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Abstract—Compressive random projections followed by ¢;
reconstruction is by now a well-known approach to capturing
sparsely distributed information, but applying this approach via
discretization to estimation of continuous-valued paramters can
perform poorly due to basis mismatch. However, we show in tfs
paper it is still possible to capture the information required for
effective estimation using a small number of random projedbns.
We characterize the isometries required for preserving the
geometric structure of estimation in additive white Gaussan noise

(AWGN) under such compressive measurements. Under these

conditions, estimation-theoretic quantities such as the @mer-

Rao Lower Bound (CRLB) are preserved, except for attenuatia

of the Signal-to-Noise Ratio (SNR) by the dimensionality réuc-

tion factor. For the canonical problem of frequency estimaion

of a single sinusoid based onV uniformly spaced samples, we
show that the required isometries hold for M O(log N)

random projections, and that the CRLB scales as predicted.
While we prove isometry results for a single sinusoid, we preent

an algorithm to estimate multiple sinusoids from compressive
measurements. Our algorithm combines coarse estimation oa

grid with iterative Newton updates and avoids the error floors

incurred by prior algorithms which apply standard compressed

sensing with an oversampled grid. Numerical results are preided

for spatial frequency (equivalently, angle of arrival) estmation

for large (32 x 32) two-dimensional arrays.

|. INTRODUCTION

Compressed sensing is by now firmly established as
effective means of extracting sparsely distributed infation
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frequency domain. While such sparsity immediately suggest
the use of compressive measurements, standard compressed
sensing requires sparsity in a finite basis, while the fraqies
come from a continuum, so that sparsity is over an infinite
basis. Reconstruction using standard compressed seesing t
nigques by restricting frequencies to a finite grid leads torer
floors due to “basis mismatch” [1]. The results in this paper
indicate, however, that compressive measurements, aldhg w
appropriately designed estimation algorithms, provideen
fective framework for dimensionality reduction while aglivig
discretization artifacts.

Our results are summarized as follows: Suppose a dis-
crete time signalx(@) parametrized by akK dimensional
0 = (61,...,0x)T is observed in discrete time AWGN. The
performance of coarse-grained estimation of the parameter
(which can be viewed as a detection problem) depends on
Euclidean distances of the tygec(0) — x(0’)||, while the
Cramer-Rao lower bound depends on linear combinations of
the partial derivative§dx(0)/06} (i.e., the tangent planes).
If we project down to anV/-dimensional space along randomly
chosen unit vectors, we expect to capture a fracfio/V of
the signal energy, but the noise remains roughly white with
the same variance per dimension, so that the SNR is scaled by
A#/N. Thus, if the projection preserves the Euclidean geome-
try governing detection and estimation performance, tien t

from high-dimensional observations: a canonical appraachFisher information and CRLB are as in the original problem,
to take a small number (logarithmic in the dimension of thexcept that the SNR is scaled By /N. We characterize the

observation) of random projections, and to then reconstingc
signal using these “compressive measurements” u&ingp-
timization (a number of alternative reconstruction tegleis

isometries required for preserving this geometric stng;tand
note that prior results on random projections on manifolds [
appear to indicate that such isometries can be achieved unde

have also been developed). In this paper, we explore the ti@#er general conditions. However, a computational ahara
of compressive measurements for estimation of continuodgrization of the manifold in order to obtain explicit estitas
valued parameters from high-dimensional observations p&f the number of projections required is difficult. We theref

turbed by AWGN.

