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Abstract

Bayesian approaches to noncoherent communication:

from Shannon theory to practical architectures

Noah Jacobsen

Forthcoming wireless cellular systems, such as Wireless Metropolitan Area Networks

(WMANs), will have to deliver on promised “wired” bandwidths while overcoming hur-

dles such as severe channel dispersion, no line of sight between transmitter and receiver,

mobility at vehicular speeds, and inter-cell interference arising from shared spectrum

scheduling. Moreover, the fading rates that result in time and frequency may pro-

hibit the use of conventional coherent transceiver designs. These issues motivate us to

consider spectrally efficient noncoherent communication systems that do not rely on

pilot-symbol based estimation of continuously varying channels. Rather, the channel is

estimated implicitly, based on the statistics of the received signal and probabilistic mod-

els of the fading process. Given the success of belief propagation decoding in a variety

of fields, a Bayesian framework for iterative demodulation and decoding is employed to

approach the capacity of such channels. With the goal of practical transceiver designs,

several reduced complexity implementations, which maintain near Shannon theoretic

performance, are proposed. We further introduce a multi-antenna noncoherent eigen-

beamforming receiver that adaptively learns the spatial channel to a given mobile with

little or no pilot overhead. With the key observation that outdoor channels are char-

acterized by relatively few dominant spatial modes, eigenbeamforming receivers enjoy

beamforming gains in Signal-to-Noise Ratio (SNR) that result from scaling up the num-

ber of receive elements, while simultaneously reducing the complexity of noncoherent

demodulation and decoding, which scales with the number of dominant modes. Finally,

a side-by-side comparison of noncoherent and coherent transceivers is performed in the

context of a packetized Orthogonal Frequency Division Multiplexing (OFDM) system,

such as that in development for the IEEE 802.16 WMAN standard.
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Chapter 1

Introduction

Bayesian approaches have been successful in a variety of fields [22, 29, 18],

specifically in approaching Shannon-theoretic limits of communication channels

using turbo-like codes [32]. The main focus of this dissertation is on using such

approaches to attain capacity for wireless time-varying channels.

Time variations in wireless channels arise due to relative motion between the

transmitter and receiver, resulting in a well-known apparent frequency shift, re-

ferred to as the Doppler shift. A measure of the time period over which the

channel is expected to remain roughly constant is given by the inverse of the max-

imum Doppler shift. This is referred to as the coherence time of the channel. The

other major contributor to fading in wireless channels is multipath interference.

Multipath, or channel dispersion, is the noncoherent superposition of multiple

waves at the receiver resulting from reflections, scattering, and diffraction of the

transmitted radio wave. Channel variation in frequency results from the various

delays associated with multipath components. The delay spread of the channel

is given by the maximum delay of any multipath component relative to the first

arriving component. Analogous to the definition of coherence time, the coherence

bandwidth is a measure of the range in frequency over which the channel is roughly

constant, and is defined as the inverse of the delay spread.

When the coherence bandwidth is less than the symbol rate, frequency selective

fading results, and well-studied techniques of channel equalization are necessary
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to decode the received signal (see for example [3]). An alternative approach, that

is favored in developing standards, is the use of Orthogonal Frequency Division

Multiplexing (OFDM) for modulating the transmitted data symbols. OFDM is a

multi-carrier modulation technique that effectively divides a wideband frequency

selective fading channel into many frequency non-selective (flat) fading subchan-

nels, with coherence bandwidth greater than the symbol rate. For this reason,

and for its suitability to noncoherent demodulation and decoding, we adopt a flat

fading channel model, in which the channel is constant over a block of transmit-

ted symbols. Moreover, with an eye towards application to OFDM systems, it is

convenient to define a generalized notion of channel coherence that is the product

of the coherence time and bandwidth, termed the coherence length of the channel.

In particular, we employ the Rayleigh block fading channel model, in which

the summation of multiple unresolvable components is modelled with a complex

Gaussian random variable that multiplies a block of T consecutive symbols, the

coherence length, and is independent and identically distributed (i.i.d.) from block

to block. The block fading model is further applicable to certain Time Division

Multiple Access (TDMA), frequency hopping, and block interleaved systems. A

further advantage of the Rayleigh block fading channel model is that the Shannon

capacity was recently solved [27], thus enabling the comparison of constructive

coding and modulation schemes to information theoretic limits.

The conventional approach to transceiver design is to estimate the channel us-

ing pilots, and then to employ coherent demodulation assuming that the channel

estimates are perfect. There are two main drawbacks of this approach: the over-

head required for pilots to accurately track rapid channel variations potentially

requires a significant fraction of the available bandwidth; and channel estimates

based solely on the pilots are suboptimal, since they do not exploit the bulk of the

transmitted energy, which is in the data. A number of recent papers [8, 31, 15, 10]

consider the alternative of turbo noncoherent communication, with iterative joint
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estimation of the channel and data (which does not need pilots, but can incorpo-

rate them if available). This body of work is the starting point of this dissertation,

which adopts the same basic transceiver architecture: an outer binary code, seri-

ally concatenated with a modulation code amenable to noncoherent demodulation

[19, 18].

Noncoherent approaches to wireless transceiver design hold the potential for

dramatic improvements in the throughput of forthcoming communication systems

by eliminating the overhead required to estimate and track a time-varying channel.

This gain is most significant for the moderately fast fading, dispersive channels

considered here, where the channel coherence length is on the order of a dozen

symbols. Such channels are expected of forthcoming wireless metropolitan area

networks (WMANs), where pilot overhead can be as much as twenty percent.

Indeed, from a more existential point view, pilot based coherent systems are seen

to be a suboptimal implementation falling within the noncoherent paradigm, since

the channel estimates are inherently noisy and channel estimation ignores the

greater part of received signal energy, which is in the data.

Classical approaches to noncoherent communication include orthogonal modu-

lations such as Frequency Shift Keying (FSK) and On/Off Keying (OOK), as well

as Differential Phase Shift Keying (DPSK). Orthogonal modulations are band-

width inefficient, allowing only one signal point per degree of freedom, and thus

insufficient for use in modern commercial systems. DPSK, in which the chan-

nel is assumed constant over two symbols and information is encoded in symbol

phase transitions, is somewhat more bandwidth efficient, but suffers from noise

enhancement with classical two-symbol differential demodulation. Warrier and

Madhow [38] have generalized differential modulation techniques to classical am-

plitude/phase constellations, thereby admitting truly bandwidth efficient signals

to noncoherent systems. However, many of the design prescriptions obtained in

their work, based on maximizing distances in Euclidean signal space with a non-
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coherent metric, are found to be inappropriate for the coded systems considered

here.

Divsalar and Simon [12] showed that when the channel is constant for a block

of symbols, block differential demodulation significantly improves the performance

of differential signaling techniques in uncoded systems. Yet such methods would

have to be integrated with sophisticated coding techniques to obtain efficient

noncoherent communication systems. Peleg and Shamai [31] were the first to do

so, with a turbo-architecture for iterative block demodulation and decoding of

DPSK signals on the phase-noisy channel. Chen et al. [10] further considered

constructive coding and modulation schemes for the noncoherent Rayleigh block

fading channel, in which near capacity performance was shown to be achievable

with certain combinations of QPSK modulation codes and outer channel codes.

We also adopt a turbo-architecture for capacity approaching, spectrally effi-

cient noncoherent communication with large amplitude/phase constellations (or

Quadrature Amplitude Modulation (QAM)). Design prescriptions for choice of

modulation code and channel code are provided with techniques for reducing

complexity in implementations of practical systems. Furthermore, noncoherent

demodulation and decoding are generalized to multi-antenna receivers, enabling

beamforming gains, traditionally defined in the context of coherent systems, while

also maintaining reasonable levels of complexity. The main results of this research

are outlined in the following sections.

1.1 Efficient noncoherent communication

We consider the problem of bandwidth-efficient communication over time-

varying single-antenna channels with memory, such as those encountered in high

data rate outdoor wireless mobile communication. Motivated by the recent suc-

cess of turbo-like codes and iterative techniques in a variety of classical settings,
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we explore methods for the design and analysis of practical coded modulation

schemes which approach the information-theoretic limits for such channels.

While the design techniques developed here are quite general, we consider

a block fading frequency-nonselective channel model in our performance evalua-

tions: the channel is a scalar complex gain modeled as constant over a block of

symbols, with the gain chosen independently from block to block. This model

allows for low-complexity noncoherent block demodulation techniques which im-

plicitly estimate the channel gain and phase on each block, and is amenable to

information-theoretic computations with which to compare the performance of

practical coded modulation schemes.

More importantly, however, the nonselective block fading model is an excellent

approximation for existing and projected cellular systems. The slow variation of

the channel gain is valid for any system in which the symbol rate is significantly

larger than the Doppler spread. Frequency nonselectivity applies, of course, to

narrowband systems with bandwidth smaller than the channel coherence band-

width, but it also applies to each subcarrier in wideband OFDM systems. More-

over, it is easy to efficiently adapt transceiver designs for the block fading model

to continuously varying fading channels, as described in Chapter 4.

