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Abstract—Compressive random projections followed by ℓ1

reconstruction is by now a well-known approach to capturing
sparsely distributed information, but applying this approach via
discretization to estimation of continuous-valued parameters can
perform poorly due to basis mismatch. However, we show in this
paper it is still possible to capture the information required for
effective estimation using a small number of random projections.
We characterize the isometries required for preserving the
geometric structure of estimation in additive white Gaussian noise
(AWGN) under such compressive measurements. Under these
conditions, estimation-theoretic quantities such as the Cramer-
Rao Lower Bound (CRLB) are preserved, except for attenuation
of the Signal-to-Noise Ratio (SNR) by the dimensionality reduc-
tion factor. For the canonical problem of frequency estimation
of a single sinusoid based onN uniformly spaced samples, we
show that the required isometries hold for M = O(logN)
random projections, and that the CRLB scales as predicted.
While we prove isometry results for a single sinusoid, we present
an algorithm to estimate multiple sinusoids from compressive
measurements. Our algorithm combines coarse estimation ona
grid with iterative Newton updates and avoids the error floors
incurred by prior algorithms which apply standard compressed
sensing with an oversampled grid. Numerical results are provided
for spatial frequency (equivalently, angle of arrival) estimation
for large (32× 32) two-dimensional arrays.

I. I NTRODUCTION

Compressed sensing is by now firmly established as an
effective means of extracting sparsely distributed information
from high-dimensional observations: a canonical approachis
to take a small number (logarithmic in the dimension of the
observation) of random projections, and to then reconstruct the
signal using these “compressive measurements” usingℓ1 op-
timization (a number of alternative reconstruction techniques
have also been developed). In this paper, we explore the use
of compressive measurements for estimation of continuous-
valued parameters from high-dimensional observations per-
turbed by AWGN.

Consider, for example, the problem of estimating the fre-
quencies of a noisy mixture of sinusoids: this is a canonical
problem with numerous applications such as Angle-of-Arrival
estimation using arrays and pitch detection. The number of
sinusoids in the mixture is often much smaller than the number
of available samples, leading to a sparse signal structure in the
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frequency domain. While such sparsity immediately suggests
the use of compressive measurements, standard compressed
sensing requires sparsity in a finite basis, while the frequencies
come from a continuum, so that sparsity is over an infinite
basis. Reconstruction using standard compressed sensing tech-
niques by restricting frequencies to a finite grid leads to error
floors due to “basis mismatch” [1]. The results in this paper
indicate, however, that compressive measurements, along with
appropriately designed estimation algorithms, provide anef-
fective framework for dimensionality reduction while avoiding
discretization artifacts.

Our results are summarized as follows: Suppose a dis-
crete time signalx(θ) parametrized by aK dimensional
θ = (θ1, ..., θK)T is observed in discrete time AWGN. The
performance of coarse-grained estimation of the parameter
(which can be viewed as a detection problem) depends on
Euclidean distances of the type‖x(θ) − x(θ′)‖, while the
Cramer-Rao lower bound depends on linear combinations of
the partial derivatives{∂x(θ)/∂θk} (i.e., the tangent planes).
If we project down to anM -dimensional space along randomly
chosen unit vectors, we expect to capture a fractionM/N of
the signal energy, but the noise remains roughly white with
the same variance per dimension, so that the SNR is scaled by
M/N . Thus, if the projection preserves the Euclidean geome-
try governing detection and estimation performance, then the
Fisher information and CRLB are as in the original problem,
except that the SNR is scaled byM/N . We characterize the
isometries required for preserving this geometric structure, and
note that prior results on random projections on manifolds [2]
appear to indicate that such isometries can be achieved under
rather general conditions. However, a computational charac-
terization of the manifold in order to obtain explicit estimates
of the number of projections required is difficult. We therefore
focus on developing a thorough, self-contained understanding
of the canonical problem of frequency estimation.