focus on developing a thorough, self-contained understgnd

Consider, for example, the problem of estimating the fré&f the canonical problem of frequency estimation.
quencies of a noisy mixture of sinusoids: this is a canonical e show that\/ = O(log V') compressive measurements
problem with numerous applications such as Angle-of-Aurivsuffice to preserve the relevant geometries of the frequency
estimation using arrays and pitch detection. The number @jtimation problem. Our approach is similar to that in [2],
sinusoids in the mixture is often much smaller than the numts]- For standard compressed sensing, the restricted tspme

of available samples, leading to a sparse signal struatuiteei
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property (RIP) on norm preservation for sparse signals was
shown in [3] to be a consequence of the Johnson-Lindenstraus
(JL) lemma, which specifies how the geometry of points in
high-dimensional spaces is preserved under randomized map
pings to lower dimensions. We infer the isometries requfioed
estimation of a frequency lying in a continuum by extending



the JL lemma (that applies to a finite set of points) to thehere theith row of A is w! andz ~ N (0, (No?/M)l,y).
continuum of frequencies using covering arguments sindar The preceding normalization is chosen to preserve signal
those in [2] (which considers a more general manifold sgitin norms on averagef([|| Ax(0)||?] = [|x(6)||?), but amplifies
Once we establish these isometries, we can immediately infee noise variance per dimension By M, which is the SNR
that the CRLB for frequency estimation with compressivpenalty for dimension reduction.

measurement® (o2 /N2M), applying the SNR scaling//N In order to estimaté® accurately, we require thadl pre-

to the CRLB O(0?/N?3) for the original problem. While serve norms in a stronger sense, calédometry, defined as
these results are proved for a single sinusoid, we propdsdows.

an algorithm to estimatenultiple sinusoids from compressive

measurements. Our algorithm, which combines estimation %2 ts in RV, We say that a matrix A € RM*N has an

a cparse-gramed grid, _employs iterative Newton updates Osometry property (¢ > 0) for the sat 4, if for all v € H

avoid error floors, and is shown to approach the CRLB. Our
; . : . and some C' > 0, we have,

numerical results illustrate the efficacy of our algorithar f

estimation of two-dimensional spatial frequencies, orlesg l—e < C”AVH < 14e.

of arrival, motivated by millimeter wave applications in ish vl
very large (e.g.32 x 32) arrays can be realized in compacRemark: It is worth emphasizing that, for the RIP in standard
form factor. compressed sensing [3] 4 is the set of all2K-sparse
Related Work: There is a rich body of work devoted to theyectors, whereas we require thaisometry hold for pairwise
theory of compressed sensing [4], [5]. It was shown in [Zifferences of points on the manifold and the tangent planes
that a class of manifolds can be stably embedded using comyuitive interpretation: For estimation of a parameter that
pressive measurements via covering arguments. As alre#dgy in a discrete grid, performance in AWGN depends on
mentioned, we use similar arguments in our proofs. Parameggstances of the formi|x(6;) — x(8,)||, normalized by the
estimation from compressive measurements was discusseg@dise standard deviation. If the measurement madrbatisfies

[6], but without any assumptions on the measurement noiséisometry for vectors of the formx(6;) — x(65),V8, 6-,

We observe that the results in [2], [6] can be applied to tevithen the performance is as in the original system, except
a general framework for continuous parameter estimation fiér the amplification of the noise variance. However, for
AWGN. However, the connection to the CRLB was not madge continuous-valued parameter estimation problem, wat mu
in these references, and using these results to compute gbefurther, and ask that (appropriately normalized) distan
number of measurements needed for a particular applicatige preserved a®, — 6,. We rigorize this intuition by
including for the frequency estimation problem considereshowing that, if A provides ane-isometry for all tangent
here, is not straightforward. The poor performance of stathd planes — vectors of the fori,. ax. 3g§9> for someay, € R —

¢1 reconstruction after a naive discretization of a contirsiothen the Fisher Information Matrix f'|:||\/|) with compressive
parameter was discussed in [1]. Recovery algorithms fafeasurements is a scaled version of the FIM with all the
sparse frequency estimation are considered in [7] [8], bsamples, with the scale factor being the SNR penaltyN.
these consider oversampled grids and specify the number obenoting the FIM for the model in (2) b§*, we can show
measurements required to recover the signal in terms of @it its (1, n)" sample is given by

size o_f the_ grid use(_JI._In contrgst, we focus on the problem , M ox(0) . 9x(0)

of estimating the original continuous-valued frequenay a 7 = 5 <A JA >

provide algorithms that can bootstrap with a much coarsdr gr 7 No 90 9

while avoiding error floors due to gridding by using NewtoWe denote the FIM obtained when we have access to all the
methods. The estimation algorithm improves on our priodkwosamples (settingw; to the unit vector with a 1 in théth