Specifically, the modulation code considered in our results is a simple general-

ization of standard differential modulation to QAM alphabets. No pilot symbols

are employed. Iterative decoding with soft information exchange between the

outer binary decoder and inner noncoherent block demodulator is employed. Our

contributions are outlined, in the context of prior work, in the following.

Complexity Reduction: Maximum Likelihood (ML) or Maximum a posteri-

ori Probability (MAP) block noncoherent demodulation has complexity that is

exponential in the block length, in contrast to the linear complexity of coherent

demodulation. One approach to reducing the complexity is to implicitly esti-

mate the channel gain jointly with the data, on a block by block basis. In past
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work on block noncoherent demodulation with PSK alphabets [10, 38, 26], this

is accomplished simply by quantizing the channel phase into bins, in conjunction

with a simple energy-based amplitude estimator. For a coded system as in [10],

parallel coherent MAP decoders can be employed, one for each bin, followed by

soft-combining of the outputs.1 However, the simple amplitude estimator in [10]

does not work when the signal amplitude varies due to the use of a QAM constel-

lations. Furthermore, maintaining a large number of phase bins implies that the

complexity of block noncoherent demodulation is still significantly larger (Q times

larger, where Q is the number of phase bins) than that of coherent demodulation.

We address these shortcomings as follows. First, we provide an amplitude

estimator that is bootstrapped with conventional two-symbol differential detec-

tion, yielding symbol amplitude-level estimates. The estimator is computed only

once per block, with sufficient accuracy for noncoherent QAM demodulation that

incurs only 0.4 dB loss compared to a genie-based system with perfectly known

channel amplitude. The bootstrap stage also yields initial soft decisions to be

passed up to the outer decoder. As for the channel phase, we do quantize it as

in [10, 38, 26], and run parallel MAP decoders, but in contrast to prior work, we

employ a GLRT-based phase arbitration mechanism based on feedback from the

outer decoder to reduce the number of phase bins to two after the first iteration.

These simplifications are crucial to enabling efficient noncoherent communication

with large QAM alphabets, with the overall system complexity now approaching

that of an idealized turbo coded coherent system.

Shannon Theoretic Computations: The capacity of the block fading channel

was computed by Marzetta and Hochwald [27]. Roughly speaking, their result

indicates that, for moderate and low SNRs, and reasonable channel coherence

lengths, independent and identically distributed (i.i.d.) Gaussian inputs are near-

1For uncoded noncoherent systems [38], the best phase bin can be jointly estimated, along
with the data, based on a Generalized Likelihood Ratio Test (GLRT) criterion.
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Figure 1.1: 16-QAM constellations significantly improve the noncoherent mutual
information for large-SNR.

optimal. Chen et al. [10] provide information-theoretic computations showing

that this capacity can be approached by the use of standard PSK and QAM

constellations. Figure 3.3, computed using the techniques in [10, 27], shows the

mutual information versus SNR for 16-ary constellations and QPSK. Evidently

large constellations, and moreover, generalized amplitude/phase constellations are

required to approach capacity at moderate to large SNR. The Figure further

reveals that mutual information is relatively insensitive to constellation shape for

QAM constellations for a given number of signal points. For example, the mutual

information of the lattice 16-QAM constellation and 16-QAM based on aligned

PSK rings (see Figures 2.6 and 2.7) is approximately the same. We therefore need

a tool other than Shannon theory for constellation and bit map design in coded

noncoherent systems, and for that we turn to a modified form of EXIT analysis.
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Modified EXIT Analysis and its Implications: Extrinsic Information Trans-

fer (EXIT) charts [36, 37] are a popular means of obtaining insight into the behav-

ior of systems with a turbo structure, given that they incur far less computational

complexity than density evolution techniques [33]. A key tool for simplifying

EXIT computations is a Gaussian approximation [37] for the information trans-

ferred back and forth between the decoder blocks within a turbo-like structure.

One possible intuitive justification is the addition of many contributions in the

Log Likelihood Ratio (LLR) domain for a code with long block length. We have

modified this methodology to understand the behavior of noncoherent block de-

modulation, with iterative information exchange with an outer binary decoder.

Since the demodulator has a relatively small block length, its output is not well

approximated as Gaussian, and is therefore modeled in detail. However, the Gaus-

sian approximation does apply to the output of the outer binary decoder, which

operates on a large block length. The resulting EXIT technique allows us to char-

acterize the performance of noncoherent block demodulation for a given signal

constellation and bit map, independent of the choice of the outer binary code.

The results are employed to provide recommendations for 8- and 16-QAM con-

stellations that are well matched to differential bit maps in phase and amplitude.

In particular, for such a bit map, aligned concentric PSK rings have an EXIT

curve that completely dominates that of offset concentric PSK rings, regardless of

the outer binary code. This is confirmed by simulation results of a coded system,

for which aligned concentric rings give the best performance.

Overall Design Summary: In our serially concatenated structure, we use unit

rate differential amplitude/phase modulation as the inner modulation code, so

that the interleaved bits from the outer binary encoder govern the amplitude and

phase transitions between successive transmitted symbols. This inner code has

a convolutional structure, so we expect to obtain a turbo effect when it is con-

catenated with an outer convolutional code. Indeed, the modified EXIT analysis
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indicates that, for this choice of inner code, a convolutional outer code is close to

optimal, based on a folk theorem [1] that the area under an EXIT chart equals

the outer code rate. An alternative configuration which also yields good perfor-

mance (see [10] for performance results with PSK constellations) is to concatenate

a turbo-like binary outer code with block differential modulation. In the latter,

information is encoded in the amplitude/phase transition of each symbol in the

block relative to the amplitude/phase of a single reference symbol. As discussed in

Section 2.1.3, however, the complexity of approximate noncoherent demodulation

is higher for block differential modulation than for standard differential modula-

tion, hence we focus for the most part on a system in which a convolutional outer

binary code is concatenated with standard differential modulation. The signal

constellations that we recommend are concentric aligned PSK rings with a dif-

ferential bit map which is a straightforward extension of DPSK: a subset of bits

index the phase transitions, while the other subset indexes amplitude transitions.

Such constellations provide significant and realizable gains over DPSK for SNRs

greater than 6.5 dB, and for constellation sizes of 16 or larger.

Contrast with prior design recommendations: Our recommendation of

aligned PSK rings differs from the standard recommendation for coherent sys-

tems without differential modulation, for which offset PSK rings (as well as con-

ventional rectangular QAM) perform better than aligned PSK rings. This also

implies that our recommendation differs from prior recommendations for uncoded

noncoherent communication [38], which can be paraphrased as follows: as the

channel coherence length gets large, the best constellation choice (as determined

using a noncoherent signal space metric based on minimum distance style argu-

ments) for noncoherent systems is the same as that for coherent systems. The

noncoherent signal space metric in [38] also leads to a recommendation for block-

wise energy shaping for QAM alphabets, to ensure that the energy per block does

not become too low due to a series of low amplitude symbols. However, we find
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that such shaping is unnecessary for coded systems, for which it actually leads to

performance loss. Overall, we conclude that the recommendations in [38], which

are based on minimum distance style concepts relevant for systems operating at

very low raw bit error rate (BER), are not applicable for heavily coded systems

such as ours designed to operate at relatively high raw BER (1-10%).

1.2 Noncoherent eigenbeamforming

We investigate wideband space-time communication on the uplink of an out-

door cellular system, in which the base station is equipped with N antennas and

the mobile has a single antenna. We assume noncoherent reception at the base

station, which potentially incurs significantly less overhead than pilot-based es-

timation of the space-time channel from each mobile to the base station. As is

common in outdoor cellular systems, we assume little or no scattering around the

base station, so that, from the viewpoint of the base station antenna array, the

incoming signal from a given mobile has a narrow Power Angle Profile (PAP).

Thus, the spatial channel covariance matrix is typically highly colored, having

one or two dominant eigenmodes. The space-time channel for each subcarrier

can be modeled as identically distributed complex Gaussian random vectors that

decorrelate across frequency [5].

Emerging wideband systems predominantly adopt OFDM techniques for deal-

ing with channel dispersion that may or may not include a line of sight component,

as well as logical channelization for multiple access scheduling. For such systems,

with large delay spreads and subscribers moving at vehicular speeds, the channel

quickly decorrelates in time and frequency. Thus, the amount of pilot overhead

that is necessary to maintain accurate channel estimates can be as much as twenty

percent. On the other hand, such rich channels implicitly provide feedback regard-

ing the spatial modes of the received signal, that does not require any transmitted
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pilots. This motivates the consideration of a generalized notion of channel coher-

ence, the coherence length, T , that is given by the product of the coherence time

and coherence bandwidth, which for the outdoor channels considered here is on

the order of a dozen symbols. We thus employ a block fading channel model in

time and frequency to characterize the information theoretic limits of such chan-

nels, and block noncoherent demodulation and decoding techniques to provide

near capacity performance.

