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ABSTRACT
We propose and demonstrate the feasibility of a probabilistic
framework for mining user interests from their tweet times
alone, by exploiting the known timing of external events as-
sociated with these interests. This approach allows for mak-
ing inferences on the interests of a large number of users for
which text-based mining may become cumbersome, and also
sidesteps the difficult problem of semantic/contextual analy-
sis required for such text-based inferences. The statistic that
we propose for gauging the user’s interest level is the prob-
ability that he/she tweets more frequently at certain times
when this topic is in the “public eye” than at other times.
We report on promising experimental results using Twitter
data on detecting whether or not a user is a fan of a given
baseball team, leveraging the known timing of games played
by the team. Since people often interact with others who
share similar interests, we extend our probabilistic frame-
work to use the interest level estimates for other users with
whom a person interacts (by referring to them in his/her
tweets). We demonstrate that it is possible to significantly
improve the detection probability (for a given false alarm
rate) by such information pooling on the social graph.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Time series analysis—
Poisson Processes; H.2.8 [Database Applications]: Data
mining

Keywords
Twitter; metadata; online social networks; Bayesian infer-
ence

1. INTRODUCTION
The culture of Twitter, with its brief tweets, encourages

users to express their current thoughts. In this paper, we
explore whether the timing of a user’s tweets tells us some-
thing about her/his interests, by comparing it against the
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Figure 1: Histograms of the ratio of #tweets/hour
during games to #tweets/hour at other times for
fans (red) and randomly picked users (blue)

known timing of external events associated with a particu-
lar interest. As an example, consider two groups of users:
(i) Fans of the San Francisco Giants baseball team (the SF-
Giants), with “ground truth” based on analysis of the text
of their tweets, and (ii) randomly picked users, presumed to
be non-fans. In Figure 1, we plot histograms of the ratio
of #tweets/hour during times when the SFGiants played a
game to the #tweets/hour at other times for these two sets
of users. This data was collected over a one month window.
We see that a higher proportion of fans tweet more often
during game times (the red curve due to fans is more to the
right of the ratio = 1 line). It is clear, therefore, that there
is information to be mined from the tweet times of a user.
In this paper, we propose a statistical framework for doing
so, and report on promising preliminary results on inferring
baseball “fandom” for a given team.

Our model, motivated by the empirical findings such as
those in Figure 1, is simple: a fan is likely to tweet at a
higher rate in a window around game times than at other
times. This leads to a statistical measure for a user’s fandom
which is the Bayesian posterior probability, based on mea-
sured tweet times, of the user’s tweet rate during games be-
ing higher than at other times. Under our model, this prob-
ability only depends only on the numbers of tweets (rather
than on their exact timing) during games and during other
times. This makes the statistic attractive for inference in
large-scale systems, both in terms of measurement and com-
putation.



The proposed approach extends naturally to incorporate
information from a given user’s “neighbors,” defined on the
Twitter graph as follows. Most twitter accounts are pub-
lic and users often label their tweets using hashtags. These
hashtags bring tweets to the attention of other users who are
interested in the content of the tweet, even when they do not
necessarily follow the user who authored the tweet. In this
manner, Twitter encourages conversation among individuals
who share a common interest. We define the neighbors of a
Twitter user as those who are mentioned in his/her tweets
(this information is available in the tweet metadata, and
does not require parsing of the tweet). We show that pool-
ing measurements from neighbors enhances the reliability of
detecting fandom.
Most prior work on mining user interests from Twitter

employs text analysis on their tweets (we mention some se-
lected references shortly). This is significantly more expen-
sive than our approach in terms of computation, and hence
more difficult to scale to large numbers of users. We view
our minimalistic approach as complementary to such text-
based approaches; for example, user interests predicted by
our approach could be verified by more detailed text-based
analysis. It is worth noting, however, text-based analysis
is by no means an infallible gold standard. The brief (lim-
ited to 140 characters) and ephemeral nature of tweets forces
upon them a context-dependent language, making text anal-
ysis difficult. For example, people can talk about baseball
in their tweets by mentioning the stand, usher, pitcher, bat,
ball, etc. All of these words have broad and in some cases
multiple meanings. It is therefore difficult to interpret such
words without context, and it is difficult to build context
from the few words in a tweet. Thus, even if there were no
computational bottlenecks, there may be considerable value
to hybrid techniques that use dynamics, as we do, along with
text-based analysis, to enhance the reliability of mining user
interests.

