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Abstract— We consider a sensor network in which the sensors
communicate at will when they have something to report,
without prior coordination with other sensors or with data
collection nodes. The burden of demodulating the sensor data,
and localizing the sensor which is communicating, falls on a
network of collector nodes which are perpetually monitoring
transmissions from the sensor network. This model allows the
random deployment of very large numbers of sensor nodes
with minimal capabilities, while shifting the complexity to a
network of collector nodes. While the philosophy is similar to
prior work on “imaging” sensor nets, the key difference is that
the communication model is now sensor-driven, rather than
collector-driven. The two major technical challenges addressed
in this paper are as follows:
(a) Are there simple physical layer implementations of the
collector receiver for jointly solving the tasks of detection of a
sensor transmission, estimation of the direction from which it
comes, and demodulating the data?
(b) Given that the collectors are not time synchronized well
enough to permit the use of time-difference-of-arrival tech-
niques for sensor localization, how well can the sensors be
localized with spatial information alone, assuming that each
collector node has a relatively small number of antennas?
The results reported in this paper indicate that the preceding
issues can be addressed satisfactorily with appropriate design of
the collector physical layer, together with Bayesian combining
of the spatial information extracted by each collector.

I. INTRODUCTION

Sensor network deployments with tens of thousands of
nodes are necessary to monitor large areas with the small
sensing range of a typical microsensor. In such large net-
works, obtaining a prior map between a sensor’s location
and ID, which is often a critical part of the collected data,
is difficult and sensor node functionality must be minimized
to drive down the cost. To this end, we propose a sensor
driven paradigm for data collection in large-scale sensor
networks. Sensors transmit their data as soon as they observe
an ‘interesting’ event, without prior coordination with the
collectors or other sensors. A network of collectors that per-
petually monitor for sensor transmissions are responsible for
demodulating the sensor data, and localizing the transmitting
sensor. Sensor node functionality is reduced by moving the
complexity to the collectors, analogous to our prior work on
imaging sensor nets[5].

In an imaging sensor net, a sophisticated collector scans
the sensor field with a beacon. Sensors with data to send

This work was supported by the National Science Foundation under grants
CCF-0431205, ANI-0220118, EIA-0080134 and CNS-0520335, and by the
Office of Naval Research under grants N00014-03-1-0090 and N00014-06-
1-0066.

The authors are with the Department of Electrical and Computer Engi-
neering, University of California, Santa Barbara, CA 93106, USA.

electronically reflect the beacon (thus creating a radar geom-
etry) and modulate it with data, when illuminated by the
collector. The collectors in such a virtual radar system
create an “image” of the sensor field, which is a map
between the sensor locations and the associated data, using
radar and image processing techniques. Since the collector
must initiate a sensor transmission, the data collection is
collector-driven and differs from the on-demand sensor-
driven communication. While the sensors can be localized
using a single collector [4], multiple collectors can be used
to increase localization accuracy.

The basic philosophy behind these two approaches are
similar: the locations of the sensors are not known a priori
(which is consistent with large-scale random deployments)
and the sensors do not need to talk to each other, and the
complexity is shifted to the collector nodes. Since a radar
geometry is not induced by “at will” sensor transmissions,
collaboration between multiple collector nodes is a must for
sensor localization, rather than just being a performance-
enhancing feature as in collector-driven imaging sensor nets.
If the collector network has fine-grained time synchroniza-
tion, then it is possible to use time-difference-of-arrival
(TDoA) techniques to estimate the location of a transmit-
ting sensor. However, such fine-grained synchronization is
extremely difficult to achieve in a network of geographically
dispersed collector nodes. In this paper, although we briefly
indicate how localization can be achieved using spatial
information alone, we focus on the physical layer design
necessary for detection of a sensor transmission, estimation
of the its direction of arrival, and demodulating the data.

An example of a sensor-driven network is the Remote
Battlefield Sensor System (REMBASS) and its improvement
(IREMBASS) [1] used by the US Department of Defence.
These systems employ transmit-only sensor nodes for sur-
veillance and situational awareness. However, the nodes are
manually placed, so that there is a map between the node ID
and its location. An architecture such as the one proposed
here, which provides localization in sensor-driven systems,
would allow random deployment of sensors on a much more
massive scale than is currently possible in a system such as
REMBASS or IREMBASS.

