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Abstract— As the date rates and bandwidths of communication
systems scale up, the cost and power consumption of high-
precision (e.g., 8-12 bits) analog-to-digital converters(ADCs)
become prohibitive. One possible approach to relieve this
bottleneck is to redesign communication systems with the
starting assumption that the receiver will employ ADCs with
drastically reduced precision (e.g., 1-4 bits). Encouraging results
from information-theoretic analysis in idealized settings prompt
a detailed investigation of receiver signal processing algorithms
when ADC precision is reduced. In this work, we investigate the
problem of automatic gain control (AGC) for pulse amplitude
modulation (PAM) signaling over the AWGN channel, with the
goal being to align the ADC thresholds with the maximum
likelihood (ML) decision regions. The approach is to apply a
variable gain to the ADC input, fixing the ADC thresholds, with
the gain being determined by estimating the signal amplitude
from the quantized ADC output. We consider a blind approach in
which the ML estimate for the signal amplitude is obtained based
on the quantized samples corresponding to an unknown symbol
sequence. We obtain good performance, in terms of both channel
capacity and uncoded bit error rate, at low to moderate SNR,
but the performance can actually degrade as SNR increases due
to the increased sensitivity of the ML estimator in this regime.
However, we demonstrate that the addition of a random Gaussian
dither, with power optimized to minimize the normalized mean
squared error of the ML estimate, yields performance close to
that of an ideal AGC over the entire range of SNR of interest.

I. I

The economies of scale provided by digital receiver archi-
tectures have propelled mass market deployment of cellular
and wireless local area networks over the past two decades. An
integral component of such receivers is the analog-to-digital
converter (ADC), which converts the received analog wave-
form into the digital domain, typically with a precision of 8-12
bits. As we attempt to extend digital architectures to multiGi-
gabit communication (e.g., emerging wireless systems in the
60 GHz band [1], or more sophisticated signal processing for
optical communication), the ADC becomes a bottleneck due to
its prohibitive cost and power consumption [2]. One possible
approach to relieve this bottleneck is to employ low-precision
ADCs. Information-theoretic analysis for the AWGN channel
(which is a good approximation for short-range near-line-of-
sight 60 GHz links with directional antennas, for example)
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shows that, even at moderately high signal-to-noise ratio
(SNR), the use of 2-3 bit ADCs leads to only a small degrada-
tion in channel capacity [3]–[6] This has motivated more de-
tailed investigation of signal processing for key receiverfunc-
tionalities when ADC precision is reduced, including the prob-
lems of carrier synchronization [7], [8] and channel estimation
[9]. In this paper, we build on this work, and consider the prob-
lem of automatic gain control (AGC) with low-precision ADC.

The aim of the AGC operation is to ensure that the ADC
quantization thresholds are set so as to optimize the perfor-
mance of the communication link. For system design with low-
precision ADC, information-theoretic results [6] show that,
for a real AWGN channel model, given a constraint of K-
level ADC quantization (i.e., a precision of log2 K bits), it
is near-optimal to use the strategy of K-point uniform pulse
amplitude modulation (PAM) at the transmitter with mid-point
quantization at the receiver, irrespective of the SNR. For ex-
ample, uniform 4-PAM with inputs from{−3A,−A, A, 3A}, and
an ADC with quantization thresholds set at the ML decision
boundaries,{−2A, 0, 2A}, is a near-optimal combination when
ADC precision is restricted to 2 bits. We use this system as
our running example. The receiver low-noise amplifier brings
the signal plus noise power to within a given dynamic range,
but the signal power (i.e., the amplitudeA) is unknown. Our
goal is to determine how to scale the ADC input so that a 2-bit
quantizer with uniform thresholds implements the ML decision
boundaries. Consequently, the problem of AGC boils down to
that of estimating a single parameterA based on the quantized
ADC outputs corresponding to the noisy symbol sequence, and
then applying the appropriate scale factor to the ADC input.