[9] and also extends it to multi-dimensional frequencies. position for1 <i < N in (1)) by 1%, The (m,n)th entry in

Definition 1. e-isometry property [2]: Consider a set H with

1% is given by
Il. CRAMER-RAO BOUNDS FOR COMPRESSIVE
PARAMETER ESTIMATION Jr i<3x(9)7 0x(6) >
We wish to estimate a paramet@r= RX from A/ random 0%\ O~ O0n
projections of the signal manifold(8) € RN of the form In relating the Cramer-Rao lower bounds (CRLB) obtained
- _ in these cases, we are interested in the behavior of quadrati
yi=w; (x(0) +2z), i=1,2,...M, () formsa’Ia, wherel is a generic FIM anch is an arbitrary

wherew, contains the projection weights whose entries aM¢ctor. With some manipulation, we can simplify these as

chosen i.i.d. fromUniform{+1/vM} andz; ~ N(0,02Ly). follows:
2

Furthermore, we assume that the measurement ngise TA M 0x(0)
independent acrogs We have set the variance of the elements al"a = A > “mae |
of w; to 1/M for convenience. Stacking these observations, m 9
we get alolly — a Z am 0x(0)

y = Ax(0) + z, 2 o? — 00,,




If A preserves norms of vectors in the tangent plane up togaing and the frequency. However, we denote the sinusoidal

we get
M M
NaTIa”a(l—e)2 <all*a< NaTIa”a(l—i—e)2 Va. (3)

This gives the following theorem.

Theorem 1. Lety = Ax(0)+z be compressive measurements
with the entries in A € RM*V chosen i.i.d. with variance
1/M and z ~ N(0, No? /M). \e denote the Fisher Infoma-
tion Matrix with this model by 74 and the corresponding FIM
with all samples by 7% (obtained by replacing A with Iy in
the model and, therefore, setting M = N). If A provides an

e-isometry for all vectors of the form 3=, ay, 6515?, we have

M M
N(l _ E)QIall =< IA =< N(l +€)21all'

(4)

Thus, compressive measurement matrices that prowide
isometry for all tangent planes preserve estimation bounds

except for an SNR penalty//N.

It is interesting to note that, in the process of provin

manifold by gx(w), with x(w) denoting the sinusoid, rather
than x(g,w) for clarity. (2) The gaing and the manifold
x(w) are complex-valued, unlike the real-valued manifolds we
considered earlier.

Using the intuition of good measurement matrices for
parameter estimation that we developed earlier, we see that
A must satisfy

|91 Ax(w1) — g2 Ax(w2)|| & [|g1x(w1) — gax(w2)]|-

Equivalently, A must provide are-isometry for the subspace
spanned by (w;) andx(w2) for different choices ofv; and
ws. We now show that\/ = O(log N) measurements suffice
for this condition to hold.

A. Isometry for subspace of two sinusoids
Let H(w) be the DTFT of{|h,|?}. We define¢;, as
N7 PH(WwW)P
2! Ow?
Bnd note that for,, = 1/V/N Vn, ¢, 1 1/12 rapidly asN

Ch = ()

w=0

Theorem 3.1 in [2], the authors show that compressive még3¢reases.
surements provide-isometry for all tangent planes with Theorem 2. Let A be an M x N measurement matrix whose

probability 1 — p provided

M =0 (e *log(1/p)Klog (NVRT'e ")),  (5)

where( < ¢, p < 1 andV, R, T are properties of the manifold
(1/7 is the condition numberR is the geodesic covering
regularity andV is the volume). Taken in conjunction with

entries are drawn i.i.d. from Uniform{+1/v/M,+j/v/M}.
For any two frequencies w1, w, such that |w; — wo| > §/N15
and € > 0,
|91 Ax(w1) — g2 Ax(w2)||
lg1x(w1) — gax(w2)||