Our goal here is to design the collector receiver physical
layer algorithms to realize such a sensor-driven system. Since
there is no timing or phase-synchronization between the
sensor and collectors, the collector receivers (each equipped
with an antenna array) must, first, noncoherently accom-
plish joint detection and timing acquisition of the sensor
transmission before demodulating the data and estimating



the AoA. Since the collectors perpetually monitor for sensor
transmissions, the antenna array at the collector is connected
to an automatic gain controller (AGC) to maintain the range
of the input into the receiver RF circuitry within acceptable
limits. A minimum mean-square error (MMSE) demodu-
lator beamforms along the signal direction and produces
the spatial correlation matrix for AoA estimation (seen in
Figure 1). The acquisition algorithm is designed to acquire
a single sensor transmission and we omit a discussion of
multiple access interference between sensors that transmit
in overlapping time intervals. While this can be handled
by a combination of standard techniques such as spread
spectrum modulation, space-time interference suppression at
the collectors and delay randomization, the expected rate and
spatial concentration (e.g., because of multiple neighboring
sensors detecting a common event) of bursts of sensor
transmissions must be accounted for. Using the angle of
arrival (AoA) estimates of the sensor transmission from the
above physical layer design, the collectors collaborate using a
Bayesian algorithm to estimate the sensor location. Further,
fundamental limits on the sensor localization performance
and how the performance of the Bayesian localization scales
with the number of collectors, the number of antennas per
collector, and the signal-to-noise ratio (SNR) can be derived.
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Fig. 1. RF frontend at each collector

Our main contributions are as follows. We motivate the
choice of a MMSE demodulator and the mean-square er-
ror (MSE) as the detection statistic with an analysis of
detection in the presence of an AGC. The linear MMSE
demodulator and acquisition algorithm for joint detection
and timing acquisition are described: The sensor begins its
transmission with a training sequence, which is known to
the collector to within a small bounded phase uncertainty.
The collector hypothesizes on the possible phases of the
current received bit, and runs one MMSE adaptation using
the least-squares algorithm for each of them. If the minimum
MSE is below a threshold, then the signal is declared
‘detected’ and the hypothesis corresponding to the minimum
MSE is the estimated phase of the training sequence. After
acquisition, the data is demodulated in a decision-directed
fashion, constantly adapting the MMSE beamformer. The
acquisition performance of the detector is studied using a
combination of analysis and simulation.

Related Work: The receiver algorithms are based on prior
work of one of the authors[15]. Since we are unaware of re-

lated work on receiver designs for sensor networks, we focus
on literature related to the sensor-driven architecture. Emitter
or source localization has been studied extensively for the last
few decades for both defence and civilian applications[13].
Positioning using TDoA and it derivatives is used in cellular
phone localization (as part of the E911 FCC mandate)[14],
radar systems[23] and underwater acoustics[9]. In acoustic
arrays, due to the lower speed of sound, timing synchroniza-
tion (between collectors) required to get accurate localization
using TDoA measurements can be obtained easily. This
is utilized in [2] to localize an acoustic source using a
collection of coarse microphones. However, at higher RF
frequencies, timing synchronization to achieve localization of
a few meters is difficult to achieve, as communication delays
become significant sources of error. Acoustic localization
with energy/signal strength measurements is presented using
a method of projection onto convex sets in [7] and particle
filtering in [22]. In [22], although Bayesian fusion of the
sensor readings is employed, all the samples of the particle
filter must be communicated between sensors leading to a
high communication cost.

Signal strength indicators are unreliable at RF, as the
path loss exponent and attenuation vary significantly with
atmospheric conditions. Nevertheless, a combination of re-
ceived signal strength, AoA and TDoA measured using RF
radios are used in [8], [20], [16], [21] under a multi-hop
setting for sensor self-localization with respect to a few
known sensor locations or in a globally consistent coordinate
framework. Triangulation-based techniques for sensor data
fusion are discussed for TDoA estimates in [24], and for
both TDoA and AoA measurements in [12]. A nonlinear
least squares problem is solved for localization using acoustic
AoA estimates in [6] and energy measurements in a dis-
tributed manner in [17]. In [3], maximum likelihood (ML)
localization is formulated as a centralized two-dimensional
search over the global likelihood function using both TDoA
and AoA.

The rest of the paper is organized as follows. The analysis
of detection in the presence of an AGC, the linear MMSE
demodulator and the acquisition algorithm with its perfor-
mance characterization is presented in Section II. The AoA
estimation and Bayesian algorithm for sensor location is
summarized in Section III. Concluding remarks are provided
in Section IV.

