets,” IEEE. Trans.
Signal Processing, vol. 55, no. 10, pp. 5044–5057, Oct 2007.

[67] D. C. Munson and R. L. Visentin, “A signal processing view of strip-mapping
synthetic aperture radar,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. 37, no. 12, pp. 2131–2147, Dec 1989.

[68] J. A. C. Lee, O. Arikan, and D. C.Munson, “Formulation of a general imag-
ing algorithm for high resolution synthetic aperture radar,” in Proc. IEEE
International Conference on Acoustics, Speech, and Signal Processing, vol. 4,
1996, pp. 2092–5.

[69] R. E. Blahut, Theory of Remote Image Formation. Cambridge University
Press, 2004.

[70] D. C. Munson, J. D. O’Brien, and W. K. Jenkins, “A tomographic formula-
tion of spotlight-mode synthetic aperture radar,” Proc. IEEE, vol. 71, no. 8,
p. 917, 925 1983.

[71] H. V. Poor, An Introduction to Signal Detection and Estimation, 2nd ed.
Springer, 2005.

[72] F. M. Gardner, “A BPSK/QPSK timing-error detector for sampled re-
ceivers,” IEEE Trans. Comm., vol. 34, no. 5, pp. 423–429, May 1986.

[73] ——, “Interpolation in digital modems-part I: Fundamentals,” IEEE Trans.
Comm., vol. 41, no. 3, pp. 501–507, March 1993.

[74] L. L. Sharf, Statistical Signal Processing: Detection, Estimation and Time
Series Analysis. Addison-Wesley, 1991.

[75] J. Proakis, Digital Communications. McGraw Hill, 2001.

[76] B. Ananthasubramaniam and U. Madhow, “Collector receiver design for data
collection and localization in sensor-driven networks,” in Proc. Conference on
Information Sciences and Systems, (CISS’07), March 2007.

161



Bibliography

[77] L. C. Godara, “Application of antenna arrays to mobile communications. ii.
beam-forming and direction-of-arrival considerations,” Proc. of IEEE, vol. 85,
no. 8, pp. 1195–1245, Aug 1997.

[78] R. Raich, J. Goldberg, and H. Messer, “Bearing estimation for a distributed
source: Modeling, inherent accuracy limitations, and algorithms,” IEEE
Trans. Signal Processing, vol. 48, pp. 429–441, Feb. 2000.

[79] R. B. Ertel, K. Sowerby, T. S. Rappaport, and J. H. Reed, “Overview of
spatial channel models for antenna array communication systems,” IEEE
Pers. Commun., p. 1022, 1998.

[80] Y. Meng, P. Stoica, and K. M.Wong, “Estimation of the directions of arrival
of spatially dispersed signals in array processing,” IEE Proceedings Radar,
Sonar and Navigation, vol. 143, no. 1, pp. 1–9, Feb. 1996.

[81] T. Trump and B. Ottersten, “Estimation of nominal direction of arrival
and angular spread using an array of sensors,” 1996. [Online]. Available:
citeseer.ist.psu.edu/trump96estimation.html

[82] S. Valaee, B. Champagne, and P. Kabal, “Parametric localization of dis-
tributed sources,” IEEE Trans. Signal Processing, vol. 43, no. 9, p. 21442153,
Sept. 1995.

[83] Q. H. Spencer, B. D. Jeffs, M. A. Jensen, and A. L. Swindlehurst, “Modeling
the statistical time and angle of arrival characteristics of an indoor multipath
channel,” Ieee Journal On Selected Areas In Communications, vol. 18, no. 3,
pp. 347–360, Mar. 2000.

[84] B. Rao and K. Hari, “Performance analysis of root-music,” IEEE Trans. on
Signal Processing, vol. 37, no. 12, pp. 1939–1949, Dec 1989.

[85] D. Laurenson, C. Tan, C. Chong, and M. Beach, “Directional measurements
and modelling of indoor environments at 5.2 ghz,” in Proc. 2005 European
Signal Processing Conference (EUSIPCO’05), 2005.

[86] A. Kansal and M. B. Srivastava, “An environmental energy harvesting frame-
work for sensor networks,” in ACM/IEEE Int’l Symposium on Low Power
Electronics and Design, 2003.

[87] R.Y.Miyamoto and T.Itoh, “Retrodirective arrays for wireless communica-
tions,” IEEE Microwave Magazine, vol. 3, no. 1, pp. 71–79, Mar 2002.

162



Bibliography

[88] N. Shrivastava, R. Mudumbai, U. Madhow, and S. Suri, “Target tracking
with binary proximity sensors: Fundamental limits, minimal descriptions,
and algorithms,” in Proc. of ACM SenSys, 2006.

[89] J. Singh, U. Madhow, R. Kumar, S. Suri, and R. Cagley, “Tracking mul-
tiple targets using binary proximity sensors,” in Proceedings of the Sixth
ACM/IEEE International Conference on Information processing in Sensor
Networks (IPSN), 2007, pp. 529–538.

163



Appendix

164



Appendix A

Bounds on bootstrap failure
probability

In this appendix, we derive the bounds on the probability of the bootstrap
failure in (4.28). As defined earlier, P =

(
N
2

)
is the total number of bootstrap

pairs and K = P −
(
⌊(1−α)N⌋

2

)
is the number of pairs with at least one NLOS

collector, where ⌊(1− α)N⌋ is the number of collectors with LOS channels and α
is the fraction of collectors with NLOS channels.

P (bootstrap failure) =

(
M
K

)
(
P
M

) if M ≤ K

=
K(K − 1) . . . (K −M + 1)

P (P − 1) . . . (P −M + 1)

=

(
1 +

K − P

P

)(
1 +

K − P

P − 1

)
. . .

(
1 +

K − P

P −M + 1

)
.(A.1)

In order to obtain an upper bound on the bootstrap failure probability, we replace
each ratio of the form K−P

P−k
by a larger fraction K−P

P
(note that K < P by

definition):

P (bootstrap failure) ≤
(
K

P

)M
. (A.2)

Similarly, replacing the ratios K−P
P−k

by a smaller fraction K−P
P−M+1

in (A.1), we get
a lower bound,

P (bootstrap failure) ≥
(
K −M + 1

P −M + 1

)M
. (A.3)
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Appendix A. Bounds on bootstrap failure probability

The lower and upper bounds clearly converge if M ≪ K < P , which occurs when
N is large. Moreover, these bounds hold only for M ≤ K, as the probability of
bootstrap failure is zero if M > K.
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