We show thatM = O(logN) compressive measurements
suffice to preserve the relevant geometries of the frequency
estimation problem. Our approach is similar to that in [2],
[3]. For standard compressed sensing, the restricted isometry
property (RIP) on norm preservation for sparse signals was
shown in [3] to be a consequence of the Johnson-Lindenstrauss
(JL) lemma, which specifies how the geometry of points in
high-dimensional spaces is preserved under randomized map-
pings to lower dimensions. We infer the isometries requiredfor
estimation of a frequency lying in a continuum by extending



the JL lemma (that applies to a finite set of points) to the
continuum of frequencies using covering arguments similarto
those in [2] (which considers a more general manifold setting).
Once we establish these isometries, we can immediately infer
that the CRLB for frequency estimation with compressive
measurementsO(σ2/N2M), applying the SNR scalingM/N
to the CRLB O(σ2/N3) for the original problem. While
these results are proved for a single sinusoid, we propose
an algorithm to estimatemultiple sinusoids from compressive
measurements. Our algorithm, which combines estimation on
a coarse-grained grid, employs iterative Newton updates to
avoid error floors, and is shown to approach the CRLB. Our
numerical results illustrate the efficacy of our algorithm for
estimation of two-dimensional spatial frequencies, or angles
of arrival, motivated by millimeter wave applications in which
very large (e.g.,32 × 32) arrays can be realized in compact
form factor.
Related Work: There is a rich body of work devoted to the
theory of compressed sensing [4], [5]. It was shown in [2]
that a class of manifolds can be stably embedded using com-
pressive measurements via covering arguments. As already
mentioned, we use similar arguments in our proofs. Parameter
estimation from compressive measurements was discussed in
[6], but without any assumptions on the measurement noise.
We observe that the results in [2], [6] can be applied to provide
a general framework for continuous parameter estimation in
AWGN. However, the connection to the CRLB was not made
in these references, and using these results to compute the
number of measurements needed for a particular application,
including for the frequency estimation problem considered
here, is not straightforward. The poor performance of standard
ℓ1 reconstruction after a naı̈ve discretization of a continuous
parameter was discussed in [1]. Recovery algorithms for
sparse frequency estimation are considered in [7] [8], but
these consider oversampled grids and specify the number of
measurements required to recover the signal in terms of the
size of the grid used. In contrast, we focus on the problem
of estimating the original continuous-valued frequency, and
provide algorithms that can bootstrap with a much coarser grid,
while avoiding error floors due to gridding by using Newton
methods. The estimation algorithm improves on our prior work
[9] and also extends it to multi-dimensional frequencies.

II. CRAMER-RAO BOUNDS FOR COMPRESSIVE

PARAMETER ESTIMATION

We wish to estimate a parameterθ ∈ RK from M random
projections of the signal manifoldx(θ) ∈ RN of the form

yi = wT
i (x(θ) + zi) , i = 1, 2, . . .M, (1)

wherewi contains the projection weights whose entries are
chosen i.i.d. fromUniform{±1/

√
M} andzi ∼ N (0, σ2IN ).

Furthermore, we assume that the measurement noisezi is
independent acrossi. We have set the variance of the elements
of wi to 1/M for convenience. Stacking these observations,
we get

y = Ax(θ) + z, (2)

where theith row of A is wT
i andz ∼ N (0, (Nσ2/M)IM ).

The preceding normalization is chosen to preserve signal
norms on average (E

[

‖Ax(θ)‖2
]

= ‖x(θ)‖2), but amplifies
the noise variance per dimension byN/M , which is the SNR
penalty for dimension reduction.

In order to estimateθ accurately, we require thatA pre-
serve norms in a stronger sense, calledǫ-isometry, defined as
follows.

Definition 1. ǫ-isometry property [2]: Consider a set H with
elements in RN . We say that a matrix A ∈ RM×N has an
ǫ-isometry property (ǫ > 0) for the set H, if for all v ∈ H
and some C > 0, we have,

1− ǫ ≤ C
‖Av‖
‖v‖ ≤ 1 + ǫ .

Remark: It is worth emphasizing that, for the RIP in standard
compressed sensing [3] ,H is the set of all 2K-sparse
vectors, whereas we require thatǫ-isometry hold for pairwise
differences of points on the manifold and the tangent planes.
Intuitive interpretation: For estimation of a parameter that
lies in a discrete grid, performance in AWGN depends on
distances of the form‖x(θ1) − x(θ2)‖, normalized by the
noise standard deviation. If the measurement matrixA satisfies
ǫ-isometry for vectors of the formx(θ1) − x(θ2), ∀θ1, θ2,
then the performance is as in the original system, except
for the amplification of the noise variance. However, for
the continuous-valued parameter estimation problem, we must
go further, and ask that (appropriately normalized) distances
be preserved asθ1 → θ2. We rigorize this intuition by
showing that, ifA provides anǫ-isometry for all tangent
planes – vectors of the form

∑

k ak
∂x(θ)
∂θk

for someak ∈ R –
then the Fisher Information Matrix (FIM) with compressive
measurements is a scaled version of the FIM with all the
samples, with the scale factor being the SNR penaltyM/N .