The main contribution of this work is a beamforming receiver that learns the

dominant spatial modes to a given user based on the statistics of the received sig-

nal, with no pilot overhead (when there is no interference). This receiver offers the

major advantage of complexity reduction, especially for outdoor channels where

the number of dominant modes is typically one or two [6], and beamforming gain,

that is typically expected of coherent reception with channel state information at

the transmitter. For the case of an interference component in the received signal,

pilots are employed to differentiate between the desired and interference signals’

second order statistics. Note, however, that the pilot overhead required for this

purpose is significantly less than that required to estimate the channel realization

(first order statistics), as required for coherent reception.

The proposed noncoherent base station receiver architecture is outlined by the

following [17]:

(a) Estimate the spatial channel covariance matrix from the covariance matrix of

the received signal, averaged across subcarriers. This exploits the observation [5]

that the space-time channel for different subcarriers can be modeled as identically

distributed random vectors that decorrelate across frequency.

(b) Project the received signal in each subcarrier along the L dominant eigenmodes

of the estimated spatial covariance matrix (L is typically much smaller than the

number of receive elements N for a typical outdoor channel). This eigenbeam-

forming operation creates L parallel, independently fading, channels for the same
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transmitted data.

(c) For each of the L eigenmodes, use noncoherent coded modulation strategies

with turbo-like joint data and channel estimation, as in prior work on single

antenna channels [31, 10, 19, 20]. In this paper, we propose a suboptimal but

effective technique for combining the outputs of the L noncoherent demodulators.

Thus, by appropriately exploiting the covariance estimate available in a wide-

band system, the preceding noncoherent receiver architecture provides many of the

benefits of explicit space-time channel estimation without incurring its overhead.

For example, beamforming gains in received SNR (relative to a single antenna sys-

tem) are realized, while incurring reasonable complexity by using a small number

of dominant eigenmodes for demodulation and decoding.

For numerical evaluation of the proposed architecture, we approximate the fad-

ing gains for each eigenmode by an independent block fading channel [10, 20]. In

an OFDM system, such an approximation might be applied to blocks of contigu-

ous time-frequency bins in which the channel may be approximated as constant.

We focus attention on operation at relatively low SNR, using Quadrature Phase

Shift Keying (QPSK) constellations. Our main results are as follows:

• We compute the capacity with QPSK signaling of L parallel block fading chan-

nels of possibly unequal strengths. This is done in a manner analogous to prior

work on symmetric block fading models. Capacity plots showing the diversity

gain as a function of the number of dominant eigenmodes are provided.

• We further provide numerical results for iterative joint data and channel esti-

mation for a constructive coded modulation scheme consisting of a convolutional

code, serially concatenated with differential QPSK. For multiple dominant eigen-

modes, optimal noncoherent processing is excessively complex, so that our numer-

ical results compare the performance of a suboptimal diversity combining scheme

with the information-theoretic benchmarks we have obtained.
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Finally, a Minimum Mean Squared Error (MMSE) framework for interfer-

ence suppression is developed and evaluated. The simulation results confirm that

relatively few pilots (less than 3%) are required to train MMSE correlators to

the dominant modes of the desired user’s spatial channel, while performance ap-

proaches that of ideal MMSE interference suppression (which assumes infinite

training). Thus, when the dominant modes of the signal and interference chan-

nels are roughly orthogonal, arising for example when the mean angle of arrival

for the two channels is separated by 45◦, performance approaches that with no

interference, less approximately 0.15 dB of pilot overhead required to train the

MMSE correlators.

1.3 Noncoherent OFDM

Finally, we perform a side-by-side comparison of noncoherent and coherent

transceivers. Thus, it is worth commenting on the relation between the block fad-

ing model employed in our work, and continuously varying fading channels such

as the OFDM channel considered in the comparison. For stationary fading, Lapi-

doth et al. [23, 24] show, in a rather general setting, that as SNR tends to infinity,

capacity grows only as log log SNR, rather than the well-known log SNR growth

for a classical AWGN channel. Thus, this extremely power-inefficient operating

regime, which results when both the SNR and the Doppler are extremely high,

is to be avoided if at all possible. Also, achieving this double logarithmic growth

requires the use of constellations whose shape is very different [9] from the Gaus-

sian, PSK or QAM inputs that work well over the AWGN channel. The double

logarithmic growth occurs, roughly speaking, because the effect of the errors in

(implicit or explicit) estimation of the channel dominates the effect of noise at

high SNR. Fortunately, for outdoor cellular applications, the typical combination

of SNRs and fading rates does not fall in this regime [13]; that is, the effect of
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errors in implicit or explicit channel estimation are small compared to the effect of

the channel noise. The block fading model corresponds to approximating the time-

varying channel gain over a block of symbols by a constant scalar; intuitively, we

expect the error in this approximation to be small in desirable operating regimes

in which the channel gain is varying slowly enough that it can be accurately

estimated. Note that the block fading channel has been shown to exhibit log

SNR growth at high SNR [25], which implies that conventional power-bandwidth

tradeoffs are applicable in this desired operating regime.

We then directly compare the performance of noncoherent and coherent wire-

less transceiver designs. For this purpose, a packetized OFDM system is employed,

such as that of the IEEE 802.16 standard for WMANs. Noncoherent systems typ-

ically incur significantly more computational complexity than coherent systems,

resulting from Bayesian processing techniques employed for approaching capacity.

Thus to facilitate a fair comparison, a detailed analysis of the computational re-

quirements of each approach is performed [21] and system parameters are chosen

to yield similar complexity counts. Two main findings from the comparison result:

(1) The raw frame error rate (FER) performance of the coherent system is 0.5-1 dB

better than that of the noncoherent approach. Part of this gap clearly stems from

limiting the complexity of noncoherent receiver processing. Moreover, the block

fading model does not leverage inter-block channel continuity as well as pilot-

based channel estimation techniques, and we conjecture that more sophisticated

modelling of channel frequency variation will eliminate this gap. Nonetheless, the

block fading model works very well in capturing local channel memory within a

block and should serve as a good starting point for further transceiver designs.

(2) As expected, the overall throughput of noncoherent systems is superior to co-

herent systems. This is directly attributable to the twenty percent pilot over head

employed by the coherent system. Since throughput is defined with respect to the

FER, this advantage will only broaden as techniques for solving (1) are realized.
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Chapter 2

Coded noncoherent
amplitude/phase modulation

We consider bandwidth-efficient communication using amplitude/phase mod-

ulation over a frequency nonselective channel whose time variations model the

fading exhibited in outdoor wireless mobile communication. The system is nonco-

herent, not requiring pilots for channel estimation and tracking, and not assuming

prior channel knowledge on the part of the receiver. Serial concatenation of a bi-

nary outer code with an inner differential modulator provides a turbo structure

that, along with the channel memory, is exploited for joint iterative channel and

data estimation at the receiver. While prior work on noncoherent systems mainly

focuses on PSK alphabets, we consider here a moderate to high SNR regime in

which amplitude/phase constellations are significantly more efficient. We first re-

duce the computational complexity of block noncoherent demodulation to a level

comparable with that of standard coherent demodulation. We observe that chan-

nel capacity for a block fading channel is relatively insensitive to constellation

shape, so that Shannon theory is not adequate for optimizing the choice of con-

stellation and bit map. We provide a tool for such choices, independent of the

choice of outer code, by modifying EXIT analysis for noncoherent demodulation.

The results are consistent with simulations, and the recommended constellation

shapes differ significantly from standard coherent designs, and from prior rec-
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Figure 2.1: Baseband transmitter and channel model.

ommendations for uncoded noncoherent communication. The EXIT analysis also

indicates that a convolutional outer code is nearly optimal for an inner differential

modulator. The overall system is within about 1.8 dB of Shannon capacity for the

block fading channel at moderate to large SNR, demonstrating that bandwidth-

efficient noncoherent communication systems with reasonable complexity are now

within reach.

2.1 Noncoherent transceiver processing

In this section, we describe the channel model, concatenated code and modu-

lation structure, and turbo noncoherent processing of amplitude/phase constella-

tions with complexity reducing techniques.