-1 <€v91792€c (8)

our result, (5) shows that compressive measurements pees&ith high probability when M = O (e7?log (Ne '671¢, 1)).
estimation bounds in rather general settings. Howevemhéeo t

best of our knowledge, it is difficult to specify hoW, R, 7 We note that it is possible to prove a result similar to

scale_W|thN apd[_( in general, h_encelwe fOCPS here ona SeltI'heorem 2 for frequencies that are arbitrarily close (proof

conf[alned denvatlonl of the required |s_om§tr|es for thecBjme omitted owing to lack of space). However, the CRLB on the

setting of compressive frequency estimation. variance of the frequency estimate(o2/N?3) even with all

N measurements [10], so that we can only hope to achieve

frequency estimation errors on the orden gfV!-® at any finite

SNR.

Proof sketch: The proof employs techniques used in [2]. For a

finite collection of pointxY, by employing the Chernoff bound

on the deviations of Ax||> and following it up with the union

_ _ _ _ bound, we can show thatl = O(¢,*log |Q|) measurements

where theh,, are known windowing weights normalized sogjffice to give aneg-isometry for Q. The goal is to chose

that 3° |h,|” = 1 and max;, [h,|* < 1. Such windows are 4 “fine enough” sampling® of the manifold so that the,-

used to reduce spectral leakage and two examples are ifinetry of the point cloud can be extended tcagrisometry

Hamming and Chebyshev windows. We make compressi} all points of interest|Q| will determine the number of

measurements Of the form measurements/ required_

(6) From (8), we see that we need afisometry for the span

of X(w1,ws) = [x(w1) x(w2)] for all |wy — wa| > §/N5,

where g is the complex gain of the sinusoidy is an M x We first discretize the frequencies o, 27| with R uniform

N measurement matrix\{ < N) whose entries are chosensamples to form the sét. We then establish 2¢, isometry for

uniformly at random from{+1/+/M, 43 /v/M} independent the span oX(¢1,¢) q1, g2 € F. We extend this to an = 8¢

of each other and ~ CN(0, 0°1,,) is the measurement noise.isometry for the span aX (w;, ws) for |w; —ws| > /N> by
We note a slight change of notation from the previoushoosingR large enough (fine frequency discretization). By

section: (1) the set of parameters defining the manifoldize tcharacterizing the smallest singular value Xfw;,w2) for

IIl. COMPRESSIVE FREQUENCY ESTIMATION OF A SINGLE
SINUSOID

We denote anV dimensional sinusoid of frequency by
x(w) and define it as

x(w) = [ho h1e?® - hy_1e?*WN-D|T

)

y = A(gx(w)) + 2,



lwi — wa| > d/N°, we find thatR = O(N2571¢, "P¢;')  that ||x(w)|| = 1. We denote thekth among K frequen-
suffices. From the covering argument used in [3]egisom- cies by w; and letS(w) = Ax(w). Making compressive
etry of (6551)4 well chosen points in the span ®(q1,¢2) measurements using a matridA whose entries are i.i.d.
can be extended to %, isometry for all points in the span of Uniform{+1/v/M, +j/v/M}, we get

X(q1,q2). There areR? /2 pairs of frequencies it (q1 > ¢2)

an(d to g);ive thee iso/metry that we need for the span of Y — ngs(“’k) +2; 2~ CN(0, (No*/M)).
X(q1,q2) for all g1,q2 € F we see thatQ| = R?(6¢,')*/2 k

points need to be given an, isometry. Substituting forz, Single Sinusoid: We first present our algorithm for the case

we find thatM = O (e 2log (Ne~'6-1¢,!)) measurements When there is only one frequency<( = 1). The GLRT
suffice. estimatew; is given by the spatial frequency that maximizes

the normalized correlatiod (y, w):