Prior work
Prior work on mining Twitter feeds has mostly been fed by
text analysis. TwitterStand [7] maintains a news stand by
parsing through different tweet feeds. The timing of tweets
has been used here to help in the clustering of tweets into
different news groups. The authors in [6] build a system
that can locate events such as an earthquake in space and
time from tweets (using tweet location and times). How-
ever, unlike the solution proposed herein, both[7, 6] rely
mainly on text analysis, with tweet times being used only in
the later stages. PET[3] tracks the evolution of events, and
users’ interest in them, as a function of time. Unlike our ap-
proach, PET uses text analysis, and does not use the specific
tweet time or its relation to external events (PET analyzes
tweets collected daily to infer the evolution of topics from
day to day). A method of training a classifier to do senti-
ment analysis of individual tweets is proposed in [5]. Here
smileys are used in a bootstrapping mechanism to build a
corpus of words along with an associated sentiment (positive
or negative) for each word. The preceding references do not
explicitly aim to mine for the interests of a user, which is
the focus of our work. A system that employs Wikipedia as
an external corpus to do word associations is proposed in [4]
for mining broad interests on a per user basis. In [1], the
authors observe that in identifying political affiliation of a
1000 hand-labeled users, the structure of the re-tweet graph

Figure 2: Tweet times of the user marked by ar-
rows. Event times are marked in red. All other
times are non-event times. Top: Tweeting behavior
of a person not interested in X. Bottom: A person
interested in X

is more useful than the text in the tweets themselves. They
arrive at this conclusion by implementing a text based clas-
sifier and comparing it with the results obtained merely by
identifying the community structure in the re-tweet graph.

2. TWEET TIMES MODEL
In this section we present a probabilistic model for tweet

times of a user over an observation time window (this need
not consist of contiguous intervals) . Our basic premise is
the following: a user who is interested in topic X (say the
SFGiants baseball team) tweets more often at times when X
is in the “public eye” (SFGiants play a baseball game) than
at other times. Thus, we partition the observation window
into two complementary sets:

1. Event times are times within the observation window
when X is in the “public eye” (which, according to our
hypothesis, stimulates users interested in X to engage
in conversations on Twitter).

2. Non-event times: All other times over the observa-
tion window.

This partitioning, along with the behaviors we expect for
users who are interested (or not) in the topic X, is shown in
figure 2.

The tweet times of a user are modeled as a homogeneous
Poisson process of rate λ1 tweets per unit time during event
times and an independent homogeneous Poisson process of
rate λ0 tweets per unit time during non-event times. As de-
picted in figure 2, we expect that λ1 > λ0 for users interested
in topic X.

A homogeneous Poisson process is parameterized by a sin-
gle parameter, its rate λ. Such a parsimonious model for
the tweet times of a user has two advantages: robustness
(heterogeneity among twitter users may make more detailed
usage profiles, such as allowing for tweet rates dependent on
the time of day, counterproductive) and simplicity (e.g., the
decision statistics we obtain require aggregate tweet counts
rather than individual tweet times). For a Poisson process
of constant rate λ tweets/unit time, the number of tweets
N made in a time interval of length T (need not be contigu-
ous) is a Poisson random variable with mean λ×T . i.e., the
probability that the user puts out n tweets in T time units



is given by

Pr [N = n|λ] = e−λT (λT )n

n!
, n = 0, 1, 2, . . . ,∞.

Further, under the Poisson model, the number of tweets
put out by the user in non-overlapping time intervals are
independent random variables.

