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Abstract— As the date rates and bandwidths of communication

systems scale up, the cost and power consumption of high-

precision (e.g., 8-12 bits) analog-to-digital converters(ADCSs)
become prohibitive. One possible approach to relieve this

bottleneck is to redesign communication systems with the

starting assumption that the receiver will employ ADCs with
drastically reduced precision (e.g., 1-4 bits). Encouragig results
from information-theoretic analysis in idealized settings prompt
a detailed investigation of receiver signal processing atgithms
when ADC precision is reduced. In this work, we investigate lie
problem of automatic gain control (AGC) for pulse amplitude
modulation (PAM) signaling over the AWGN channel, with the
goal being to align the ADC thresholds with the maximum
likelihood (ML) decision regions. The approach is to apply a
variable gain to the ADC input, fixing the ADC thresholds, with
the gain being determined by estimating the signal amplituée
from the quantized ADC output. We consider a blind approach in
which the ML estimate for the signal amplitude is obtained baed
on the quantized samples corresponding to an unknown symbol
sequence. We obtain good performance, in terms of both chaeh
capacity and uncoded bit error rate, at low to moderate SNR,
but the performance can actually degrade as SNR increases du
to the increased sensitivity of the ML estimator in this regme.
However, we demonstrate that the addition of a random Gausan
dither, with power optimized to minimize the normalized mean
squared error of the ML estimate, yields performance close d
that of an ideal AGC over the entire range of SNR of interest.
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shows that, even at moderately high signal-to-noise ratio
(SNR), the use of 2-3 bhit ADCs leads to only a small degrada-
tion in channel capacity [3]-[6] This has motivated more de-
tailed investigation of signal processing for key receifarc-
tionalities when ADC precision is reduced, including thelpr
lems of carrier synchronization [7], [8] and channel estiora
[9]. In this paper, we build on this work, and consider thelppro
lem of automatic gain control (AGC) with low-precision ADC.
The aim of the AGC operation is to ensure that the ADC
guantization thresholds are set so as to optimize the perfor
mance of the communication link. For system design with low-
precision ADC, information-theoretic results [6] show ttha
for a real AWGN channel model, given a constraint of K-
level ADC quantization (i.e., a precision of lpl§ bits), it
is near-optimal to use the strategy of K-point uniform pulse
amplitude modulation (PAM) at the transmitter with mid-pii
guantization at the receiver, irrespective of the SNR. bor e
ample, uniform 4-PAM with inputs frorf-3A, —A, A, 3A}, and
an ADC with quantization thresholds set at the ML decision
boundaries{—2A, 0, 2A}, is a near-optimal combination when
ADC precision is restricted to 2 bits. We use this system as
our running example. The receiver low-noise amplifier bsing
the signal plus noise power to within a given dynamic range,
but the signal power (i.e., the amplitud¢ is unknown. Our
goal is to determine how to scale the ADC input so that a 2-bit

The economies of scale provided by digital receiver archiyantizer with uniform thresholds implements the ML demisi
tectures have propelled mass market deployment of cellulggundaries. Consequently, the problem of AGC boils down to
and wireless local area networks over the past two decades.ifat of estimating a single paramefebased on the quantized
integral component of such receivers is the analog-taaligiADC outputs corresponding to the noisy symbol sequence, and
converter (ADC), which converts the received analog wavehen applying the appropriate scale factor to the ADC input.

form into the digital domain, typically with a precision of1®2
bits. As we attempt to extend digital architectures to n@itti

In order to decouple the AGC problem from that of frame
synchronization, we consider blind estimation of the signa

gabit communication (e.g., emerging wireless systems én thmpiitude; that is, the symbol sequence used for estimation
60 GHz band [1], or more sophisticated signal processing f@r unknown, with symbols picked uniformly from a PAM
optical communication), the ADC becomes a bottleneck due ¢gnstellation. While the actual values of the symbols are no
its prohibitive cost and power consumption [2]. One possib|;sed by our estimator, we nevertheless use the term “tgainin
approach to relieve this bottleneck is to employ low-priecis sequence” for the symbol sequence used for estimatiore sinc
ADCs. Information-theoretic analysis for the AWGN channgkligble data reception cannot occur until the AGC setting i
(which is a good approximation for short-range near-lifie-0qppropriate. The maximum likelihood (ML) estimator of the
sight 60 GHz links with directional antennas, for examplejignal amplitude is obtained as the minimizer of the Kullbac