II. COLLECTOR RECEIVER DESIGN

We first define the signal model for the collector receiver.
In Section II-A, we present the analysis of the detection
problem motivating the MMSE demodulator design. The
detection performance is presented in Section II-D.

Each sensor uses BPSK modulation with energy per bit
Eb to transmit its data. The effective transmit pulse seen
at the receiver is p(t) of duration T . Each collector is
equipped with an N -element uniform linear array (ULA)
having a steering vector or array manifold, sθ, where θ is the
baseband phase angle corresponding to an angle of arrival of
arrival ϕ. The channel between each collector and the sensor



is line-of-sight (LOS) with additive white gaussian noise
(AWGN). The complex proper gaussian noise (at baseband)
has power N0 per dimension. The local oscillators (LO)
at the different collectors and the sensor are not mutually
synchronized. The resulting random phase φ is assumed to be
unknown and U [−π, π], but remains constant throughout the
sensor transmission. In addition, there is no symbol timing
synchronization between the sensor and the collectors.

We model the AGC as a device that maintains the average
power at its output at a constant level P0. In reality, the
averaging interval of the AGC (to measure the input power)
depends on its time constant or loop filter bandwidth. Nev-
ertheless, this simple model captures most of the effects of
the AGC. The baseband received signal at the antenna array
of a collector prior to the AGC is

r(t) = b(t − τ) sθ ejφ + n(t),

where the transmitted bit stream is b(t) =
∑

k bkp(t − kT )
and τ is the symbol timing error at the collector. Without
loss of generality, τ is assumed to be in [0, T ] and random
phase ejφ can be absorbed into the array manifold. Since
the demodulator and the AoA estimator use the spatial
correlation matrix, which is independent of the random
phase, it is sufficient to use the equivalent coherent model,

r(t) = b(t − τ) sθ + n(t). (1)

The signal at the output of the AGC is

y(t) =
√

P0√
Eb + N0

{∑
k

bk p(t − kT − τ) sθ + n(t)

}
,

(2)
where pulse energy ||p(t)|| = 1, and energy per bit Eb =
|bk|2 ∀k. The output of the AGC (2) is passed through a
symbol matched filter p∗(−t) and sampled at the symbol
rate T ,

y
n

=
∫ (n+1)T

nT

y(t)p(t − nT )dt. (3)

The discrete-time coherent model is given by

y
n

=
√

αAGC {sθ{bnλ + bn−1(1 − λ)} + wn} (4)

where λ =
∫ T

0
p(t − τ)p(t)dt, αAGC = P0

Eb+N0
and w is

an N × 1 zero-mean complex circularly-symmetric AWGN
vector with power N0 per dimension. From (4), it is clear that
there is inter-symbol interference due to the symbol timing
error τ . Furthermore, the energy in bk is split between y

k
and

y
k+1

. Hence, both timing estimation and beamforming are
essential to detect and demodulate the sensor transmission.

A. Detection in the presence of AGC

We now motivate our choice of an MMSE demodulator by
presenting an analysis of detection in the presence of an AGC
assuming that there is no symbol timing error. We model the
two hypotheses, the presence and absence of a signal, as

H1 : y
k

=
√

αAGC(sθbk + wk) (5)

H0 : y
k

=
√

P0

N0
wk. (6)

Under this model, the distributions of the output under the
two hypothesis are

p(y|H1) ∼ CN(
√

αAGCsθbk, αAGCN0IN )
p(y|H0) ∼ CN(0, P0IN )

where In is an n× n identity matrix, and CN(µ,Σ) stands
for the proper complex Gaussian distribution with mean µ
and covariance matrix Σ. Due to the lack of the priors for
the detection, we declare hypothesis H1 true if the ratio of
p(y|H1) and p(y|H0) exceeds some threshold α. Eliminating
the terms independent of y, this ratio of p(y|H1) and p(y|H0)
can be reduced to

||y −√
αAGCsθb||2

1

≶
0

α′. (7)

Equation (7) suggests that the quality of fit (or squared error)
of the received signal y to the effective transmitted signal,√

αAGCsθb, be compared with a threshold. However, sθ and
bk are not known a priori at the collector, and best choices
for sθ and bk are those that minimize this squared error. In
order to maintain the squared error structure of the detection
rule, we design an MMSE beamformer for the model in (4)
to jointly estimate sθ and demodulate the data.