3. INFERRING INTEREST LEVELS
FROM TWEET TIMES

We propose a statistic that measures our confidence in the
assertion that the user tweets more frequently during event
times than other times. i.e., his/her tweet rate during event
times is larger than the rate at other times. This statistic is
our metric for the user’s interest level in the topic X. We use
knowledge of the event and non-event times to estimate the
probability distributions of the corresponding tweet rates λ1

and λ0 from the tweet times of the user, and then compute
the statistic from these posterior distributions.
Under our Poisson model, the posterior distribution of λ1

given the tweet times depends only on the total number of
tweets put out by the user during event times, which we
denote by N1. The tweet times themselves do not mat-
ter. Similarly, to make probabilistic inferences on λ0, all we
need is the total number of tweets during non-event times,
denoted by N0. In the language of estimation theory, N1

and N0 are minimal sufficient statistics for estimation of λ1

and λ0, respectively. Let the total time span of the event
times and non-event times be T1 and T0 respectively.
Continuing with our minimalism in modeling, we assume a

non-informative prior on the rates λ1 and λ0, assuming that
the prior density p(λ1, λ0) ∝ 1/

√
λ1λ0 for all λ1 > 0, λ0 > 0

(the corresponding marginal priors are p(λi) ∝ 1/
√
λi for

λi > 0, i = 0, 1). Of course, this prior cannot exist over
an infinite support, since densities must integrate to one,
but this is a standard trick in Bayesian estimation when
the ground truth on priors is difficult to determine. This
joint prior is the Jeffreys non-informative prior on the rate
parameters (λ1, λ0) [2]. In our case, accurately estimating
priors for each topic X would require the ground truth on
the interests of a large number of users, which goes counter
to our objective of mining for these interests. Furthermore,
we would need to constantly revise our ground truth data
set for a heterogeneous population of Twitter users with
dynamically evolving interests, which is clearly infeasible.
Since we assume that the two Poisson processes corre-

sponding to the event times and non-event times are inde-
pendent, the corresponding counts N1 and N0 are condition-
ally independent given λ1, λ0. Putting this together with our
assumption of non-informative prior on λ1, λ0, we obtain,
using Bayes’ rule, that the posterior distributions of λ1, λ0

also factor and are given by p (λi|Ni) ∝ Pr [Ni|λi] p (λi) ∝
λi

Ni−0.5e−Tiλi , λi > 0. Normalizing the posteriors so they
integrate to one (which we can do even though we employed
improper priors), we obtain

p (λi = x|Ni) =

{

Ti(Tix)
Ni−0.5e−Tix

γ(Ni+0.5)
if x ≥ 0

0 otherwise
, (1)

where γ(z) =
∫

∞

0
tz−1e−tdt is the gamma function. The

statistic which we propose to quantify the user’s interest
level in the topic X is Z = Pr [λ1 > λ0|N1, N0]. We de-
clare a user to be interested in X when Z exceeds a certain

threshold. Thus, we conclude that the user is interested
in X, when we are “confident enough” that his/her tweet
rate during event times is larger than that during non-event
times. Given the observations N1, N0, T1, T0, the statistic Z
can be computed using the posteriors (1) as follows:

Z = Pr [λ1 > λ0|N1, N0] (2)

=

∫∫

x>y

p (λ1 = x|N1) p (λ0 = y|N0) dx dy.

4. EXPLOITING USER INTERACTIONS
We use social networks to engage in conversation with

others who share our interests. If a user has interacts with
others who are interested in the topic X, we expect that the
probability that he/she is also interested in X is higher than
for a randomly picked user. We present a method that relies
on this simple intuition to improve our estimates of the in-
terest level of a “tagged” user using interest level estimates
of other users mentioned in his/her tweets. During the ob-
servation time window, this tagged user may mention other
users using their twitter handle (for example, the official
SFGiants twitter handle @SFGiants, or another individual
@johnadams2001) in his/her tweets. We call such users the
“neighbors” of the tagged user. Since we will be combining
the Z statistics of multiple users, we need to pay attention
to scaling. In particular, we expect that we would weight the
tagged user’s Z statistic higher than that of his/her neigh-
bors. We now describe a framework for motivating such
scaling.
Notation: Let the index 0 denote the tagged user and the
indices i = 1, . . . ,M denote the neighbors. From the number
of tweets during event timesN1(i) and non-event timesN0(i)
of the i-th user (N(i) denotes the pair (N1(i), N0(i))), we ar-
rive the statistic (2) which we denote by Zi. Let λ1(i), λ0(i)
denote the tweet rates of the i-th user in the event and non-
event times and Yi denote the event that the i-th user tweets
more frequently during event times than other times. i.e.,
Yi = 1 if λ1(i) > λ0(i) and Yi = 0 otherwise (note that
Zi = Pr[Yi = 1|N(i)]). Let Ci represent the true interest of
i in the topic X (Ci takes the value 1 if this user is interested
in X and 0 otherwise).