This work was supported in part by the National Science Fatiod
under grants CCF-0729222 and CNS-0832154, and by the CleimalaBship
Council.

Leibler (KL) divergence between the expected probability
distribution and the empirical probability distributionf o
the quantized output. It is observed that, depending on the



parameterd) can fluctuate in a 40 dB range. For instance, for

an indoor WPAN link, this might correspond to a variation of
s 0.1m to 10m in the distance between transmitter and receiver

The thermal noise power;? at the input to the LNA, which

ADC
L is a function of the bandwidth and the receiver noise figuge, i
M assumed to be known. Fixing? = 1 andP; to vary between

: e : 1-10%, we thus have a SNR range of 0-40 dB. For a fixed
e set of thresholds™, there is a desired target leva| for the
Fig. 1. A typical receiver front-end. signal amplitude level (correspondingly a desired leRgefor
the signal power). The analog LNA adjusts its gain based on
measurement of the received signal power, and is assumed
true signal amplitude, the performance of the ML estimateo bring its output poweP to within a range of the desired
can degrade with increase in the SNR. To alleviate thisvel. Again, for concreteness, we assume that this range is
problem, we investigate the role of dithering, which hafP, — 5, P; + 5] dB. The role of the digital AGC block now
been found useful in compensating the severe nonlinearigyto estimate the powe? (or equivalently, the paramete)
induced by low-precision quantization in prior work orbased on the quantized noisy training sequence.
parameter estimation problems [10]-[12]. Specifically, we We assume that the noise powef at the LNA output
add a Gaussian dither signal prior to quantization, with@owis known (assuming that the noise powe? at the LNA
chosen so as to minimize the normalized mean squared efiffjut, and the LNA gain and noise figure, are known). The
of the amplitude estimate. For uniform 4-PAM with 2-bitobservations used for estimation Afare therefore given by
ADC, numerical results are presented to show that, foritrgin
sequences of reasonable length, the performance of o@rdith Yn=0Qn+W,), n=1,...,N (1)
based AGC scheme, in terms of both channel capacity and
uncoded bit error rate (BER), is close to that with ideal AGGvhere X = {Xy,---, Xy} are i.i.d. samples from an M-PAM
The rest of the paper is organized as follows. In Section kpnstellation with powerP, {W,} are i.i.d. ~ N(0,02), Q
we introduce the receiver architecture, and outline théegys denotes the quantizer operatiovi, = {Y1,---,Yn} are the
model we consider. Section Il presents an analysis of oguantized output samples, amdl is the length of the train-
AGC scheme. Numerical results are provided in Section IMg sequence. Each of the quantized output samles
followed by the conclusion in Section V. Y1, ¥2...,ym} with Yy = yj if Xn + Wi € [tj-1, t].
Running example: While the ML estimator ofA we obtain
in the next section is valid for generafl, most of the
A. Receiver Architecture subsequent analysis is restricted to the case of 4-PAM input
A typical receiver front-end is illustrated in Fig. 1. Itwith 2-bit ADC. In this special case, the constellatidh=

consists of a variable gain low-noise amplifier (VG-LNAY-3A,—-A, A, 3A} and the set of thresholfi = {-T,0,T}. The
operating at RF, a down-conversion stage, and a variabte gapwer P is related to the parametéras P = 0.5(A? + 9A?) =
amplifier (VGA) with a digital AGC at the baseband. ThéA” Without loss of generality, fix* = 1, so that for a
power of the incoming RF signal can vary significantly due t40dB SNR rangeP can vary between 1-f0With the set of
path loss and fading. The VG-LNA adjusts its gain so to briri§resholds fixed to b§™ = {-1,0,1}, the desired amplitude
the power level within a smaller dynamic range, while thé = 0.5 and the desired signal pow®¥ = 1.25 = 0.96 dB.
digital AGC sets the fine-grained scaling implemented usinine signal powerP at the LNA output can therefore lie in