B. MMSE Demodulator

The linear MMSE demodulator for the asynchronous
model in (4) to estimate the transmitted bit is given by

b̂n = sgn(〈c1, yn
〉 + 〈c2, yn+1

〉) = sgn(〈c,yn〉), (8)

where 〈, 〉 denotes the standard inner product in Euclidean
space, c = [cT

1 cT
2 ]T , yn = [yT

n
yT

n+1
]T and the correlator

c minimizes the mean squared error E{|〈c,yn〉 − bn|2}.
Note, the scaling factor

√
αAGC can be disregarded, since

the demodulator in (8) is scale-invariant. Furthermore, the
demodulator recovers all the energy in bn by using both y

n
and y

n+1
. The MMSE correlator is

cMMSE = R̄−1ũ,

where R̄ = E[ynyH
n ] is the spatial correlation matrix for

the augmented system and ũ = E[bnyn] is the correlation
between the desired bit and the observed vector. The de-
modulator finds beamforming vectors c1 and c2 as complex
scalar multiples closest to sH

θ in the MMSE sense. The MSE
achieved by the MMSE solution is

η = 1 − ũHR̄−1ũ = 1 − cH
MMSEũ, (9)

setting Eb = 1 without any loss of generality. In this paper,
the MMSE solution is obtained by adaptation with respect
to a known sequence bn using a least-squares algorithm [11]
(the choice of which will become clear in the discussion
of the acquisition algorithm) followed by decision-direction
demodulation using b̂n.



C. Acquisition Algorithm

We present an acquisition algorithm to jointly detect a
sensor transmission and train the MMSE beamformer to de-
modulate the data. The collectors always suppose that there is
a sensor transmission and attempt to receive it. A successful
reception of a signal involves detecting the presence of the
signal, and thereafter, acquiring the correct phase of the
training sequence to obtain the symbol timing. During the
acquisition phase, the sensor transmits a periodic training
sequence tn known to the collectors except for an unknown
bounded phase uncertainty. Suppose tn is a sequence of
length M and period P . Hence, at each collector, the current
bit bn = tn+i∗ , where i∗ ∈ {0, 1, . . . , P − 1}, but the
corresponding i∗ is unknown. Therefore, each collector runs
P adaptive algorithms, each corresponding to a hypothesis
Hi that the phase of the training is i∗ = i, i.e.,

Hi : bn = tn+i, i = 0, . . . , P − 1.

The MMSE solution for ith hypothesis is ci = R̄−1ũi

where ũi = E{tn+iyn}. Note, that the augmented spatial
correlation matrix R̄ needs to be computed and inverted only
once every sample, and is common to all P adaptive algo-
rithms. This reduces the computational burden of running P
algorithms significantly.

When tn is an random uncorrelated bit sequence, the
autocorrelation of the periodic sequence is a Kronecker delta.
For such a tn, the MSE for the true hypothesis say i∗ would
be zero and MSE for all the other hypotheses is 1. Therefore,
we choose good sequences with autocorrelation close to a
Kronecker delta like a pseudonoise (PN) or Barker sequence.
For the rest of the paper, we use a training sequence that is
a repeated PN or Barker sequence of length P . A detailed
discussion of the choice of good training sequences and their
performance is beyond the scope of this paper (see [19]).

The acquisition algorithm has following steps:
Step 1 (MMSE Solution Computation): Compute the MMSE
beamformer and MSE for each hypothesis Hi as

ci = R̄−1ũi and ηi = cH
i ũi. (10)

Step 2 (Finding the best hypothesis): Find the hypothesis
Himin with the minimum MSE, i.e.,

imin = arg min
i

ηi.

Step 3 (Detection and Acquisition): For detection (during the
training phase), compare ηimin against the detection threshold
T . If ηimin < T , then declare detected sensor transmission
and correct phase of the training sequence as imin.
Step 4 (Demodulation): After acquisition, the data is demod-
ulated according to

b̂n = sgn(ci
H
minyn).

The dimensionality of the adaptive algorithms is 2N ,
which is not very large as the number of antennas N typically
takes values 2–8, and, as indicated earlier, the inverted
correlation matrix is shared by the P parallel algorithms.
Since the collectors need to detect a relatively short sensor

transmission, speed of convergence of the adaptive algo-
rithms is most important. Therefore, we use a least-squares
algorithm for acquisition that is faster and more complex,
but the penalty for the added complexity is minimal for such
small dimensional algorithms.