2.1.1 Channel model

We consider systems in which coding is performed on a scale that is much

larger than the channel coherence length, thus leveraging the inherent diversity

of a fading channel. Figure 2.1 depicts the complex baseband transmitter and

channel model. The binary information sequence u is mapped to codeword c of

the binary channel code C and pseudo-randomly permuted to the code-symbol

sequence c̃ = {c[n]}. With the cardinality of the modulation alphabet, A, equal

to M , we adopt the convention that c[n] denotes m = log2(M) permuted code-

bits which modulate the nth channel symbol, x[n]. Codewords in the modulation

code, x ∈ M, belong in the T -fold product of the symbol alphabet, AT .
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Block fading model: The channel is assumed to be constant over disjoint blocks of

T symbol intervals, where T is the coherence length. Channel gains for different

blocks are modeled as i.i.d. Letting x denote a block of T transmitted symbols,

the block of received symbols is given by

y = hx + w, (2.1)

where the channel gain h = aejθ is a zero-mean, unit-variance proper complex

Gaussian random variable, denoted, h ∼ CN (0, 1). This is a classical Rayleigh

fading model, with channel amplitude, a, Rayleigh, channel phase, θ, uniform

over [0, 2π], and a and θ independent. The additive noise vector, w, is Gaussian,

CN (0, 2σ2IT ), where IT stands for the T ×T identity matrix. The Rayleigh fading

model is equivalently defined by the conditional Probability Density Function

(PDF) of the received symbols given the transmitted symbols [27]:

P (y|x) =
exp

{

− tr
(

[2σ2IT + xxH]−1yyH
)}

πT det
(

2σ2IT + xxH
) . (2.2)

Since the channel is i.i.d. over blocks, ergodic analysis of a single block of symbols

suffices to design systems with near capacity performance. Thus (2.2) completely

specifies the information theoretic behavior of the block fading channel.

Block fading approximation to continuously varying channel: Since there is no

absolute amplitude and phase reference within a block, the signals over a block of

length T live in a (T − 1)-dimensional manifold [40], which costs a rate penalty of

1/T . This can be intuitively interpreted as resulting from the use of one symbol in

the block as a amplitude/phase reference, or pilot (whether or not this is explicitly

done). However, in practice, this rate loss can be avoided when applying the block

fading model to a continuously varying channel, by overlapping successive blocks

by one symbol. Thus, by including the last symbol of the previous block as the

first symbol of the current block, we have T − 1 new channel uses required for

signaling in a (T − 1)-dimensional manifold. Of course, when applying the block
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fading approximation to a continuously varying model, there are two sources of

performance loss: first, the approximation error in modeling the channel gain as

constant over a block, and second, the loss due to not exploiting the continuity of

the channel in adjacent blocks explicitly for channel estimation. However, these

losses are expected to be small if the block length T is chosen appropriately, and

the operating SNR is not extremely high.

Standard differential modulation (generalized to amplitude/phase constella-

tions) enables demodulation of the transmitted symbol sequence, despite lack of

absolute amplitude and phase reference. In an uncoded system, block-wise MAP

demodulation of differentially modulated channel data minimizes the symbol error

rate, and is thus the optimal bit-level demodulation strategy. In the coded system

considered here, block noncoherent demodulation is used to compute the extrinsic

A Posteriori Probability (APP) of the code-symbols, to be passed back to the

outer channel decoder. We also consider classical two-symbol differential demod-

ulation in a bootstrap phase for amplitude estimation. The transmitted symbol

sequence is generated from the code-symbol sequence, {c[n]}, and a reference chan-

nel symbol, x[0], with the differential bit-to-symbol mapping, ν : {0, 1}m×A → A,

according to

x[n] = ν(c[n], x[n − 1]). (2.3)

The APP of the code-symbol c[n] may thus be expressed as

P (c[n] = c|y) =
∑

x:x[n]=ν(c,x[n−1])

P (x|y). (2.4)

Letting P (x) denote the prior distribution on the block of transmitted symbols,

the probability that x was transmitted given the observed symbols, y, is given by

Bayes’ Law,

P (x|y) =
P (y|x)P (x)

P (y)
, (2.5)

in terms of the conditional PDF of the received symbols (2.2). In practice, direct

evaluation of P (y|x) is computationally infeasible, with complexity O(MT ), that

18



symbol
Bit-to-

decode
Channel

perm−1

Block
demod.

ΠM

perm

Πinit

CΛC

ΛM

ΠC

Symbol-
to-bit

ML demod.
2 Symbol

Bootstrap
phase

{y}

{â}
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Figure 2.2: Iterative noncoherent demodulation and decoding.

scales exponentially in the coherence length. Following [10, 31], we employ an

approximate noncoherent APP demodulator with channel amplitude estimation,

phase quantization, and parallel coherent BCJR processing. The complexity is

polynomial in M .

2.1.2 Turbo noncoherent demodulation and decoding

The data, u, and channel, {h}, are estimated jointly with “turbo” iterative

demodulation and decoding of the received symbol sequence, {y}, as illustrated

in Figure 2.2. Block demodulation consists of running parallel coherent demodu-

lators, one for each quantized phase bin of the unknown channel phase, over the

range of relevant channel rotation, with estimated channel amplitudes, one for

each fading block. Note that the composition of unit-rate differential modulation

with rotationally invariant constellations comprises a (relatively simple) rotation-

ally invariant modulation code, for which the number quantizer bins required is

usually much less than for non-rotationally invariant codes, which require quan-
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tization over the full range of [0, 2π]; see [10]. Thus, the demodulator computes

extrinsic APPs, ΛM, of the transmitted symbol sequence, based on the observed

symbol sequence, {y}, and prior probabilities on the transmitted symbols, ΠM.

Soft-Input, Soft-Output (SISO) noncoherent demodulation is described in detail

the next section for the general case of amplitude/phase modulation constellations.

As in the turbo-decoding algorithm for concatenated binary codes, the channel

decoder operates at the code-bit level, producing the extrinsic probabilities ΛC

with de-interleaved priors, ΠC, that are computed from demodulator symbol-level

posteriors. Channel decoder posteriors are then re-interleaved and converted back

to symbol-level probabilities, for use as priors in the next round of noncoherent

demodulation. Random code-bit permutation justifies the independence of prior

probabilities assumption for so-called belief propagation decoding of concatenated

codes. Demodulation and decoding are thus performed until an accurate estimate

of the transmitted data is attained, or complexity constraints are met.

Classical two-symbol Maximum Likelihood (ML) detection of differentially

modulated symbols, not requiring any prior channel knowledge, serves to boot-

strap the receiver, providing (i) the initial priors to the outer channel decoder and

(ii) the probabilities of symbol amplitude levels to the channel amplitude estima-

tor. This bootstrap phase is noted in Figure 2.2 with a dashed box. In the following

proposed reduced-complexity receiver, the channel decoder is initialized with the

bootstrap phase and computes the demodulator’s first set of symbol priors. Next,

parallel block demodulators, for all phase branches, compute code symbol APPs

conditional on quantized phase bins. A GLRT criterion, described in Section

2.1.4, is then used to prune all but the two phase branches producing the highest

quality of soft information per block. Thus, full phase quantization is employed

only during the first iteration, and all subsequent iterations demodulate only the

selected subsets of two phase branches. The resulting reduced-complexity receiver
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requires only twice as many demodulation computations (after the first iteration)

as a genie-aided demodulator that has access to the channel realizations.

2.1.3 Phase quantization

The unknown channel phase is implicitly estimated with Bayesian combining

of coherent APPs calculated with quantized phase bins. This approach relies on

an energy based estimate of the channel amplitude (described in Appendix B), and

an approximation of the code symbol posteriors, P (c[n]|y) ≈ P (c[n]|y, a), that is

conditional on the channel amplitude. We shall see that bit-to-symbol mappings

satisfying the condition, ν(c[n], ejφx[n − 1]) = ejφν(c[n], x[n − 1]), referred to as

φ-rotational invariance, are desirable for the method of phase quantization. Unit-

rate differential modulation with rotationally invariant constellations satisfy the

rotational invariance condition and are well-suited to noncoherent processing and

amplitude estimation. Thus, let φ ∈ (0, 2π] denote the smallest angle for which

rotation of A returns A, i.e. A = ejkφA,∀k ∈ Z. Further define L , 2π/φ.

The conditional APPs of the transmitted symbols, given the channel amplitude,

are computed via Q-fold Riemann approximation (2.7) of the total probability

expansion

P (c[n]|y, a) =
L

2π

∫ φ

0

dθ P (c[n]|y, a exp(jθ)) (2.6)

≈
1

Q

Q−1
∑

q=0

P (c[n]|y, a exp(jφq/Q)). (2.7)

Note the limits of integration (2.6) reflect φ-rotational invariance of the modula-

tion code. Thus for each quantization phase bin, indexed with q, APP computa-

tion is efficiently performed with the standard coherent BCJR algorithm. Maps

that do not have the rotational invariance property (e.g. block DPSK [10]) require

quantization of the full [0, 2π] interval, and thus L times as many demodulation

computations.
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Viewing ν as a unit rate/memory recursive convolutional code, an equivalent

trellis representation is depicted Figure 2.3. To each trellis edge, e, corresponds

the initial and final states, input code bits, c(e), and output channel symbol, x(e).