In order to decouple the AGC problem from that of frame
synchronization, we consider blind estimation of the signal
amplitude; that is, the symbol sequence used for estimation
is unknown, with symbols picked uniformly from a PAM
constellation. While the actual values of the symbols are not
used by our estimator, we nevertheless use the term “training
sequence” for the symbol sequence used for estimation, since
reliable data reception cannot occur until the AGC setting is
appropriate. The maximum likelihood (ML) estimator of the
signal amplitude is obtained as the minimizer of the Kullback-
Leibler (KL) divergence between the expected probability
distribution and the empirical probability distribution of
the quantized output. It is observed that, depending on the
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Fig. 1. A typical receiver front-end.

true signal amplitude, the performance of the ML estimator
can degrade with increase in the SNR. To alleviate this
problem, we investigate the role of dithering, which has
been found useful in compensating the severe nonlinearity
induced by low-precision quantization in prior work on
parameter estimation problems [10]–[12]. Specifically, we
add a Gaussian dither signal prior to quantization, with power
chosen so as to minimize the normalized mean squared error
of the amplitude estimate. For uniform 4-PAM with 2-bit
ADC, numerical results are presented to show that, for training
sequences of reasonable length, the performance of our dither-
based AGC scheme, in terms of both channel capacity and
uncoded bit error rate (BER), is close to that with ideal AGC.

The rest of the paper is organized as follows. In Section II,
we introduce the receiver architecture, and outline the system
model we consider. Section III presents an analysis of our
AGC scheme. Numerical results are provided in Section IV
followed by the conclusion in Section V.

II. R A  S M

A. Receiver Architecture

A typical receiver front-end is illustrated in Fig. 1. It
consists of a variable gain low-noise amplifier (VG-LNA)
operating at RF, a down-conversion stage, and a variable gain
amplifier (VGA) with a digital AGC at the baseband. The
power of the incoming RF signal can vary significantly due to
path loss and fading. The VG-LNA adjusts its gain so to bring
the power level within a smaller dynamic range, while the
digital AGC sets the fine-grained scaling implemented using
the VGA at the ADC input.

B. System Model and Parameters

Consider uniform M-PAM signaling with uniform M-bin
quantization. The signal constellationX := {αi | αi = (2i −
M − 1)A , i = 1, 2, · · · ,M}, so that there is a single amplitude
scaling parameterA. Similarly, the set ofM-1 quantizer thresh-
olds is given byT := {ti | ti =

(

2i−M
2

)

T, i = 1, 2, · · · ,M − 1},
with a single scaling parameterT . For notational convenience,
we also defineto := −∞ and tM := ∞. For any SNR, we
know that it is near-optimal to have the quantizer thresholds
to be the mid-points of the constellation points. Without loss of
generality, we fix the ADC thresholdsT , and scale the VGA
gain after estimatingA so as to attain this near-optimal setting.

For concreteness, let us assume that the powerPr of
the incoming received signal (which is a function of the

parameterA) can fluctuate in a 40 dB range. For instance, for
an indoor WPAN link, this might correspond to a variation of
0.1m to 10m in the distance between transmitter and receiver.
The thermal noise powerσi

2 at the input to the LNA, which
is a function of the bandwidth and the receiver noise figure, is
assumed to be known. Fixingσi

2 = 1 andPr to vary between
1-104, we thus have a SNR range of 0-40 dB. For a fixed
set of thresholdsT , there is a desired target levelAt for the
signal amplitude level (correspondingly a desired levelPt for
the signal power). The analog LNA adjusts its gain based on
measurement of the received signal power, and is assumed
to bring its output powerP to within a range of the desired
level. Again, for concreteness, we assume that this range is
[Pt − 5, Pt + 5] dB. The role of the digital AGC block now
is to estimate the powerP (or equivalently, the parameterA)
based on the quantized noisy training sequence.