low-pass ,
filter(LPF) > vea >

Il. RECEIVER ARCHITECTURE AND SySTEM MODEL

the VGA at the ADC input. [-4,6] dB, corresponding to the paramet&re [0.23, 0.89].
For any choice ofA in this range, the aim of the AGC block
B. System Model and Parameters is to obtain an estimaté using the quantized sample¥,}.
Consider uniform M-PAM signaling with uniform M-bin
quantization. The signal constellatiot := {ai | & = (2i - 1. SIGNAL AMPLITUDE ESTIMATION

M-1A,i=12,---,M}, so that there is a single amplitude
scaling parametek. Similarly, the set oM-1 quantizer thresh-  We first obtain the ML estimator & based on the quantized
olds is given by7 = {t | t; = (@)Tl =12,---,M -1}, samples{Y,}. The training sequencgX,} is assumed to be
with a single scaling paramet&r For notational convenience,drawn in an i.i.d. manner from a uniform M-PAM distribution
we also definet, := —co andty := . For any SNR, we {ai(A),...,am(A)}. We have
know that it is near-optimal to have the quantizer threshold
to be the mid-points of the constellation points. Withoss of
generality, we fix the ADC thresholdg, and scale the VGA
gain after estimatind\ so as to attain this near-optimal setting.
For concreteness, let us assume that the poRerof where eachY, € {yi1,¥»...,ym}. Combining the terms cor-
the incoming received signal (which is a function of theesponding to the same output indices, and taking the log-

N
AL = argmaxP(Y|A) = arg maxl_[ P(YA), 2)
A A ha1



likelihood, we get The inverse functiorg™* cannot be stated explicitly, but can
M easily be computed numerically.
AuL = arg maxz N;j log Py;|A), 3) Fig. 3 plots the desired inverse function (with the thredhol
A 4 T = 1) giving the ML estimate for our running example. We
can see that when the noise varianceis small, the curve is
very steep neag ~ 0.25, which implies that a small deviation

- —ai(A)) ) (tj —ai(A))) in the empirical probabilityg (from its expected valug(A))

whereN; is the number of occurrences ypfin the setY, and

can resultin a large error in estimatifg The steepness of the

curve is simply understood by looking at Fig. 2, which shows
] ) ] ) (_4) _the conditional pdf ofy; + W, for differenti. Foro? — 0, any
with Q(x) denoting the complementary Gaussian distributiof},qice ofA in the range% T] results ing(A) = 0.25.

ST o 2
function —— J expet?/2)dt. It is clear that whenos? is small, the ML estimator can

ag g

64(A) = PYIA) = %i(o(

Denoting the empirical estimate @f(A) asdj := % we result in poor performance. A simple strategy to improve the
get performance therefore is to increase the noise variance by
M deliberate addition of a random Gaussian dither signa poio
AuL = arg maxz 4; log q;(A). (5) guantization. Looking at F_|g. 3, this makes the curve smeoth
A A aroundq = 0.25; however, it also makes it steeper around other

values ofg. In order to obtain design guidelines for the dither
We now addy}, g |09q_li (this is a constant independent of/ariance, we next analyze the mean squared error of the ML
A that does not change the maximizing value”)fto bring estimator.
the cost function into the following suggestive form:

M M
A N N 1
AwL = arg ma{z djlogq;(A) + > gjlog :]
A =1 =1 g

[ (@)

| e |
. (6) N\ /] |
= arg max [zM:q-log % ) | 2 i
= — i e B | < | 1 q
A =1 q;(A) 34 1 oA U 34 2
. aq ) 0 Qs Qy
Let Q = {G1.G2.--- .G}  and  QA) =
{9(A), 2(A), - - - ,qu(A)}.  Therefore, R (QIQA)) = Fig. 2. Conditional probability density functions of 4-PAMnd 2-bit