B. Isometry for tangent planes o ) )

We quantify the number of measurements needed4fdo Iy w) = ‘S (w)y‘ ARGl
provide an isometry for the tangent planes of the sinusoidalThe first step is to estimatey; coarsely by picking the
manifold (given by the span ofx(w) 9x(w)/0w] Yw). I maximum of J(y,w) from a discrete set of frequencies
the process, we find that/ = O (log N6~') measurements (2wm/R, 2rn/R) with 0 < m,n < R—1, for someR > Nip.
suffice for providing isometries for both the tangent plaaed We denote this estimate kiy;. We refinew; using Newton’s
for Theorem 2. Using this isometry, we infer that the FIM witlinethod to find a local optimum of (y,w). Denoting the
compressive measurements\i§/ N times the FIM with access estimate ofw; at the start of the-th Newton step byu%“,

to all the samples. the estimate after this step' ™" is given by
Theorem 3. Let A bean M x N measurement matrix whose (i+1) ) (i) ! @)
entries are drawn i.i.d. from Uniform{=1/vM,4j/vVM}. “r o T@ (ij(wl )) VI(w7),  (10)

For all w € [0,27], g1,92 € C and e > 0,

91 Ax(w) + g2 AOx(w) /0w ||
g1%(w) + g20x(w)/Ow||

with high probability when M = O (e 2log Ne™').

where V.J denotes the gradient of (y,w) and HyJ its
Hessian with respect t@. Whenwiz) is in a strictly concave
region (HyJ is negative definite), a Newton step will take
us closer to the maximum of (y,w). When this is not the
case, we exploit the observation thatx J(y,w) ~ |y|/* and

Proof sketch: The proof proceeds along the same lines d¢nodify the rule to

Theorem 2. We find thatd needs to provide an;-isometry } . Iy2 = J( w(i))
for O(N'-?) points in order to give aeq-isometry for all w%““l) = wf) Y y(,l) L
tangent planes. We note that this is smaller than the nunfber o IV J(y, @i )7
samples for whichA had to preserve norms for Theorem 2 tovultiple sinusoids: When K > 1 beams are present, we
hold, given byO (N*). Thus, by applying the union bound toobtain estimates ofwy, }¥=X via a matching pursuit that seeks
all samples required for Theorems 2 and 3, we find, as befollge best greedy explanation of the observatjorover the
that M = O (e 2log (Ne *671¢;, ")) measurements sufficecontinuum of frequencies if0, 27]2. The kth pursuit step

to guarantee am isometry for the spans oX(w;,wz), |w1 — that adds thekth frequency from the continuum consists of
wa| > 6/N*° and [x(w) 0x(w)/0w], Vw. two stages: coarse detection of a new frequency from the
CRLB for compressive frequency estimation:Combining (27m/R,27n/R) grid followed by a local refinement of all
Theorem 3 with Theorem 1, we infer that the CRLB fothe frequencies that have been detected so far.

—1| <e 9)

VJy,w). 11

compressive frequency estimation @¥(c?/N2M); this is Suppose thak — 1 frequencie @y, - - - ,w,—1} have been

obtained by scaling the well-known [10] CRLB for the originaestimated so far. We want to detect th&éh frequency and

system,0(02/N?), by the SNR attenuation factdi/ /N . add it to our list of estimated frequencies. The frequencies
estimated so far can explain measurements that lie in the spa

IV. FREQUENCY ESTIMATION ALGORITHM of Bi_1 = [S(@1) -~ S(@p_1)]. SO we computer,_; =

In this section, we propose an algorithm to estimate frgs- |y, whereB;-, is the matrix representing the projection
quencies from compressive measurements. We generalizedh the subspace orthogonal to the sparBpf;. The first
setup we have been considering in two ways: (1) we allow teeage involves greedily pickings, to be the frequency on

signal to contain multiple sinusoids and (2) we investigat®  the (27m/R,27n/R) grid that best fits the current residual
dimensional frequencies, motivated by the problem of Aofeasurement;_;:

estimation using large arrays explained in [9]. The,n)-

th sample we obtain (without compressive measurements) Wk = algmmax J(rp-1,w).