The coherent posteriori probability, λn(c|h) , log P (c[n] = c|y, h), of the code

symbol, c[n], is computed with the logarithmic BCJR algorithm:

λn(c|h) = max
e:c(e)=c

⋆
{

αn−1(s
I(e)) + γn(e|h) + βn(sF (e))

}

, (2.8)

where the forwards/backwards recursions for αn and βn are defined in Appendix

A, [2, 7]. The max-star function, max⋆
Z∈F{Z} = log(

∑

Z∈F
eZ), corresponds to

logarithmic summation. The branch metric γn(e) of edge e is given by

γn(e|h) = Πn(c(e)) + σ−2 ℜ〈y[n], hx(e)〉, (2.9)

where prior probabilities of the code-symbols, ΠM = {Πn}, Πn(c) = log P (c[n] =

c), are initially uniform and then set by the outer decoder through turbo process-

ing.

Thus, noncoherent APP demodulation works with the coherent BCJR algo-

rithm as a building block, the amplitude estimate of Appendix B, and Q-level

quantization of the unknown channel phase θ in [0, φ]. For each quantization

level, q ∈ Q = {0, 1, . . . , Q − 1}, (2.8)−(2.9) are evaluated with respect to

h = â exp(jφq/Q). The resulting (coherent) symbol likelihoods are then aver-
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aged, (2.7), to yield extrinsic (noncoherent) APPs of the code symbols,

Λn(c) , log {P (c[n] = c|y, a = â)} − Πn(c) (2.10)

≈ max
q∈Q

⋆ { λn(c|h = â exp(jφq/Q) } − Πn(c) (2.11)

This method of SISO noncoherent APP demodulation enables turbo processing

with the outer channel decoder in a serially concatenated system.

2.1.4 Phase selection

The method of phase quantization exhibits near capacity performance on the

noncoherent block fading channel, yet each phase branch requires its own BCJR

computation per iteration. Such a receiver requires Q times as many demodulation

computations as coherent reception of the noncoherent code with the same number

of iterations. Our study has shown that a genie-based system, which demodulates

only the quantization branch with phase closest to the true channel phase, provides

excellent performance. This motivates the development of a criterion for ranking

and pruning parallel phase branches as iterative demodulation and decoding are

performed.

We propose a Generalized Likelihood Ratio Test (GLRT) for phase branch

selection where the observation is the received signal and extrinsic information

from the decoder, and the parameters to be estimated are the channel, h, and the

transmitted data, x. Thus, the GLRT operates with the joint likelihood function,

P (Γ|x, h), of the “observation” Γ , {y, ΠM}, given x and h. GLRT based phase

estimation involves maximization of the likelihood function first over transmitted

symbol vector and then over quantized channel phase (2.12), and may be viewed

as joint maximum likelihood estimation of θ and x based on the observation Γ.

θ̂GLRT (γ) = arg max
q∈Q

max
x∈M

P (γ|x, â exp(jφq/Q)) (2.12)

The inner maximization, P (γ|x̂q, â exp(jφq/Q)), represents the conditional likeli-

hood of the Maximum Likelihood Sequence Estimate (MLSE), x̂q, of the trans-
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mitted symbols on the qth phase trellis. We propose to estimate the likelihood

of the MLSE sequence, typically computed with the Viterbi algorithm, with the

forward recursion of BCJR algorithm, with maxs∈A{αT (s)|h = â exp(jφq/Q)}.

This approximation is found to be very accurate. Thus, the MLSE statistic is

a natural choice for measuring reliability of soft decisions output by each phase

branch. The metric, when used to choose the best two phase branches after the

first receiver iteration, yields performance within 0.1 dB to that of averaging over

all phase bins. And, after the first iteration, noncoherent demodulation requires

only twice as many BCJR computations as coherent demodulation of the same

code.

2.2 EXIT functions of noncoherent codes

We study the convergence behavior of iterative noncoherent demodulation and

decoding via Extrinsic Information Transfer (EXIT) charts [36, 37]. The EXIT

chart of a noncoherent code is a graphical description of iterative noncoherent

demodulation and decoding, portraying the mutual information between decoder

messages communicated and code-symbols estimated, as evolved through turbo-

processing. Consider first the inner modulation code, M, that maps the code bits,

c̃ = {c[n]}, c[n] = [c1[n] · · · cm[n]], m = log2 M , to channel symbols, {x[n]}. The

noncoherent block demodulator computes a posteriori probabilities, ΛM = {Λn},

as described in section 2.1.3, defined here with respect to the code-bits, {cn}, as

LLRs,

Λn = log
Pr(cn = 0|ΠM, {y})

Pr(cn = 1|ΠM, {y})
− Πn, (2.13)

where ΠM = {Πn} denotes the code-bit priors, Πn = log Pr(cn=0)
Pr(cn=1)

. The EXIT

function, A, for M describes the mutual information of the code-bits and APPs,

aout , I(c; ΛM), as a function of the input mutual information of the code bits

and priors, ain , I(c; ΠM), and channel SNR according to aout = A(ain, SNR).
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Conditional probability density functions of decoder priors are often well-modeled

as i.i.d., with a single-parameter family of Gaussian densities [37],

Πn ∼ N (±2γ, 4γ), γ ∈ [0,∞), (2.14)

interpreted as the conditional likelihoods of the code-bits transmitted with BPSK

over an AWGN channel of SNR γ. In this case, ain has a simplified form, computed

with the estimate (see [37])

ain(γ) = 1 − E
[

log
(

1 − exp(Πn)
)

|cn = 0
]

. (2.15)

With M discrete, we have A : [0, 1] → [0, 1], and the parameter γ is varied

to generate ain over the support of A. The output mutual information, aout, is

computed by measuring conditional probability density functions of Λn that are

generated by the decoder fed with ΠM as in (2.14).

We next consider the EXIT function, B, of the outer channel code, C. The

APP decoder for C computes a posteriori probabilities of the code-bits, ΛC, with

the priors ΠC = perm−1(ΛM) (permuted extrinsics from APP demodulation). Let-

ting bin , I(c, ΠC) and bout , I(c, ΛC) denote input and output decoder mutual

information, respectively, the decoder EXIT function is given by bout = B(bin).

In many cases, log-APPs produced by the outer channel decoder, e.g. the con-

volutional decoder, are well modeled as Gaussian. Then, aout is accurate when

computed empirically from demodulator APPs, ΛM, resulting from the priors

(2.14). However, we find that the extrinsic information, ΛM, produced by the

demodulator is non-Gaussian, resulting from the relatively short block length, so

that estimates of B based on Gaussian priors at the decoder do not accurately

model density evolution for noncoherent processing.

Since decoder priors are de-interleaved code-symbol posteriors from the de-

modulator, ΠC = perm−1(ΛM), we propose the following approach for measuring

decoder output mutual information, bout. First, Gaussian code-bit priors are non-

coherently demodulated; demodulator input mutual information, ain(γ), is com-
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puted with (2.15) and output mutual information, aout, is estimated empirically.

The resulting extrinsic code-bit APPs are then de-interleaved and sent to the de-

coder as priors, ΠC, now accurately modeling the priors observed in noncoherent

processing. Decoder output mutual information (2.16) is computed empirically

from the resulting decoder extrinsics ΛC.

bout = BA(ain(γ)) (2.16)

Figure 2.4 is an EXIT chart of the mutual information (2.16) of a rate-3/8 con-

volutional code with aligned PSK rings 16-QAM at an SNR of 5.4 dB, near the

SNR threshold for this code combination. The inverse decoder transfer function,

B−1, is plotted since bin = aout. A sample path, corresponding to one channel re-

alization and the resulting mutual information sequences, {aout
k }, {bout

k }, that arise

from iterative noncoherent demodulation and decoding of a transmitted codeword,

is depicted.

We note some properties of EXIT charts and their implications:
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Property 1. A given code combination converges when limk→∞ bout
k = 1, if and

only if the information bit error rate (BER) approaches zero. An equivalent

condition for code convergence is that B−1 < A. In practice, we do not require

the final decoder output mutual information to exactly equal one. In general,

we have B−1(1) = 1, and it may only be possible to arbitrarily approximate this

condition. Note that a final decoder output mutual information less than one will

give rise to an error floor.

Property 2. Channel SNR induces an ordering on demodulator EXIT functions

such that if A and A′ are measured at SNRs τ and τ ′, respectively, with τ < τ ′,

then A ≤ A′. The convergence threshold of a code is the SNR threshold, τ , for

which the code converges if and only if SNR> τ .

Property 3 (Conjecture). The area property of trellis decoders:
∫ 1

0
B−1 = rC,

where rC denotes the code rate. This property, proved only for erasures channels

[1], has consistently been observed in the literature, and in our own study, for a

wide variety of channels. We show later that this property, if true, would imply

that convolutional outer codes are near-optimal when the inner code is unit rate

differential modulation.

As an empirical rule of thumb, the operating SNR does not affect the shape of

the demodulator transfer function, A, but rather its vertical position. Since the

channel decoder does not directly observe the channel output, its transfer function

is unaffected by SNR. Figure 2.5 illustrates Property 2 for 16-ary constellations.