A user who is not interested in X may still happen to
tweet more often during event times. Likewise, a user in-
terested in X may happen to tweet less frequently during
event times than at other times. Therefore, we first relate
Yi to Ci in a probabilistic manner to derive a function of
the Zi statistic for each user i (i.e., the tagged user and
his/her neighbors) such that, when combined across users
to make an inference regarding the tagged user, no one user
has too big an influence. We then discuss a model for the
dependence between the tagged users and his/her neighbors
which motivates combining these individual statistics.

For the first step, let pt = Pr[Yk = 1|Ck = 1] denote
the probability that a user interested in topic X is timely
(i.e., tweets more frequently during event times than at other
times), and let pf = Pr[Yk = 1|Ck = 0] denote the probabil-
ity of false alarm (i.e., a user not interested in X happens
to tweet more frequently during event times). We now com-
pute the likelihood ratio of user k’s interest in topic X based
on its own measurements, defined as

φk =
Pr[N(k)|Ck = 1]

Pr[N(k)|Ck = 0]
,



Figure 3: Markov structure of the user interests Ci,
the tweet rate differentials Yi = λ1(i) > λ0(i) and the
number of tweets N(i) = (N1(i), N0(i)). The index
0 refers to the tagged user while 1, 2, 3 denote the
neighbors of this user

in terms of the statistic Zk = P [Yk = 1|N(k)], which we
already know how to compute from Section 3.
Under our uninformative prior, it is easy to show that

Pr[Yk = 1] = Pr[λ1 > λ0] = 1
2
, Conditioning on Yk and

using the conditional independence of N(k) and Ck given
Yk (the Markov structure in figure 3):

Pr [N(k)|Ck] = Pr [Yk = 1|Ck] Pr [N(k)|Yk = 1]

+Pr [Yk = 0|Ck] Pr [N(k)|Yk = 0]

= 2Pr[N(k)]
(

Pr [Yk = 1|Ck]Zk

+Pr [Yk = 0|Ck] (1− Zk)
)

,

where we have used Zk = Pr [Yk = 1|N(k)]. Using the
above, we obtain that

φk =
ptZk + (1− pt)(1− Zk)

pfZk + (1− pf )(1− Zk)
=

1 + pt
(

Zk

1−Zk

− 1
)

1 + pf
(

Zk

1−Zk

− 1
) .

This effectively corresponds to soft thresholding the raw like-
lihood ratio Pr[λ1 > λ0]/Pr[λ1 ≤ λ0] = Zk/(1−Zk) between
an upper limit of 1/pf and a lower limit of 1− pt. Both φk

and the raw likelihood ratio are monotone increasing in Zk.
Thus, for a single user (as considered in the previous sec-
tion), threshold rules based on any of these statistics are
equivalent. However, when combining across multiple users,
the soft thresholding in φk is important for robustness, since
it ensures that no one user has too large an influence on the
outcome.
Let us now consider the second step: relating the interests

of the tagged user and his/her neighbors. We expect that it
is more likely that the neighbors are interested in X when the
tagged user is interested in X than when the tagged user is
not: Denoting Pr[Ck = 1|C0 = 1] by α and Pr[Ck = 1|C0 =
0] by β, we expect that α ≫ β. It is actually the difference in
α and β that affects how we combine these statistics, rather
than their raw values. For example, even if α is small (e.g.,
0.1, so that there is only a 10% probability of the neighbor
of a fan also being a fan), if β = 10−4, then we still get very
useful information from the neighbors’ measurements.
We make a simplifying assumption on the structure of in-

teractions among neighbors: The true interests of the neigh-
bors, {Ci, i > 0}, are independent when conditioned on the
interest status of the tagged user C0 : Pr[C1, . . . , CM |C0] =
∏

Pr[Ci|C0]. This is illustrated via the Markov structure
depicted in figure 3 (in the figure M = 3). This assumption
is violated when a neighbor of the tagged user refers to an-
other neighbor of the tagged user in his/her tweets (therefore

introducing additional dependencies between the two neigh-
bors). However, as we will see in the results section, this
simple structure by itself gives us considerable gains over
just using the interest level estimates Z0 of the tagged user
alone.