4 Iog% is the Kullback-Leibler (KL) divergence 9uantizer

between the distribution® and O, so that the ML estimator
is the minimizer of this KL divergence.
In general, the minimum possible divergence of 0 may
not be achievable, since there may not exist a choic@ of
that ensuresg);(A) = §; Vj. For ADC precision greater than
2 bits, we cannot obtain a simple expression for the ML
estimator. It can be computed numerically by minimizing the 3
KL divergence. A simpler suboptimal solution can be obtdine <
by solving one of the equatiorg(A) = §; for somej. For
our running example of 2-bit quantizer with 4-PAM input, the
latter approach gives the exact ML estimate. Singd) =
da(A) and gz(A) = gs(A) for all A, we defineq™= (§2 + Gs)/2
and q(A) = gz(A) = ds(A). Then €1 + G4)/2 = 1/2- g and % 01 02 03 0.4 05
01(A) = g4(A) = 1/2 - g(A). Therefore, (6) can be simplified ¢: Probability of getting ya or ys
as

AuL = argAma><2(% - q) Iog(% - q(A)) + 2dlog q(A))

oo o 1ol
[

OO =
OO =
(=

—_

Fig. 3. 2-bit quantizer with 4-PAM: The ML estimation of thenplitude A
vs empirical probability of getting» or y3 (ThresholdT = 1).

1_4 ~ (7) .
= arg max—(z(}— q) log 22— 1, 2Glog —- ] A NMSE Analys's

A 2 3 —a(A) a(A) Note first that for 2-bit quantizer and 4-PAM input with
In this case, the divergence is minimized by pickiAgsuch N training symbolsN, + N3 is a random variable following

that q(A) = §, we therefore do have a simplified expressiofi'€ Pinomial distribution with parametefs and Z(A), i.e.,

for the ML estimator N2 + N3 ~ B(N, 29(A)). Thereforeq'is a random variable with
A meanE[§] = q(A) and varianceE [(Q—q(A))Z] = q(A)(1 -
At = g9 (8)  2q(A))/2N.



oq 1 (T-3A (T-A (T+A (T +3A)
A 4@(3& BT + exp| - 552 —exp| - 552 —3exp >z || 9)
For Afixed A, the error in the estimation oA, denoted 10
AA = Ay —A, due to the dferenceAq between the empirical [ Ciiadil
probability § and its expected valueg(A), is given by 107 x
N s (10) o ;
Aoy 53|, = ;
where the functiong—g is as expressed in (9). Then the 10% i
normalized mean square (NMSE) Acan be written as 159 = i
56 P=2dB 1
A 71 P=4dB
AAV’] E[(Ad]{dq] \*  q(i-29) I - R |\ TR L
NMSE(A)=E [(T) }z [Az ] (ﬁ\ A) =T 2 105 10 20 30 40

In Fig. 4, we plot theNMSE irA for different choices oA,
as a function ofo?, with the thresholdl = 1. As explained

2( 99 2
anee(],)

SNR(dB)

Fig. 5. 2-bit quantizer with 4-PAM: BER vs SNR curves foffdient signal
powers. (Training lengttN = 100)