EXIT chart analysis of noncoherent codes provides a quantitative framework for

comparing signal alphabets or complexity reducing techniques without having to

simulate BER performance. For example, Figure 2.5 shows aligned PSK rings

16-QAM are clearly superior to lattice 16-QAM over a wide range of SNR.
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2.3 Constellation design for noncoherent com-

munication

We consider the design of amplitude/phase constellations and bit-to-symbol

maps well-suited for turbo noncoherent communication over the block Rayleigh

fading channel. The main tools for design and optimization of the modulation

codes are noncoherent capacity and modified EXIT chart analysis, where we use

the term “noncoherent capacity” for the mutual information attained by various

input distributions for noncoherent communication over the block fading chan-

nel. Marzetta and Hochwald [27] have shown that the unconstrained noncoher-

ent capacity is achieved by T -dimensional isotropically distributed vectors, with

E[xHx] = T . This is equivalent to sending i.i.d. Gaussian symbols, with the

energy over a block of T symbols normalized to a constant. Intuitively, there-

fore, suitable modifications of designs similar to those employed for the AWGN

channel, for which i.i.d. Gaussian input is optimal, are expected to work for the
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noncoherent Rayleigh block fading channel. In particular, QAM constellations

approximate Gaussian input distributions more closely than PSK, especially for a

large number of points. We first consider noncoherent communication with lattice

QAM constellations with differential Gray-like bit maps, as in Figure 2.6. The bit

maps in this case index transitions within and between QPSK sub-constellations

within the QAM constellations. However, we find that, in simulations of a coded

noncoherent system, such lattice QAM constellations, at least in conjunction with

the bit maps we have considered, perform poorly, not delivering on the promised

gains over PSK. We therefore consider an alternative class of QAM constellations,

in the form of aligned PSK rings. These constellations, along with Gray-like bit

maps for encoding data in the amplitude and phase transitions, are depicted in

Figure 2.7. The ratio of the ring radii is chosen to optimize noncoherent capac-

ity. As discussed in detail below, these constellations are found to perform much

better than lattice QAM. We observe, Figure 2.8, that the noncoherent capacity

is virtually identical for aligned PSK rings and lattice QAM, and turn to EXIT

analysis for providing more precise guidance on constellation and bit map choice.
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Figure 2.9 compares the simulated information BER of aligned PSK rings

with lattice 16-QAM and (lattice-like) offset rings 8-QAM. Standard convolutional

codes are employed for an overall data rate of 1.35 bits/channel symbol. The

figure demonstrates the gain in using aligned PSK rings over rectangular lattices:

1 dB for 16-ary constellations, and a less drastic 0.2 dB for 8-ary constellations.

It also displays the advantage of constellation expansion with heavier coding:

for the same information rate, 16-QAM aligned PSK rings outperform 8-QAM

aligned PSK rings by 0.5 dB. Of course, this advantage is not realized for poor

constellation and bit map choices: the lattice 16-QAM performs significantly worse

than the 8-ary constellations at the same information rate.

The advantage of aligned PSK rings is clearly brought out by EXIT analysis.

Figure 2.5 shows that, at the same SNR, that the EXIT chart for aligned PSK

rings 16-QAM lies strictly above that of lattice 16-QAM with noncoherent block

demodulation and Gray-like differential bit maps. This implies that the conver-

gence threshold of any outer code will be strictly larger for lattice 16-QAM. A

possible intuitive explanation for the superior performance of aligned rings is as
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Figure 2.8: Noncoherent capacity of 8- and 16-QAM constellations.

follows. For blocks suffering from poor SNR due to fading, the aligned PSK rings

effectively collapse to a more robust PSK constellation. Thus, while the bits en-

coded in amplitude transitions are difficult to recover, the bits encoded in phase

transitions are relatively better preserved. For lattice constellations, on the other

hand, all bits are affected adversely in a faded block. As SNR and the coherence

interval increases, AWGN-like QAM constellations are preferable, for their bet-

ter nearest neighbor distance characteristics. However, this is not the operating

regime for the turbo-like system considered here, where we expect a relatively high

uncoded BER. Thus, artful coupling of the constellation shape and bit-to-symbol

map is key to the design of bandwidth efficient symbol alphabets for noncoherent

communication.

Thus far, we have exclusively considered unit-rate rotationally-invariant differ-

ential modulation. These simple modulation codes are well-suited to block nonco-

herent processing for their low-complexity demodulation and bootstrap function-
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ality. We now wish to to quantify the performance penalty associated with this

restriction (e.g., as opposed to using more sophisticated trellis-based rotationally

invariant modulation codes) for a serially concatenated system with an outer bi-

nary code. To this end, we invoke the conjectured area property, which states that

the rate of the outer decoder equals the area under its exit curve, B−1. The best

possible (typically unrealizable) choice of outer code is when the decoder curve

perfectly matches the inner demodulator curve at convergence. Thus, the highest

possible rate of the outer code for convergence at a given SNR is the area under

the demodulator curve at that SNR. This provides the following upper bound on

the achievable rate (with serial concatenation) as a function of SNR for a given

inner modulation code, as a function of its exit curve A:

IM(SNR) = log2(M)
T − 1

T

∫

A(u, SNR)du. (2.17)
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Figure 2.10: The modulation code bound for unit rate differential modulation
with 16-QAM aligned PSK rings is about 1 dB away from the noncoherent capacity
for that alphabet.

We term this bound the modulation code bound. Figure 11 compares the nonco-

herent capacity for aligned PSK rings 16-QAM with the preceding upper bound

on the achievable rate, using the same constellation, when restricted to using serial

concatenation with a unit rate differentially modulated inner code with Gray-like

bit maps.

Finally, we comment on block differential modulation, a unit-rate modulation

scheme that is an alternative to standard differential modulation. In block differ-

ential modulation, information is encoded in transitions in amplitude and phase

relative to a fixed symbol: in practice, the reference symbol might be the first

symbol of the current block, which would be the same as the last symbol of the

previous block, if successive blocks overlap by a symbol. For turbo noncoher-

ent communication with QPSK alphabets [10], block differential modulation was
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found to yield the same convergence threshold when paired with a turbo-like code

as standard differential modulation paired with a convolutional code. However, as

mentioned earlier, demodulation for block differential modulation is significantly

more complex, requiring phase quantization over [0, 2π], compared to the much

smaller interval required for standard differential modulation. Furthermore, the

bootstrap mechanism that we employ for amplitude estimation using standard dif-

ferential modulation is found not to work well for block differential modulation.

A possible explanation is that there is less averaging in the amplitude estimator

for two-symbol demodulation for block differential modulation, since the reference

symbol must always be involved.

2.4 Channel coding for noncoherent modulation

Given the constellation and bit-mapping, EXIT chart analysis also guides the

appropriate choice of outer channel code. Figure 2.11 compares the EXIT func-

tions of aligned PSK rings 16-QAM at (a) 6.5 dB when paired with a standard

rate-1/2 convolutional code and (b) 7.9 dB when paired with an irregular LDPC

code optimized for the AWGN channel [32]. The number of LDPC decoder itera-

tions is 30.

In order to estimate the gap to the modulation code bound, IM, a lower bound

on the SNR convergence threshold of a given channel code is obtained by appealing

to the waterfall behavior of concatenated codes and considering the first iteration

of demodulation and decoding as a function of channel SNR. By Property 1, a

necessary condition for code convergence is that the first iteration produces a net

increase in demodulator output mutual information, i.e.

aout
0 < aout

1 . (2.18)

Note that if the demodulator fails to yield a net increase in output mutual infor-

mation in any one iteration, then the turbo demodulation and decoding algorithm
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has reached a fixed point solution, and no further increase (or decrease) in mutual

information is possible. The Channel Threshold Bound (CTB) for code conver-

gence is the smallest SNR for which (2.18) holds. In general, this bound will

be tight, given the waterfall characteristic of turbo-processing. In the figure, the

CTB corresponds to the SNR at which the dotted curves, A(0, SNR) (upper) and

B(A(0, SNR)) (lower, inverse plotted), diverge. For standard rate-1/2 convolu-

tional coding the bound is 5.7 dB, which is 2 dB better than the corresponding

bound for the LDPC code. Note, however, that the channel threshold bound is

much looser for the convolutional code since the EXIT charts of the demodulator

and decoder are so well-matched.