We assume that the noise powerσ2 at the LNA output
is known (assuming that the noise powerσ2

i at the LNA
input, and the LNA gain and noise figure, are known). The
observations used for estimation ofA are therefore given by

Yn = Q(Xn +Wn), n = 1, . . . ,N (1)

where X = {X1, · · · , Xn} are i.i.d. samples from an M-PAM
constellation with powerP, {Wn} are i.i.d. ∼ N(0, σ2), Q
denotes the quantizer operation,Y = {Y1, · · · , Yn} are the
quantized output samples, andN is the length of the train-
ing sequence. Each of the quantized output samplesYn ∈
{y1, y2 . . . , yM}, with Yn = y j if Xn +Wn ∈ [t j−1, t j].

Running example: While the ML estimator ofA we obtain
in the next section is valid for generalM, most of the
subsequent analysis is restricted to the case of 4-PAM input
with 2-bit ADC. In this special case, the constellationX =
{−3A,−A, A, 3A} and the set of thresholdT = {−T, 0, T }. The
powerP is related to the parameterA asP = 0.5(A2+ 9A2) =
5A2. Without loss of generality, fixσ2 = 1, so that for a
40dB SNR range,P can vary between 1-104. With the set of
thresholds fixed to beT = {−1, 0, 1}, the desired amplitude
At = 0.5 and the desired signal powerPt = 1.25 = 0.96 dB.
The signal powerP at the LNA output can therefore lie in
[−4, 6] dB, corresponding to the parameterA ∈ [0.23, 0.89].
For any choice ofA in this range, the aim of the AGC block
is to obtain an estimatêA using the quantized samples{Yn}.

III. S A E

We first obtain the ML estimator ofA based on the quantized
samples{Yn}. The training sequence{Xn} is assumed to be
drawn in an i.i.d. manner from a uniform M-PAM distribution
{α1(A), . . . , αM(A)}. We have

ÂML = arg max
A

P(Y|A) = arg max
A

N
∏

n=1

P(Yn|A), (2)

where eachYn ∈ {y1, y2 . . . , yM}. Combining the terms cor-
responding to the same output indices, and taking the log-



likelihood, we get

ÂML = arg max
A

M
∑

j=1

N j log P(y j|A), (3)

whereN j is the number of occurrences ofy j in the setY, and

q j(A) := P(y j|A) =
1
M

M
∑

i=1

(

Q

(

t j−1 − αi(A)

σ

)

− Q

(

t j − αi(A)

σ

))

,

(4)
with Q(x) denoting the complementary Gaussian distribution
function 1√

2π

∫ ∞
x

exp(−t2/2)dt.

Denoting the empirical estimate ofq j(A) as q̂ j := N j

N , we
get

ÂML = arg max
A

M
∑

j=1

q̂ j logq j(A). (5)

We now add
∑M

j=1 q̂ j log 1
q̂ j

(this is a constant independent of
A that does not change the maximizing value ofA) to bring
the cost function into the following suggestive form:

ÂML = arg max
A

















M
∑

j=1

q̂ j logq j(A) +
M
∑

j=1

q̂ j log
1
q̂ j

















= arg max
A
−

















M
∑

j=1

q̂ j log
q̂ j

q j(A)

















.

(6)

Let Q̂ := {q̂1, q̂2, · · · , q̂M} and Q(A) :=
{q1(A), q2(A), · · · , qM(A)}. Therefore, DKL (Q̂‖Q(A)) =
∑M

j=1 q̂ j log q̂ j

q j(A) is the Kullback-Leibler (KL) divergence

between the distributionsQ and Q̂, so that the ML estimator
is the minimizer of this KL divergence.