Our statistic that incorporates information from the neigh-
bors is the following log likelihood ratio:

S =
Pr [N(0),N(1), . . . ,N(M)|C0 = 1]

Pr [N(0),N(1), . . . ,N(M)|C0 = 0]
.

From the Markov structure in figure 3, we observe that the
true interests of the neighbors Ci given that of the tagged
user C0 are independent. This observation leads to the fol-
lowing simplification:

S = log
Pr[N(0)|C0 = 1]

Pr[N(0)|C0 = 0]
+

M
∑

k=1

log
Pr[N(k)|C0 = 1]

Pr[N(k)|C0 = 0]
.

From Bayes’ rule, for the neighbors,

Pr [N(k)|C0] = Pr [N(k), Ck = 1|C0]

+Pr [N(k), Ck = 0|C0]

= Pr [N(k)|Ck = 1]Pr [Ck = 1|C0]

+Pr [N(k)|Ck = 0]Pr [Ck = 0|C0] .

Using the above, we obtain that:

Pr[N(k)|C0 = 1]

Pr[N(k)|C0 = 0]
=

αφk + (1− α)

βφk + (1− β)
.

Therefore, the statistic S depends only on the likelihood
ratios φk of the tagged user and his/her neighbors, as follows:

S = log φ0 +
M
∑

k=1

log
1 + α(φk − 1)

1 + β(φk − 1)
.

While we can tune the parameters α and β to get good
performance with this statistic, in practice, we have found
the following modified rule, using a single parameter to scale
down the sum of the neighbors’ log likelihood ratios, to work
well:

S̃ = log φ0 + κ
∑M

k=1 log φk. (3)

In our numerical results, therefore, we report on the per-
formance of this modified statistic, with κ = 1/6 (found to
work well empirically).

5. NUMERICAL RESULTS
In this section, we test our statistical framework by trying

to identify whether a user is a fan of the San Francisco Gi-
ants (SFGiants) baseball team from the user’s tweet times
(we also briefly report on analogous results for the NY Yan-
kees). The times when SFGiants played Major League Base-
ball (MLB) games are used as a natural candidate for event
times. We also include a 15 minute window on either side
of each game in our definition of event times to account for
the buzz before and after each game when fans are expected
to tweet heavily.
Dataset description: The data set is a 10% random sam-
pling of all public tweets over a month (May-June) in the
summer of 2011. In this one month window, SFGiants played
29 games. Each tweet, apart from its brief text, is tagged
with an user ID, the time when this tweet was made and the
user IDs of twitter handles mentioned in the tweet (if any).



Ground truth: In order to characterize the effectiveness
of the statistic that we propose, we need to know the fan-
dom of users on whose tweet times we apply the statistic.
For this purpose, we searched the text of all tweets (in our
dataset) that were made in the first and last 10 minutes of
all SFGiants games for keywords associated with this base-
ball team. The keywords that we used were: sfgiants,
#sfgiants, rowand, #rowand, lincecum and #lincecum. We
identified 640 users in this manner. We assume that these
users who used the keywords associated with the SFGiants
baseball team are indeed their fans. We also picked a ran-
dom set of 1000 users who appear in our dataset (they
tweeted at least once in this one month window). None
of these randomly picked users used the preceding keywords
in their tweets and we assume that they are not fans of SF-
Giants.
For all of the above users (fans and non-fans) we keep a

list of the times at which they put out tweets in this one
month window. We use these times to evaluate the statistic
(2) for these users. We also keep a list of user IDs for each of
these users and this list gives our per user neighbor list. The
entries in this list are the users who are mentioned in the
tweets of the tagged user over the one month time window
(his/her neighbors). In order to compute the statistic (3)
which uses estimates of the interest levels of the neighbors,
we also compile a list of the tweet times of the neighbors of
every user.
Interests from user times: We evaluate the statistic Z in
(2) from the tweet times of the 640 fans and 1000 non-fans.
When computing Z, we account for an average of ten hours
of sleep daily. We do this by scaling the total one month time
window T1+T0 by 14/24 and computing the total sleep com-
pensated non-event times via T ′