We find that the convolutional code EXIT function is well-matched to unit-rate

aligned-rings 16-QAM, yielding at least 1 dB performance improvement from the

irregular LDPC code. Optimization of the LDPC degree sequence for the specific

context of noncoherent demodulation in block fading can potentially close this gap,

but such optimization is beyond the scope of this paper. We claim, however, that

convolutional coding is near-optimal for noncoherent amplitude/phase modula-

tion. Taking the CTB as the threshold for the code combination in Figure 2.11(a)

and comparing to the modulation code bound of Figure 2.10, I−1
M (1.35) = 4.8 dB

(Eb/N0), idealized convolutional coding could improve the convergence threshold

by only 0.9 dB. Since achieving the modulation code bound requires infinitely

many demodulation and decoding iterations (by definition the decoder transfer

function is perfectly matched and coincident with the demodulator function), we

conjecture that only 0-0.4 dB could be gained by optimizing the convolutional

code. Moreover, the gain for optimizing the LDPC code would be the same (with

respect to the depicted convolutional code). Thus, we infer that standard convo-

lutional coding is near-optimal for a unit-rate differential modulation code.
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2.5 Results and discussion

We first consider simulated BER results of the aligned-rings 16-QAM constel-

lation with unit-rate Gray-like differential modulation and a standard rate-1/2

convolutional code. The angle of rotational invariance, φ, is π/4 for aligned PSK

rings 16-QAM constellation. The full complexity noncoherent receiver and the first

iteration of the reduced complexity receiver, employ Q = 5 quantization phase

bins, {φq/Q}Q−1
q=0 , sufficiently many to closely approximate performance with an

arbitrary number of quantization levels. The overall codeword length is 64,000

bits. Accounting for the 1/T loss in rate for differential demodulation with i.i.d.

block fading, at a modest coherence interval, T = 10, the corresponding data rate

is 1.8 bits per channel symbol. Noncoherent capacity computations, Figure 1.1,

give a 1.5 dB advantage to 16-ary amplitude/phase constellations over 16-PSK at

this rate. Indeed, the aligned PSK rings constellation realizes almost all of the of

the predicted gain, demonstrating a surprising robustness to amplitude distortion.

We note that the system is operating around 1.7 dB from capacity, which agrees

with the EXIT analysis, Sections 2.3 and 2.4, that predicts a loss of 1 dB for

unit-rate modulation, 0.9 dB for non-ideal channel coding (recall the convergence

threshold bound for the convolutional code is optimistic). Finally, there is a neg-

ligible 0.1 dB loss for GLRT selection of the best two phase branches after the

first iteration, the reduced-complexity receiver.

Table 2.5 summarizes computer simulation results, showing serial concate-

nation of a convolutional code and differential amplitude/phase modulation ap-

proaches Shannon capacity for a block fading channel model, and performs sig-

nificantly better than DPSK for moderately high SNRs and constellation sizes of

16 or larger. We have developed modified EXIT analysis tools for constellation

and bit mapping choice, and for matching outer and inner codes. An important

potential application is to the design of OFDM-based fourth generation wireless

cellular systems: the complexity of our turbo noncoherent system is comparable
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Table 2.1: Information rates attained using turbo designs based on aligned PSK
rings with gap to capacity and improvement over PSK.

Bits/channel
use

Constellation
size

Outer code
rate

Gap to
capacity (dB)

Improvement
over PSK (dB)

0.675 8 1/4 1.8 -0.2

1.35 8 1/2 1.8 0.4

1.35 16 3/8 1.8 1

1.8 16 1/2 1.7 1.5

to that of coherent systems with turbo-like coded modulation, so that noncoherent

architectures are now implementable. However, we are still about 1.7 dB from ca-

pacity for an information rate of 1.8 bits/symbol, using a 16-ary amplitude/phase

constellation. Since the convolutional outer code appears to be near-optimal if

unit rate differential modulation is used as the inner code, one possible approach

to close the gap may be to employ a lower rate inner code, alleviating the 1 dB loss

for unit-rate modulation predicted by the modulation code bound (2.17). Other

approaches include suitably optimizing the degree distribution of an LDPC outer

code, with different possible choices of inner modulation code. It is also important

to quantify how much of the gap to capacity can be closed simply by increasing

the code length, or by increasing the constellation size and decreasing the outer

code rate, while still employing a unit rate inner differential modulator.

In practice, the fading gain for a mobile channel varies continuously with

time. However, our block-wise constant approximation for the channel gain works

well for the settings found in current and projected commercial digital cellular

systems, in which, for typical Doppler shifts, the operating SNRs do not reach

the extremely high levels [13] required for falling into the undesirable log log SNR

regime of capacity growth predicted by Lapidoth and Moser [23]. Indeed, we

conjecture that the capacity of the block fading model should be close to that

of a continuously varying channel that it approximates in the desirable regime
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of log SNR growth. It is of interest to give precise shape to this intuition in the

context of a specific continuously varying fading channel model.

While we have considered relatively small normalized Doppler frequencies

(where the normalization is relative to the symbol rate) typical of outdoor cellu-

lar wireless systems, there are other situations in which the normalized Doppler

may be large enough that the block fading approximation breaks down even at

low SNR. It is of interest to explore alternative structures for turbo noncoherent

communication in such settings, with preliminary work in this direction reported

in [11, 28].
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Figure 2.11: Rate-1/2 coding for noncoherent 16-QAM.

39



5 5.5 6 6.5 7 7.5 8 8.5 9
10

−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
E

R

Full complexity, Q = 5
GLRT phase selection
16−PSK

16−QAM
capacity:
5.15 dB

16−PSK
capacity:
4.65 dB

Figure 2.12: Rayleigh block fading results: 16-QAM.

40



Chapter 3

Noncoherent eigenbeamforming

Much of the Multi-Input Multi-Output (MIMO) communication literature as-

sumes channel coherence, see [14] and the references therein, and classical receive

beamforming is based on explicit channel estimation [35]. We demonstrate that

beamforming gains are still realizable for multi-antenna receivers when the chan-

nel is a priori unknown to the transmitter or the receiver and no pilot-symbols

are transmitted. Moreover, the complexity remains practical even as the receiver

benefits from an SNR increase by scaling up the number of antennas. Noncoher-

ent communication is particularly well-suited to the uplink of a cellular system

in which the base-station must estimate the time-varying channel to each mo-

bile. Pilot-symbol based channel estimation is more efficient on the downlink,

since the mobiles share a common pilot channel. Accurate estimates of the spa-

tial covariance matrix, available through averaging in wideband systems, allow

eigenbeamforming [16] at the receiver along the dominant channel modes. For

a typical outdoor channel, where the number of dominant modes is small, this

allows the receiver to increase its SNR by scaling up the number of antennas,

while limiting the demodulation and decoding complexity (which scales with the

number of channel modes used by the receiver).

This research investigates receive beamforming at the base station of an out-

door wireless cellular system, when no prior channel realization information is

assumed at the transmitter or receiver [17]. Rather, empirical estimates of the
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received spatial covariance matrix, generated from uplink measurements, in con-

junction with well-established techniques of coded noncoherent communication,

are employed to approach capacity. We show that typical outdoor cellular channels

are characterized by a relatively few number of dominant spatial modes. Thus,

by projecting the received signal along the dominant modes, the receiver enjoys

a SNR enhancement, or beamforming gain, that scales up with the number of

receive elements, while simultaneously obtaining reasonable levels of complexity.

Shannon theoretic analysis further reveals a diversity tradeoff for channels with

multiple spatial modes. Key to these results is the property that second order

channel statistics (the spatial covariance) vary slowly with respect to the mean

(or realization) of the channel. This assumption holds true for emerging Wireless

Metropolitan Area Networks (WMANs), for example the IEEE 802.16 standard,

where user mobility at vehicular speeds and severe non-line-of-sight multipath de-

lay profiles give rise to fast fading in both time and frequency. For such channels,

the coherence length, or number of symbols for which the channel is expected to

be roughly constant, is expected to be on the order of a dozen symbols. Such

rich time-frequency diversity enables extremely accurate beamforming estimates,

without any pilot overhead. For the case of non-white interference contributions

to the overall received spatial covariance matrix, arising for example in a frequency

reuse-1 system, a Minimum Mean Squared Error (MMSE) framework for interfer-

ence suppression is proposed. Simulation results demonstrate that less than 3%

pilot overhead is required to mitigate consistently strong spatial interference that

is of equal power to the desired user.

We first review material from our earlier work [5, 4], which abstracts simple

statistical models from the literature on outdoor channel measurements. We then

show that, for typical outdoor channels, most of the beamforming gains relative

to a single antenna system can be obtained by using a small number of modes.
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3.1 OFDM System Model

As in the classical Saleh-Valenzuela model [34], the channel response is decom-

posed into clusters. Experimental measurements of outdoor channels [30] indicate

that the number of clusters is small, usually one or two, and that the power delay

profile and power angle profile for each cluster can be modeled as exponential and

Laplacian, respectively.

We consider an OFDM system in which a mobile with one antenna commu-

nicates to an N antenna receive array. There are K subcarriers. The received

signal vector on the kth subcarrier is

y[k] = h[k]x[k] + n[k]

where h[k] is an N×1 channel frequency response, n[k] is Additive White Gaussian

Noise (AWGN) where E[n[j]n[k]H] = 2σ2δjkIN , and IN denotes the N×N identity

matrix. It follows from our earlier work [5] that the {h[k]} are well-modeled as

identically distributed zero-mean proper complex Gaussian random vectors

h[k] ∼ CN (0,C)

with covariance

C = E[a(Ω)a(Ω)H] (3.1)

where a(Ω) is the base station array response for the angle of arrival, Ω. We model

a standard linear array for which

a(Ω) = [a1(Ω) · · · aN(Ω)]T, an(Ω) = ej(n−1)2π d

λ
sin(Ω),

when d is the antenna array spacing, and λ the carrier wavelength. The expecta-

tion (3.1) is taken over the distribution of Ω, the PAP.