Denoting the FIM for the model in (2) byIA, we can show
that its (m,n)th sample is given by

IAm,n =
M

Nσ2

〈

A
∂x(θ)

∂θm
,A

∂x(θ)

∂θn

〉

.

We denote the FIM obtained when we have access to all the
samples (settingwi to the unit vector with a 1 in theith
position for1 ≤ i ≤ N in (1)) by Iall. The (m,n)th entry in
Iall is given by

Iallm,n =
1

σ2

〈

∂x(θ)

∂θm
,
∂x(θ)

∂θn

〉

.

In relating the Cramer-Rao lower bounds (CRLB) obtained
in these cases, we are interested in the behavior of quadratic
forms aT Ia, whereI is a generic FIM anda is an arbitrary
vector. With some manipulation, we can simplify these as
follows:

aT IAa =
M

Nσ2

∥

∥

∥

∥

A

∑

m

am
∂x(θ)

∂θm

∥

∥

∥

∥

2

,

aT Ialla =
1

σ2

∥

∥

∥

∥

∑

m

am
∂x(θ)

∂θm

∥

∥

∥

∥
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If A preserves norms of vectors in the tangent plane up toǫ,
we get

M

N
aT Ialla(1−ǫ)2 ≤ aT IAa ≤ M

N
aT Ialla(1+ǫ)2 ∀a. (3)

This gives the following theorem.

Theorem 1. Let y = Ax(θ)+z be compressive measurements
with the entries in A ∈ RM×N chosen i.i.d. with variance
1/M and z ∼ N (0, Nσ2/M). We denote the Fisher Infoma-
tion Matrix with this model by IA and the corresponding FIM
with all samples by Iall (obtained by replacing A with IN in
the model and, therefore, setting M = N ). If A provides an
ǫ-isometry for all vectors of the form

∑

k ak
∂x(θ)
∂θk

, we have

M

N
(1− ǫ)2Iall � IA � M

N
(1 + ǫ)2Iall. (4)

Thus, compressive measurement matrices that provideǫ-
isometry for all tangent planes preserve estimation bounds,
except for an SNR penaltyM/N .

It is interesting to note that, in the process of proving
Theorem 3.1 in [2], the authors show that compressive mea-
surements provideǫ-isometry for all tangent planes with
probability1− ρ provided

M = O
(

ǫ−2 log(1/ρ)K log
(

NV Rτ−1ǫ−1
))

, (5)

where0 < ǫ, ρ < 1 andV,R, τ are properties of the manifold
(1/τ is the condition number,R is the geodesic covering
regularity andV is the volume). Taken in conjunction with
our result, (5) shows that compressive measurements preserve
estimation bounds in rather general settings. However, to the
best of our knowledge, it is difficult to specify howV,R, τ
scale withN andK in general, hence we focus here on a self-
contained derivation of the required isometries for the specific
setting of compressive frequency estimation.

III. C OMPRESSIVE FREQUENCY ESTIMATION OF A SINGLE

SINUSOID

We denote anN dimensional sinusoid of frequencyω by
x(ω) and define it as

x(ω) = [h0 h1e
jω · · · hN−1e

jω(N−1)]T ,

where thehn are known windowing weights normalized so
that

∑ |hn|2 = 1 andmaxn |hn|2 < 1 . Such windows are
used to reduce spectral leakage and two examples are the
Hamming and Chebyshev windows. We make compressive
measurements of the form

y = A (gx(ω)) + z, (6)

whereg is the complex gain of the sinusoid,A is anM ×
N measurement matrix (M ≪ N ) whose entries are chosen
uniformly at random from{±1/

√
M,±j/

√
M} independent

of each other andz ∼ CN (0, σ2IM ) is the measurement noise.
We note a slight change of notation from the previous

section: (1) the set of parameters defining the manifold are the

gaing and the frequencyω. However, we denote the sinusoidal
manifold by gx(ω), with x(ω) denoting the sinusoid, rather
than x(g, ω) for clarity. (2) The gaing and the manifold
x(ω) are complex-valued, unlike the real-valued manifolds we
considered earlier.

Using the intuition of good measurement matrices for
parameter estimation that we developed earlier, we see that
A must satisfy

‖g1Ax(ω1)− g2Ax(ω2)‖ ≈ ‖g1x(ω1)− g2x(ω2)‖.
Equivalently,A must provide anǫ-isometry for the subspace
spanned byx(ω1) andx(ω2) for different choices ofω1 and
ω2. We now show thatM = O(logN) measurements suffice
for this condition to hold.