In general, the minimum possible divergence of 0 may
not be achievable, since there may not exist a choice ofA
that ensuresq j(A) = q̂ j ∀ j. For ADC precision greater than
2 bits, we cannot obtain a simple expression for the ML
estimator. It can be computed numerically by minimizing the
KL divergence. A simpler suboptimal solution can be obtained
by solving one of the equationsq j(A) = q̂ j for some j. For
our running example of 2-bit quantizer with 4-PAM input, the
latter approach gives the exact ML estimate. Sinceq1(A) =
q4(A) and q2(A) = q3(A) for all A, we define ˆq = (q̂2 + q̂3)/2
and q(A) = q2(A) = q3(A). Then (q̂1 + q̂4)/2 = 1/2 − q̂ and
q1(A) = q4(A) = 1/2− q(A). Therefore, (6) can be simplified
as

ÂML = arg max
A

(

2

(

1
2
− q̂

)

log

(

1
2
− q(A)

)

+ 2q̂ logq(A)

)

= arg max
A
−












2

(

1
2
− q̂

)

log
1
2 − q̂

1
2 − q(A)

+ 2q̂ log
q̂

q(A)













.

(7)

In this case, the divergence is minimized by pickingA such
that q(A) = q̂, we therefore do have a simplified expression
for the ML estimator

ÂML = q−1(q̂). (8)

The inverse functionq−1 cannot be stated explicitly, but can
easily be computed numerically.

Fig. 3 plots the desired inverse function (with the threshold
T = 1) giving the ML estimate for our running example. We
can see that when the noise varianceσ2 is small, the curve is
very steep nearq ≈ 0.25, which implies that a small deviation
in the empirical probability ˆq (from its expected valueq(A))
can result in a large error in estimatingA. The steepness of the
curve is simply understood by looking at Fig. 2, which shows
the conditional pdf ofαi +Wn for differenti. Forσ2→ 0, any
choice ofA in the range [T3 , T ] results inq(A) = 0.25.

It is clear that whenσ2 is small, the ML estimator can
result in poor performance. A simple strategy to improve the
performance therefore is to increase the noise variance by
deliberate addition of a random Gaussian dither signal prior to
quantization. Looking at Fig. 3, this makes the curve smoother
aroundq = 0.25; however, it also makes it steeper around other
values ofq. In order to obtain design guidelines for the dither
variance, we next analyze the mean squared error of the ML
estimator.

y1 y2 y3 y4

®1 ®2 ®3 ®4

Fig. 2. Conditional probability density functions of 4-PAMand 2-bit
quantizer.
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Fig. 3. 2-bit quantizer with 4-PAM: The ML estimation of the amplitude A
vs empirical probability of gettingy2 or y3 (ThresholdT = 1).

A. NMSE Analysis

Note first that for 2-bit quantizer and 4-PAM input with
N training symbols,N2 + N3 is a random variable following
the binomial distribution with parametersN and 2q(A), i.e.,
N2+N3 ∼ B(N, 2q(A)). Therefore, ˆq is a random variable with
meanE

[

q̂
]

= q(A) and varianceE
[

(q̂ − q(A))2
]

= q(A)(1 −
2q(A))/2N.



∂q
∂A
=

1

4
√

2πσ2

(

3 exp

(

− (T − 3A)
2σ2

)

+ exp

(

− (T − A)
2σ2

)

− exp

(

− (T + A)
2σ2

)

− 3 exp

(

− (T + 3A)
2σ2

))

. (9)

For fixed A, the error in the estimation ofA, denoted
∆A = ÂML−A, due to the difference∆q between the empirical
probability q̂ and its expected valuedq(A), is given by

∆A ≈ ∆q
∂A
∂q

∣

∣

∣

∣

∣

q(A)
=
∆q
∂q
∂A

∣

∣

∣

∣

A

, (10)

where the function ∂q
∂A is as expressed in (9). Then the

normalized mean square (NMSE) inA can be written as

NMSE(A)=E















(

∆A
A

)2












≈ E
[

(∆q
]

A2

(

∂q
∂A

∣

∣

∣

∣

∣

A

)2

=
q(1− 2q)

2NA2
(

∂q
∂A

∣

∣

∣

∣

A

)2
.