For the least-squares adaptation in Step 1, R̄ and ũi are
replaced by empirical averages,

R̂ =
1
M

M∑
k=1

ykyH
k and ûi =

1
M

M∑
k=1

tk+iyk. (11)

The corresponding correlator and MSE estimates, denoted
by ĉi and ûi, are computed according to (10) using the
empirical estimates in (11) and used in steps 2, 3 and 4
of the acquisition algorithm.

D. Detection Performance

We now discuss the selection of the detection threshold
used in Step 3 of the acquisition algorithm. During operation
of the receiver two events can occur: a correct detection,
when the MSE due to the presence of a signal is below the
threshold (we work with its complementary event a miss), or
a false-alarm, when noise causes the MSE to go below the
threshold. We denote the corresponding event probabilities
by pmiss and pfa respectively. There is a tradeoff between
these two probabilities as increasing the threshold decreases
pmiss and increases pfa and vice-versa, when the threshold is
decreased. We present this trade-off as a plot between pmiss

and pfa, which is called the receiver operating characteristics
(ROC). In practice, the threshold and operating parameters
like the threshold and length of training sequence M are
chosen depending on the desired operating point on the trade-
off curve. The correlations introduced by inter-symbol inter-
ference makes the analysis of the pmiss for a given threshold
challenging and it is left for ongoing work. Therefore, here
we empirically estimate pmiss via simulations.

In the absence of a signal, the received signal is AWGN
with power P0, independent of the absolute noise power N0

(see (6)) due to the AGC. This ensures that for a given choice
of threshold, the pfa or rate of false alarms does not vary
with changes in the background clutter and noise powers.
Hence, this MMSE acquisition algorithm achieves a constant
false alarm rate (CFAR), which is a desirable attribute in
radar systems as well. Under the no signal hypothesis, we
model the estimated MMSE solutions for the P training
hypotheses as random correlators, i.e.,

ĉi = R̂−1ûi ≈ 1
P0

ûi =
1

MP0

M∑
k=1

tk+iwk,

replacing R̂ by its mean P0I2N . Assuming the wk

to be independent, the MMSE solutions are ĉi ∼
CN(0, (P0M)−1I2N ). The MSE for ith hypothesis is

η̂i = 1 − ĉH
i ûi = 1 − γi,

where the random variables γi are gamma-distributed, γ ∼
Γ(2N, 1/M), since it is the squared-norm of a complex
proper Gaussian random vector with independent identically



distributed elements. Note, the gamma distribution is inde-
pendent of the absolute signal or noise powers. Therefore,
for a threshold T the false-alarm probability is given by

pfa = P (η̂imin < T ) = 1 − P (η̂i > T, i = 1, . . . , P )
= 1 − P (γ < 1 − T )P (12)

For successful acquisition, the signal must be detected and
the correct phase of the training sequence must be estimated.
Simulations (not shown here) reveal that given successful
detection, the probability of an incorrect phase estimate
is extremely low. Therefore, we focus on the detection
performance of the receiver alone. We simulate a collector
receiver with N = 2 antennas running P = 7 parallel
MMSE adaptations. The sensor transmits a P = 7 length
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Fig. 2. The ROC: pmiss versus pfa for a collector with 2 antennas using
M = 49 length training sequence running P = 7 parallel adaptations at
different SNRs

Barker sequence, which is repeated to form a M = 49 length
training sequence. In Figure 2, the ROC for this receiver is
shown for different choices of SNR = Eb/N0. For each
SNR, the pmiss was obtained from Monte-Carlo simulations
and the corresponding pfa is given by (12). It can be seen
that pmiss improves monotonically with SNR for a given
pfa, since this receiver achieves CFAR. Therefore, it suffices
to choose the threshold for the worst SNR expected and
the performance will exceed the design criterion for higher
SNRs. Suppose it is desired to operate such that pmiss < p1

and pfa < p2, and the worst expected SNR is SNR0. If
from the ROC it is seen that (p1, p2) is not achievable at
SNR0 (the point is not in the region enclosed by the curve),
then the length of training sequence M is increased until
the desired performance can be achieved. Finally, when M
and the desired operating point on the curve are found, the
threshold corresponding to that pfa is set using (12).