A. Isometry for subspace of two sinusoids

Let H(ω) be the DTFT of{|hn|2}. We defineζh as

ζh = −N−2

2!

∂2|H(ω)|2
∂ω2

∣

∣

∣

∣

ω=0

(7)

and note that forhn = 1/
√
N ∀n, ζh ↑ 1/12 rapidly asN

increases.

Theorem 2. Let A be an M ×N measurement matrix whose
entries are drawn i.i.d. from Uniform{±1/

√
M,±j/

√
M}.

For any two frequencies ω1, ω2 such that |ω1 −ω2| > δ/N1.5

and ǫ > 0,
∣

∣

∣

∣

‖g1Ax(ω1)− g2Ax(ω2)‖
‖g1x(ω1)− g2x(ω2)‖

− 1

∣

∣

∣

∣

< ǫ ∀g1, g2 ∈ C (8)

with high probability when M = O
(

ǫ−2 log
(

Nǫ−1δ−1ζ−1
h

))

.

We note that it is possible to prove a result similar to
Theorem 2 for frequencies that are arbitrarily close (proof
omitted owing to lack of space). However, the CRLB on the
variance of the frequency estimate isO(σ2/N3) even with all
N measurements [10], so that we can only hope to achieve
frequency estimation errors on the order of1/N1.5 at any finite
SNR.
Proof sketch: The proof employs techniques used in [2]. For a
finite collection of pointsQ, by employing the Chernoff bound
on the deviations of‖Ax‖2 and following it up with the union
bound, we can show thatM = O(ǫ−2

0 log |Q|) measurements
suffice to give anǫ0-isometry for Q. The goal is to chose
a “fine enough” samplingQ of the manifold so that theǫ0-
isometry of the point cloud can be extended to an8ǫ0-isometry
for all points of interest.|Q| will determine the number of
measurementsM required.

From (8), we see that we need anǫ-isometry for the span
of X(ω1, ω2) = [x(ω1) x(ω2)] for all |ω1 − ω2| > δ/N1.5.
We first discretize the frequencies in[0, 2π] with R uniform
samples to form the setF . We then establish a2ǫ0 isometry for
the span ofX(q1, q2) q1, q2 ∈ F . We extend this to anǫ ≡ 8ǫ0
isometry for the span ofX(ω1, ω2) for |ω1−ω2| > δ/N1.5 by
choosingR large enough (fine frequency discretization). By
characterizing the smallest singular value ofX(ω1, ω2) for



|ω1 − ω2| > δ/N1.5, we find thatR = O(N2δ−1ζ−0.5
h ǫ−1

0 )
suffices. From the covering argument used in [3], anǫ0 isom-
etry of (6ǫ−1

0 )4 well chosen points in the span ofX(q1, q2)
can be extended to a2ǫ0 isometry for all points in the span of
X(q1, q2). There areR2/2 pairs of frequencies inF (q1 > q2)
and to give the2ǫ0 isometry that we need for the span of
X(q1, q2) for all q1, q2 ∈ F we see that|Q| = R2(6ǫ−1

0 )4/2
points need to be given anǫ0 isometry. Substituting forR,
we find thatM = O

(

ǫ−2 log
(

Nǫ−1δ−1ζ−1
h

))

measurements
suffice.

B. Isometry for tangent planes

We quantify the number of measurements needed forA to
provide an isometry for the tangent planes of the sinusoidal
manifold (given by the span of[x(ω) ∂x(ω)/∂ω] ∀ω). In
the process, we find thatM = O

(

logNδ−1
)

measurements
suffice for providing isometries for both the tangent planesand
for Theorem 2. Using this isometry, we infer that the FIM with
compressive measurements isM/N times the FIM with access
to all the samples.

Theorem 3. Let A be an M ×N measurement matrix whose
entries are drawn i.i.d. from Uniform{±1/

√
M,±j/

√
M}.

For all ω ∈ [0, 2π], g1, g2 ∈ C and ǫ > 0,
∣

∣

∣

∣

‖g1Ax(ω) + g2A∂x(ω)/∂ω‖
‖g1x(ω) + g2∂x(ω)/∂ω‖

− 1

∣

∣

∣

∣

< ǫ (9)

with high probability when M = O
(

ǫ−2 logNǫ−1
)

.