0 = (14/24)× (T1+T0)−T1.
We assume that the user is awake during event times (thus

leaving T1 as it is). Let λ̂i = Ni/Ti denote the empiri-
cal estimate of λi. We threshold the Z statistic at differ-
ent values and plot the number of correctly detected fans
versus the false alarms (number of randomly picked users
misclassified as fans) in figure 4 (blue curve, top). Con-
trast this with naive ratio of empirical tweet rate estimates
λ̂1/λ̂0 = (N1T0)/(N0T1) that is plotted in black. When we

are interested in small false alarm rates, λ̂1/λ̂0 metric is not
useful: for a false alarm rate of 10/1000 we detect a mere

51/640 fans when we use λ̂1/λ̂0, whereas, we are able to de-
tect 137/640 fans using the statistic Z. However, when we
are willing to tolerate more false alarms (> 40/1000), we see
that the performance of Z is comparable to that of empirical
tweet rate ratios λ̂1/λ̂0.
Incorporating neighbor tweet times: From the tweet
times of the neighbors of the 640 fans and the 1000 ran-
domly picked users, we compute their interest level statistic
Z (again accounting for a per day average of ten hours of
sleep). We then use the interest level estimates of the tagged

user and his/her neighbors to compute the statistic S̃ in (3).
To compute φk from the individual interest levels Zk, we
choose pt = 0.9 and pf = 10−20. We threshold the statistic

S̃ at different values and plot as before the number of cor-
rectly detected fans versus the false alarms in figure 4 (red
curve, top). From the figure, we see that for any fixed false
alarm rate, we are able to detect more fans via the consol-
idated statistic S̃ than the interest level Z0 of the tagged
user alone. For example, for a false alarm rate of 10 in a
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Figure 4: Number of correctly detected fans plotted
versus the number of randomly picked users misclas-
sified as fans for the statistics Z, S̃ and λ̂1/λ̂0. Top:
SFGiants and Bottom: Yankees

1000, we are able to improve the detection accuracy for SF-
Giants from 138/640 using Z0 alone, to 233/640 using the

consolidated statistic S̃ with κ = 1/6.
We run an identical analysis for 623 fans of the New York

Yankees baseball team (identified in a manner similar to
the SFGiants fans). These results are plotted in figure 4

(bottom). We see the same trend with the Yankees, with S̃
outperforming Z.

When interpreting the results summarized in figure 4, we
must bear in mind the importance of operating at low false
alarm rates. The proportion of “fans,”, or users interested in
any particular topic, is expected to be small. For example,
suppose 10% of the overall user population are fans. Then,
for a moderately large false alarm rates of 10%, the number
of misclassified non-fans is 9% of the user pool. This can
overwhelm the pool of correctly classified fans, which is at
most 10% for our example. This is the well known multi-
ple comparisons problem, for which the natural regime of
interest is low false alarm rates. From figure 4, we see that
we are able to detect a significant fraction of fans for false
alarm rates as small as 1%.

6. ASSUMPTIONS AND LIMITATIONS
While the numerical results on baseball fandom demon-

strate the promise of the proposed approach, it is important
to clearly outline its assumptions and limitations. Detecting
interest in topic X from tweet times alone relies on two key
assumptions: (i) Users interested in the topic X are timely
in their tweeting habits: they respond to either the external
stimulus which defines the event times (such as the baseball
game played by their favorite team) or the increased chatter
about X among their peers during event times, by tweeting
during event times. (ii) Event times for topic X should not
overlap significantly with event times for another interest,