(11)
In Fig. 4, we plot theNMSE inA for different choices ofA,

as a function ofσ2, with the thresholdT = 1. As explained
before, for smallσ2, the error can be excessive for certain
values ofA.
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Fig. 4. 2-bit quantizer with 4-PAM: NMSE in estimatingA, as a function
of σ2 (T = 1, N = 100).

B. Dithering

To alleviate the performance degradation in estimation of
A in the high SNR regime, we add a Gaussian distributed
dither signal prior to quantization, so that our channel model
becomes

Yn = Q(Xn + Dn +Wn), (12)

where Dn ∼ N(0, σ2
d) are the i.i.d. dither signals, picked

independently ofXn and Wn
1. As a result,Dn + Wn is ∼

N(0, σ2
d + σ

2).
We now compute the average NMSE (averaged over the

prior distribution ofA), and pick the dither varianceσ2
d so that

the average NMSE is minimized. In other words,σ2
d = σ̄

2−σ2,
where σ̄2 = arg min

σ2

EA

[

NMSE(A, σ2)
]

. Note that the dither

signal is added only ifσ2 < σ̄2.

1Note that the dither signal is to be added only during the training period
to estimateA, and not during actual data transmission
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Fig. 5. 2-bit quantizer with 4-PAM: BER vs SNR curves for different signal
powers. (Training lengthN = 100)

IV. N R

We now present results for 4-PAM input with 2-bit ADC. To
obtain the results, we generated training sequences by picking
samples in an i.i.d. manner from the 4-PAM input. In order
to optimize the performance, we picked “balanced” training
sequences in which all amplitudes occur equally often.

Fig. 5 shows the results without dithering. We plot the
uncoded BER versus SNR, for different values of the signal
amplitudeA (corresponding to different values of the signal
powerP) with the training set lengthN = 100. It is seen that
for some values ofA, the BER increases with SNR in the
high SNR regime. As explained before, this happens because
of large errors in estimation ofA at high SNR values.

Next, we consider the performance with dithering. Fig.
6 shows the BER versus SNR curves for different A with
the training lengthN = 100. We can see that the addition
of the dither signal eliminates the high SNR performance
degradation that occurs without dithering. At BER=10−3, the
loss compared to ideal AGC is about 1-3 dB, for differentA. At
BER=10−6, the loss varies between 3-6 dB. We also show the
corresponding plots for the input-output mutual information in
Fig. 7. Compared to ideal AGC, our proposed estimator incurs
a negligible loss. Fig. 8 shows the NMSE versus SNR curves
for differentA. We can see that the addition of the dither signal
prevents the NMSE from shooting up at high SNR.

Finally, Fig. 9 shows the BER performance curves for
different lengths of the training sequenceN. Each of the curves
here is by obtained by averaging the BER over all values of
the amplitudeA. While for large values ofN, the performance
approaches that achieved with ideal AGC, for smaller values,
we observe an error floor. This is attributed to the fact that for
a small training sequence length, there can be certain values
of the parameterA for which the estimation error may be
large enough to cause both input levels{A, 3A} to fall in the
same quantization bin after VGA scaling, which results in a
significant error probability irrespective of SNR.
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Fig. 7. 2-bit quantizer with 4-PAM: Channel capacity with optimal dithering
for different input signal powers. (Training lengthN = 100)

V. C

We have investigated the problem of automatic gain control
when ADC precision is constrained at the receiver. As has been
observed in the prior parameter estimation problems, dithering
is found to be essential in order to obtain a good performance
in the face of drastic quantization. Problems for future analysis
include a more detailed analytical and numerical analysis for
larger constellations (e.g., 8-PAM with 3-bit ADC), as well
as investigation of the achievable performance over fading
and dispersive channels. Another important topic for future
research is whether the required training period can be reduced
by adapting the VGA scale factor on the fly, rather than
computing it based on one-shot estimation of the signal
amplitude.
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