Proof sketch: The proof proceeds along the same lines of
Theorem 2. We find thatA needs to provide anǫ0-isometry
for O(N1.5) points in order to give an8ǫ0-isometry for all
tangent planes. We note that this is smaller than the number of
samples for whichA had to preserve norms for Theorem 2 to
hold, given byO

(

N4
)

. Thus, by applying the union bound to
all samples required for Theorems 2 and 3, we find, as before,
that M = O

(

ǫ−2 log
(

Nǫ−1δ−1ζ−1
h

))

measurements suffice
to guarantee anǫ isometry for the spans ofX(ω1, ω2), |ω1 −
ω2| > δ/N1.5 and [x(ω) ∂x(ω)/∂ω], ∀ω.
CRLB for compressive frequency estimation:Combining
Theorem 3 with Theorem 1, we infer that the CRLB for
compressive frequency estimation isO(σ2/N2M); this is
obtained by scaling the well-known [10] CRLB for the original
system,O(σ2/N3), by the SNR attenuation factorM/N .

IV. FREQUENCY ESTIMATION ALGORITHM

In this section, we propose an algorithm to estimate fre-
quencies from compressive measurements. We generalize the
setup we have been considering in two ways: (1) we allow the
signal to contain multiple sinusoids and (2) we investigatetwo-
dimensional frequencies, motivated by the problem of AoA
estimation using large arrays explained in [9]. The(m,n)-
th sample we obtain (without compressive measurements)
takes the formgej(ωxm+ωyn), 0 ≤ m,n ≤ N1D − 1
where ω = (ωx, ωy) is the two-dimensional frequency we
wish to estimate. We denote a suitably vectorized version of
ej(ωxm+ωyn)/

√
N , whereN = N2

1D by x(ω) and observe

that ‖x(ω)‖ = 1. We denote thekth amongK frequen-
cies by ωk and let S(ω) = Ax(ω). Making compressive
measurements using a matrixA whose entries are i.i.d.
Uniform{±1/

√
M,±j/

√
M}, we get

y =
∑

k

gkS(ωk) + z ; z ∼ CN (0, (Nσ2/M)IM ).

Single Sinusoid:We first present our algorithm for the case
when there is only one frequency (K = 1). The GLRT
estimateω̂1 is given by the spatial frequency that maximizes
the normalized correlationJ(y,ω):

J(y,ω) =
∣

∣SH(ω)y
∣

∣

2
/ ‖S(ω)‖2 .

The first step is to estimateω1 coarsely by picking the
maximum of J(y,ω) from a discrete set of frequencies
(2πm/R, 2πn/R) with 0 ≤ m,n ≤ R−1, for someR ≥ N1D.
We denote this estimate bŷω1. We refineω̂1 using Newton’s
method to find a local optimum ofJ(y,ω). Denoting the
estimate ofω1 at the start of thei-th Newton step byω(i)

1 ,
the estimate after this stepω(i+1)

1 is given by

ω
(i+1)
1 = ω

(i)
1 −

(

H∇J(ω
(i)
1 )

)−1

∇J(ω
(i)
1 ), (10)

where ∇J denotes the gradient ofJ(y,ω) and H∇J its
Hessian with respect toω. Whenω(i)

1 is in a strictly concave
region (H∇J is negative definite), a Newton step will take
us closer to the maximum ofJ(y,ω). When this is not the
case, we exploit the observation thatmaxJ(y,ω) ≈ ‖y‖2 and
modify the rule to

ω
(i+1)
1 = ω

(i)
1 +

‖y‖2 − J(y,ω
(i)
1 )

‖∇J(y,ω
(i)
1 )‖2

∇J(y,ω
(i)
1 ). (11)

Multiple sinusoids: When K > 1 beams are present, we
obtain estimates of{ωk}k=K

k=1 via a matching pursuit that seeks
the best greedy explanation of the observationy over the
continuum of frequencies in[0, 2π]2. The kth pursuit step
that adds thekth frequency from the continuum consists of
two stages: coarse detection of a new frequency from the
(2πm/R, 2πn/R) grid followed by a local refinement of all
the frequencies that have been detected so far.

Suppose thatk− 1 frequencies{ω̂1, · · · , ω̂k−1} have been
estimated so far. We want to detect thekth frequency and
add it to our list of estimated frequencies. The frequencies
estimated so far can explain measurements that lie in the span
of Bk−1 = [S(ω̂1) · · · S(ω̂k−1)]. So we computerk−1 =
B⊥
k−1y, whereB⊥

k−1 is the matrix representing the projection
onto the subspace orthogonal to the span ofBk−1. The first
stage involves greedily pickinĝωk to be the frequency on
the (2πm/R, 2πn/R) grid that best fits the current residual
measurementrk−1:

ω̂k = argmax
ω∈( 2πm

R
, 2πn

R )
J(rk−1,ω).