say Y, over the observation time interval. Otherwise, we
would not be able to attribute the increased tweet rate dur-
ing event times of X to interest in X alone but to interest
in either X or Y. Such ambiguities get exacerbated if there
are many interest groups which share the event windows.
We now give examples for which the preceding assump-

tions are not easily met:
Movie release times: One possible approach for identifying
fans of a particular kind of movie (e.g., Sci-Fi) is to employ
event windows around movie releases. However, it may take
a few days for even an avid fan to find the time to watch
a newly released movie. Thus, interests such as these may
not elicit a timely response from fans. This may not neces-
sarily make it difficult to employ the proposed statistic to
identify fans of Sci-Fi flicks. It may just mean that we need
to use a large window (e.g., a few days) around each movie
release when defining event times. However, a large event
window may require a large observation window, in order to
collect statistics over enough event and non-event windows.
This is because many unrelated events may transpire over a
window of few days, hence we may require many event win-
dows (movie releases) in order to “average out” the effects
due to unmodeled interests which “interfere” with the task
of inferring interest in Sci-Fi movies.
Television showtimes: Unlike movie buffs, it is reasonable to
expect a timely response from fans of a TV show (say X).
However, for TV shows it is possible that the air times for
another TV show (say Y) overlap significantly with those of
X over the observation time interval. This makes it difficult
to know whether a user who tweets more often during X’s
air-times is indeed interested in X or whether his increased
activity is due to interest in the show Y. We may be able
to resolve this ambiguity if we identify sufficient additional
events in the observation time window when the fans of one
of the two TV shows tweet aggressively, but not the other:
One example of which could be announcements regarding
plans for the next season for the show X. Thus, an important
topic for future work is to understand how different the times
of events corresponding to two interest groups must be in
order to disambiguate them.
On the other hand, for our baseball example in the previ-

ous section, both assumptions (i) and (ii) are met: it is rea-
sonable to assume that users who are fans of a baseball team
talk about the game and/or engage in conversation with
other fans mostly during games (and are therefore timely)
as they are expected to watch/follow the games when they
are live-on-air. The timing of baseball games does not fol-
low any specific pattern such as the daily/weekly patterns
exhibited by TV shows. Therefore, all of the times when a
particular baseball team plays its games are very unlikely to
be the event times for another interest.

7. CONCLUSIONS & FUTURE WORK
We have demonstrated that significant information about

a user’s interest can be mined from his/her tweet times
alone, by correlating these with the timing of appropriately
chosen events in the external world. The Bayesian frame-
work that we develop for extracting this information is shown
to be effective in detecting baseball fandom from the tweet
times of users over a one month period. Measurements from
“neighbors”(in the sense of Twitter mentions) provides addi-
tional performance gains, with improvements of about 50%
in detection accuracy for a false alarm rate of 1%.

We view the results in this paper as a small first step to-
wards a broader investigation of the information that can
be gleaned from spatial and temporal dynamics on social
networks, and how this information can be best fused with
traditional content-based analysis, while accounting for com-
putational and privacy constraints. A Bayesian approach
such as the one used here provides a natural framework for
such information fusion. For the problem considered here,
there are three research directions of immediate interest. As
we have discussed, in order to detect interests from tweet
times, users have to be timely in their tweets. Thus, an
important direction for future research is to identify which
interest groups exhibit such timeliness, and how to disam-
biguate between interest groups that share recurrent event
windows. Another important direction is a deeper investi-
gation of the problem of information pooling on the social
interaction graph. In our present work, we have assumed
that the interests of the neighbors of a tagged user are in-
dependent, given the interests of the tagged user. However,
in practice, we expect heavy overlap among the friends of
every user, so that further performance gains may be avail-
able by revisiting the independence assumption. Finally, we
have assumed here that event times are known beforehand
for the topic of interest. One direction for future work is to
mine for these event times themselves from a bag of aggre-
gate (network-wide) feeds such as Twitter’s trending topics
list or Google Trends. Since such an event/non-event times
demarcation algorithm is topic-specific and not user-specific,
it can employ sophisticated methods including text analysis
on these aggregate feeds. Ideas along the lines of those in
[3] can potentially be used to identify event times and this
needs further study.
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