takes the formgei(w=mtwyn) o < mn < Np — 1 we(*5 55)

wherew = (w;,w,) is the two-dimensional frequency weOnce a coarse estimate of thih frequency is made, we refine
wish to estimate. We denote a suitably vectorized version alf the 1, ..., k frequencies that have been detected so far as

ellwsmtwyn) [\ /N where N = N7, by x(w) and observe follows. While refining thelth frequency, we first project out



- among tones. It also indicates that that the CRLB estimate
provided by Theorem 1 provides a practical benchmark for
the performance of compressive estimation.

0.9r

0.8r

oot V. CONCLUSIONS

gx 0.6 We have identified isometry conditions required to preserve
L ost the geometry of estimation in AWGN under compressive mea-
El surements, and shown that fundamental estimation-thieoret
=3 , Tone at 6 dB ; guantities such as the Fisher information and the CRLB
o Tone at 4 dB

are preserved under these conditions, up to scaling by a
natural SNR attenuation factor. Thus, the poor performaifice
standard compressed sensing for such problems, as observed
in prior work, stem from naive discretization; dimensititya
reduction via randomized projections is not to blame. Wensho
that the desired-isometry conditions do hold for compressive
Fig. 1. Empirical CDF of ratios of squared frequency errod &s CRLB  fraquency estimation for a single noisy sinusoid of length
(i.e., ||lwg — @ ||?/CRLBy,) for a mixture of K = 3 sinusoids of SNRS, . LT
4, 2 dB per sample from\ — 48 compressive measurements taken fromf" s with M = O(log N) random projections, and thereby
a32 x 32 array(N = 1024 element array). The coarse estimates are madafer the CRLB for this problem. Our algorithm for frequency
using anR = 2Np grid. CRLB; is the Cramer-Rao lower bound on thegstimation, when applied to a mixture of sinusoids, appieac
mean-square error when observingZslisamples with an SNR penalfy/ /N . the CRLB for each individual sinusoid: thus, it avoids giiugj
errors, despite being initiated by search over a coarse grid
the responses of the— 1 other frequencies frong to obtain and is not interference-limited. The combination of coarse

.. Assuming thato; is the only frequency present, we re‘ﬁmestimation and Nevvton refinements in our algorithm pal_allel_
& by maximizing.J(§,w) in the neighborhood of;, using t_he n_ature o_f the |sometry requwe_ments that we ha_lve identi-
the same procedure as in the single frequency case. We reflfel: [SOMetries preserving vector differences, corredpgto

all the k frequencies sequentially and this constitutes a Sind%rge-scale discrete” geometry d_etermmlng coarse.eett(m
round of Newton refinements. We go through multiple roundQr detecnqn) perform.ance, a,”?' |semetr|e§ preservmgeﬂah
(typically 3) of refinement and note that one update of the forffanes, Wh'_Ch determines |nf|n|tes“|mal _vananens In geoyne
(10) or (11) per frequency per round suffices. Once we hag@/responding to the small-scale “continuous” variatioap-
detected and refinefl” frequencies we terminate the pursuit.lureéd by estimation-theoretic bounds. An interestingddpr
Simulation Results: We demonstrate the effectiveness of thi/ture research is to provide tight estimates of the number o

above algorithm, comparing it with the CRLB for COmloressivg_wasu_rements required to maintain isometry for a mixtgre of
estimation of angles of arrival using )24 element 2D sinusoids, and to explore whether the general charactiernza

array (i.e., Nip = 32). The spatial frequency for an angIeOf random projections on manifolds in [2] yields tight and

of arrival (6,¢) is given by w = 2rdsin@(cos ¢, sin ¢), computable estimates for applications of interest.
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