Once a coarse estimate of thekth frequency is made, we refine
all the 1, . . . , k frequencies that have been detected so far as
follows. While refining thelth frequency, we first project out
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Fig. 1. Empirical CDF of ratios of squared frequency error and its CRLB
(i.e., ‖ωk − ω̂k‖

2/CRLBk) for a mixture ofK = 3 sinusoids of SNR6,
4, 2 dB per sample fromM = 48 compressive measurements taken from
a 32 × 32 array(N = 1024 element array). The coarse estimates are made
using anR = 2N1D grid. CRLBk is the Cramer-Rao lower bound on the
mean-square error when observing allN samples with an SNR penaltyM/N .

the responses of thek− 1 other frequencies fromy to obtain
ỹl. Assuming thatωl is the only frequency present, we refine
ω̂l by maximizingJ(ỹl,ω) in the neighborhood of̂ωl using
the same procedure as in the single frequency case. We refine
all the k frequencies sequentially and this constitutes a single
round of Newton refinements. We go through multiple rounds
(typically 3) of refinement and note that one update of the form
(10) or (11) per frequency per round suffices. Once we have
detected and refinedK frequencies we terminate the pursuit.
Simulation Results: We demonstrate the effectiveness of the
above algorithm, comparing it with the CRLB for compressive
estimation of angles of arrival using a1024 element 2D
array (i.e.,N1D = 32). The spatial frequency for an angle
of arrival (θ, φ) is given by ω = 2πd sin θ(cosφ, sinφ),
where d is the inter-element spacing normalized by carrier
wavelength. We consider a mixture ofK = 3 such spatial
sinusoids whose amplitudes|gk|2/σ2 are set to6, 4 and 2
dB respectively. We choose the spatial frequenciesωk and
phases ofgk uniformly at random from[0, 2π]2 and [0, 2π]
respectively and makeM = 48 compressive measurements.
The coarse estimates are obtained using anR × R grid of
the frequencies withR = 2N1D. We run 2000 such trials
and constrain each Newton update step to a maximum of
π/R. Each refinement stage consists of three round robin
refinements with one Newton update per frequency. In Figure
1, we plot the empirical CDFs of the ratio of the squared
frequency estimation errors‖ωk−ω̂k‖2 and the corresponding
bounds, CRLBk. The CRLB for each parameter setting is
estimated simply by scaling the CRLB with all measurements
using the SNR attenuation factorM/N , rather than accounting
for the specific measurement matrix used. We see that the
median of the ratio‖ωk − ω̂k‖2/CRLBk is approximately1
for all the tones independent of their SNRs. This shows that
our algorithm is efficient (and does not incur discretization
artifacts) and that it effectively overcomes the interference

among tones. It also indicates that that the CRLB estimate
provided by Theorem 1 provides a practical benchmark for
the performance of compressive estimation.

V. CONCLUSIONS

We have identified isometry conditions required to preserve
the geometry of estimation in AWGN under compressive mea-
surements, and shown that fundamental estimation-theoretic
quantities such as the Fisher information and the CRLB
are preserved under these conditions, up to scaling by a
natural SNR attenuation factor. Thus, the poor performanceof
standard compressed sensing for such problems, as observed
in prior work, stem from naı̈ve discretization; dimensionality
reduction via randomized projections is not to blame. We show
that the desiredǫ-isometry conditions do hold for compressive
frequency estimation for a single noisy sinusoid of length
N , with M = O(logN) random projections, and thereby
infer the CRLB for this problem. Our algorithm for frequency
estimation, when applied to a mixture of sinusoids, approaches
the CRLB for each individual sinusoid; thus, it avoids gridding
errors, despite being initiated by search over a coarse grid,
and is not interference-limited. The combination of coarse
estimation and Newton refinements in our algorithm parallels
the nature of the isometry requirements that we have identi-
fied: isometries preserving vector differences, corresponding to
large-scale “discrete” geometry determining coarse estimation
(or detection) performance, and isometries preserving tangent
planes, which determines infinitesimal variations in geometry
corresponding to the small-scale “continuous” variationscap-
tured by estimation-theoretic bounds. An interesting topic for
future research is to provide tight estimates of the number of
measurements required to maintain isometry for a mixture of
sinusoids, and to explore whether the general characterization
of random projections on manifolds in [2] yields tight and
computable estimates for applications of interest.
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