III. LOCALIZATION USING ANGLE OF ARRIVAL

We now summarize the Bayesian algorithm for sensor
localization and provide a scaling law for the localization
error. After acquiring the sensor transmission, the MMSE

demodulator is used to recover the transmitted data and
estimate the AoA. The spatial (AoA) information in the
sensor transmission is entirely captured in the estimated
spatial correlation matrix R̂, which is computed as part of
the acquisition algorithm. Furthermore, the N×N sub-block
formed by the first N rows and columns of R̂ is sufficient
(recall we used an augmented matrix), and this sub-matrix
is denoted by R. The steering vector of the ULA at each
collector is of the form sθ = [1 ejθ ej2θ . . . ej(N−1)θ]T ,
where θ = 2πd sin(ϕ)

λ and the AoA ϕ is the angle between the
arriving plane wave and the plane of the array. The structure
of sθ can used to accurately estimate the AoA using the root-
MUSIC algorithm[10]. This algorithm finds the steering vec-
tor with the largest projection along the strongest eigenmode
of R, and efficiently computes the AoA by finding the roots
of an algebraic equation. However, in addition to the AoA
estimate, the variance of the estimation error is also needed
for the Bayesian algorithm. From empirical observations,
the errors in the AoA are modeled as zero-mean Gaussian
random variables with approximate variance[18] given by

Σϕϕ ≈ 1
N3 MSNR

, (13)

where M is the length of the training sequence used to
estimate R. The AoA estimates from all the collectors
must now be combined to estimate the sensor location. We
assume that the localization errors along x- and y-axes are
jointly Gaussian, so that all the probabilistic information
can be captured by just tracking location estimates and their
error covariances. The algorithm is initiated by the bootstrap
procedure, in which the AoA from the first two collectors
(according to some predefined ordering), are combined to
compute an initial sensor location estimate and the variances
of the estimation errors along the x- and y-axes. This estimate
and error variances are passed as priors to the next collector
that, after suitable coordinate transformations, updates the
location estimate and error variances using its own AoA
estimate. This simple procedure is repeated until all the
available spatial information is incorporated into the location
estimate. Since only a pair of mean and covariance estimates
need to be passed on from one collector to the next, this
algorithm can be implemented in a completely distributed
manner, with each collector needing to know only its own
location and orientation. While we consider AoA estimates
here, the Bayesian algorithm is quite general, and can, for
example, incorporate probabilistic information on the sensor
range obtained from signal strength measurements.

To study the scaling of the localization performance with
system parameters, we derive an estimate of the localization
error in a circular sensor field using Ncoll collectors, each
equipped with N -element ULAs, spaced equally apart along
the perimeter of the field. Using (13), a bound on the standard
deviation of the localization error is given by

σs ≤ 2√
Ncoll · N 3

2 · √MSNR
. (14)

Equation (14) implies that an increase in the number of an-
tenna elements per collector produces a cubic improvement



in performance as the number of collectors Ncoll, length of
the training sequence M and the SNR. The additional gain is
due to beamforming (SNR gain) and narrower beam-patterns
producing better AoA estimates (see (13)). Also, increasing
Ncoll and M improves performance at the same rate as SNR,
since both parameters effectively provide better noise averag-
ing. In Figure 3, the RMS localization of sensors in a circular
field with unit radius obtained via simulations is shown,
where each collector has 2 antennas. It is observed that good
resolution can be obtained using spatial information alone
and (14) accurately predicts the observed localization error.
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IV. CONCLUSIONS

We designed a simple collector receiver to realize large-
scale randomly deployed sensor networks with sensor-driven
data collection: sensor locations need not be known a priori,
sensors can transmit at will without any coordination with
each other or with the collectors, and collectors need not be
time-synchronized. A linear adaptive MMSE receiver was
used for detection, timing-acquisition and demodulation of
the sensor transmission. The scale-invariant MSE is used as a
detection criterion. The detection performance and the choice
of operating point for the receiver were also presented. Our
results indicate that fast joint detection and timing acquisition
can be achieved with this receiver at moderate complexity.

The MMSE receiver also computes the spatial correlation
matrix used for AoA estimation. We summarized the distrib-
uted Bayesian algorithm used to combine the different col-
lector AoA estimates to localize the transmitting sensor. The
dependence of the localization error on system parameters is
also provided. Issues for future research include the effect of
more realistic path loss models, methods for handling inter-
sensor interference, utilizing additional information such as
signal strength, understanding the effect of collector place-
ments, and collaborative data demodulation and detection by
the collectors with communication constraints.
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