before, for smallo2, the error can be excessive for certain

values ofA. IV. NUMERICAL RESULTS
We now present results for 4-PAM input with 2-bit ADC. To
0.05 J Nvone obtain the results, we generated training sequences bingick
' e A—093 P 4B samples in an i.i.d. manner from the 4-PAM input. In order
004 |t memA—050 P—1dB || to optimize the performance, we picked “balanced” training
\ S A=089 P =6dB sequences in which all amplitudes occur equally often.
%40'03’ \ Fig. 5 shows the results without dithering. We plot the
%0027 R uncoded BER versus SNR, forffirent values of the signal
TN e amplitude A (corresponding to dlierent values of the signal
ool . :,,:‘_'; R power P) with the training set lengtiN = 100. It is seen that
JPtae for some values ofA, the BER increases with SNR in the
oL -t ‘ ‘ high SNR regime. As explained before, this happens because
0 01 02, 03 0.4 05 of large errors in estimation o& at high SNR values.
Next, we consider the performance with dithering. Fig.
Fig. 4. 2-bit quantizer with 4-PAM: NMSE in estimating, as a function 6 shows the BER versus SNR curves foffelient A with

of 2 (T = 1, N = 100). the training lengthN = 100. We can see that the addition

of the dither signal eliminates the high SNR performance
degradation that occurs without dithering. At BERD3, the

) o ~ loss compared to ideal AGC is about 1-3 dB, fafelientA. At
To alleviate the performance degradation in estimation gfRr-10-¢, the loss varies between 3-6 dB. We also show the

A in the high SNR regime, we add a Gaussian distribute@rresponding plots for the input-output mutual inforroatin
dither signal prior to quantization, so that our channel elodrig 7. Compared to ideal AGC, our proposed estimator incurs
becomes a negligible loss. Fig. 8 shows the NMSE versus SNR curves
for differentA. We can see that the addition of the dither signal
prevents the NMSE from shooting up at high SNR.

Finally, Fig. 9 shows the BER performance curves for
different lengths of the training sequenteEach of the curves
here is by obtained by averaging the BER over all values of

amplitudeA. While for large values oN, the performance

B. Dithering

Yn = Q(Xn + Dn + Wn), (12)
where D, ~ N(O,o-g) are the i.i.d. dither signals, picked
independently ofX, and W,!. As a result,D, + W, is ~
N(O, 0'5 +02).

We now compute the average NMSE (averaged over t

prior distribution ofA), and pick the dither varlanaezdjzo thzat approaches that achieved with ideal AGC, for smaller values
the average NMSE is minimized. In other word§,= 02—, e ohserve an error floor. This is attributed to the fact that f
whereo? = arg min Ex [NMSE(A, o)]. Note that the dither 5 small training sequence length, there can be certain value
signal is addeg only it < &2 of the parameteA for which the estimation error may be
large enough to cause both input leveds 3A} to fall in the

!Note that the dither signal is to be added only during theniingi period S?m_e_ quantization bin after VGA sc_allng, which results in a
to estimateA, and not during actual data transmission significant error probability irrespective of SNR.
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Fig. 6. 2-bit quantizer with 4-PAM: BER vs SNR curves with iompal
dithering for diferent input signal powers. (Training length= 100)
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Fig. 7. 2-bit quantizer with 4-PAM: Channel capacity withtiopal dithering
for different input signal powers. (Training lengith= 100)

V. CONCLUSIONS

We have investigated the problem of automatic gain control

NMSE

30 40
SNR(dB)

Fig. 8. 2-bit quantizer with 4-PAM: NMSE of estimation #fwith optimal
dithering for diferent input signal powers. (Training length= 100)
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Fig. 9. 2-bit quantizer with 4-PAM: Average BER vs SNR curfesdifferent
lengths of the training sequence.
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International Conference on Communications.  Glasgow, June 2007,
pp. 6269-6274.

when ADC precision is constrained at the receiver. As has be¢s] ——, “Capacity of the discrete-time AWGN channel undertpu

observed in the prior parameter estimation problems, ditge

is found to be essential in order to obtain a good performangg

in the face of drastic quantization. Problems for futurelysia

include a more detailed analytical and numerical analysis f
larger constellations (e.g., 8-PAM with 3-bit ADC), as well
as investigation of the achievable performance over fading
and dispersive channels. Another important topic for feitur
research is whether the required training period can becestiu
by adapting the VGA scale factor on the fly, rather than

computing it based on one-shot estimation of the signaf!

amplitude.
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