A spectral decomposition of the channel covariance yields

C = UΛUH (3.2)
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where the eigenvector matrix U = [u1 · · ·uN ] is unitary, and Λ is diagonal with

eigenvalues {λl} arranged in decreasing order. The eigenvalue λl represents the

energy of the channel on lth eigenmode ul.

3.2 Covariance Estimation

For the large delay spreads typical of outdoor environments, the coherence

bandwidth is small, and the correlation between the channel responses at differ-

ent frequencies dies out quickly with their separation. Thus, the base station

can accurately estimate C by measuring the channel over a rich enough set of

frequencies on the uplink [4].

Averaging over frequency bins, the base station forms an empirical autocorre-

lation matrix

R =
1

K

K
∑

k=1

y[k]y[k]H.

With E[|x[k]|2] = 1, it is easy to show that R is an estimate of C + 2σ2IN , where

σ2 is the noise variance per dimension. Thus, if λl are the eigenvalues of C, the

eigenvalues of R are λl + 2σ2. The eigenvectors of the two matrices are the same.

An eigendecomposition of R thus yields the dominant channel eigenmodes.

Typically, the number of dominant eigenmodes is small for an outdoor channel

because of the narrow PAP corresponding to signals received from a given mobile.

3.3 Eigenbeamforming

We now perform receive eigenbeamforming along the principal eigenmodes of

R, namely {u1, · · · ,uL}. The received vectors in each frequency bin are projected

along these eigenvectors to get L parallel scalar OFDM signals (L typically much

smaller than the number of antenna elements N). The lth signal is given by

zl[k] = 〈y[k],ul〉 = αl[k]x[k] + wl[k],
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Figure 3.1: Beamforming gains are achieved by projecting onto the L dominant
eigenmodes of the N -dimensional received signal y(t) =

∑

k y[k] exp(j2π(k −
1)t/K).

where αl[k] = 〈h[k],ul〉, l = 1, . . . , L, are independent Gaussian channels, αl[k] ∼

CN (0, λl), and wl[k] = 〈n[k],ul〉 is AWGN with E[w[j]w[k]∗] = 2σ2δjk.

3.3.1 Eigenbeamforming gain

As a rough measure of the performance gain relative to a single antenna system,

we define the beamforming gain as the SNR if the signal power is summed over

the L chosen eigenmodes, relative to the SNR for a single antenna element. This

yields the following formula for the beamforming gain as a function of L:

G(L) =
N

tr(C)

L
∑

l=1

λl (3.3)

Figure 3.2 shows the beamforming gain as a function of the number of eigen-

modes used for a 10 antenna system. The upper curve is for a single cluster

channel whose PAP is Laplacian, L(θ, ∆θ), with mean θ = 0, and angular spread

∆θ = 10◦, where the variance is given by (∆θ)2/2. The middle plot is for a two

cluster channel where the first cluster’s PAP is as above, and the second cluster’s

PAP is also Laplacian with angular spread 10◦, but has its mean at 45◦ (both

clusters with the same power). Finally, the lower plot considers a third additional

equal strength L(−45◦, 10◦) cluster. The total receive power is normalized to be

the same in all three cases. Note that the beamforming gain quickly plateaus as
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Figure 3.2: Eigenbeamforming gain over a single antenna receiver.

a function of L: thus, beamforming along the dominant eigenmode captures most

of the channel energy for the one cluster channel, while using the first two (three)

eigenmodes captures roughly the same amount of energy in the two (three) cluster

system. Thus, for typical outdoor channels, estimation of the channel covariance

enables the use of a small number of eigenmodes by the demodulator and de-

coder, limiting complexity while preserving the SNR advantage from scaling up

the number of receive elements.

The signals for the L eigenmodes can be combined in a number of ways. One

possibility is to explicitly estimate the scalar channels {αl[k]} using pilots, and to

then perform coherent diversity combining of the L branches to obtain an estimate

of x[k]. The advantage that this may have over estimation of the original N × 1

channel vector h[k] is that fewer gains may need to be explicitly estimated. In

this paper, however, we consider noncoherent diversity combining, which is consis-

tent with our goal of reducing overhead in uplink transmission. In particular, we

consider serial concatenation of an outer code with differential modulation. Joint

noncoherent processing of all modes is complex. Instead, we employ a subopti-

mal combining strategy for iterative noncoherent processing: parallel noncoherent

demodulators are employed for each mode (each employing extrinsic information
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from the outer decoder), the soft outputs of the demodulators are combined and

sent up to the outer decoder, which then sends extrinsic information back to each

of the parallel noncoherent demodulators. The details are in Section 3.6.

3.4 Noncoherent capacity of an L mode channel

In this section we compute the noncoherent capacity of the L× 1 block fading

channel, where the L modes can have unequal strengths. Ideas analogous to those

used for isotropic [27] or scalar channels [10] can be used to simplify capacity

calculations. Our numerical results are for a QPSK alphabet.

Consider M -ary modulation with an L × 1 block fading channel of coherence

time T . Letting A denote the symbol alphabet, with M = 2k for some k ∈

{1, 2, 3, ...}, the signal vector x = [x[1] x[2] · · · x[T ]]T is drawn randomly from

X = AT according to P (x) = 1/MT . In the parallel block fading model, an L × 1

Gaussian channel, h ∼ CN (0,C), communicates the signal x,

Y = [y1 y2 · · · yL] = xhT + N, (3.4)

in AWGN, N = [n1 n2 · · · nL], with E[njn
H
k ] = 2σ2δjkIT .

In general, the channel is completely defined by the conditional probability

density function (PDF), P (Y|x), of the received symbols Y given the trans-

mitted symbols x. The corresponding capacity is the supremum of the mutual

information,

C = sup I(x;Y) = sup{H(Y) − H(Y|x)}, (3.5)

over space of input alphabets (X , P (x)), satisfying the average power constraint

E[‖x‖2] = T . The mutual information is independent of the choice of basis for

the received signal (since it is a one-to-one transformation) [27]; in particular,

I(x;UHYU) = I(x;Y), for any unitary matrix U. Thus, without loss in gener-

ality, let C = diag([λ1 λ2 · · · λL]). Then, the vector channel, h = [h1 h2 · · · hL]T,
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is composed of L independent scalar fading channels hl ∼ CN (0, λl), and the

conditional PDF of the received symbols given the transmitted symbols is

P (Y|x) =
L

∏

l=1

P (yl|x), (3.6)

where

P (yl|x) =
exp

{

− tr
(

[2σ2IT + λlxxH]−1yly
H
l

)}

πT det
(

2σ2IT + λlxxH
)

is the conditional PDF of a scalar block fading channel [27].

Direct evaluation of (3.5) with respect to (3.6) is prohibitively complex, and

Appendix C discusses analytical simplifications that make the computation tractable.

The techniques employed are analogous to those used in [10] for the case of a scalar

fading channel, and [27] for isotropic channels. The general approach is to com-

pute H(Y) = −E log P (Y|x = 1) with Monte-Carlo integration over the space of

h and n. The conditional entropy term, H(Y|x), is evaluated in closed form.

3.5 Capacity Plots

The information theoretic properties of multiple mode channels are now quan-

tified for the case of QPSK signaling with the parallel block fading channel of

coherence length T = 10 and L equal power modes. In order to compare capacity

at different values of L, the noise variance per dimension is fixed and the strength

of the modes (of the L mode channel) is set to λl = 1/L, l = 1, ..., L, so that

the signal energy when summed over all modes is always one. Figure 3.3 shows

noncoherent capacity versus SNR for L = 1, 2, 3, 4. There is a moderate diversity

gain of up to 2 dB at high SNR, and no gain at low SNR. This indicates that, as

long as there is enough averaging across frequency and time (which is implicitly

assumed when we compute ergodic capacity), there is little penalty in performance

due to the relatively few spatial eigenmodes present in a typical outdoor channel.

Note also that, since accurate estimates of the spatial covariance matrix are

implicitly available in wideband systems, the number of receive elements can be
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Figure 3.3: Block fading capacity with varying number of dominant eigenmodes.

scaled up to obtain large beamforming gains relative to a single antenna receiver,

even when there is little spatial diversity gain available. This gain is a function

of the number of antenna elements and array geometry, and is not shown in the

plot above.

3.6 Noncoherent processing for the parallel block

fading channel

Given the success of iterative noncoherent demodulation and decoding with

a single antenna block fading channel [10, 19], we propose a diversity combining

scheme for parallel block fading channels that falls within this framework. Optimal
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computation of the a posteriori probabilities (APPs) of the transmitted symbols,

P (x[k] = x|Y,Π) =
1

P (Y)

∑

x:x[k]=x

T
∏

t=1

P (x[t])
L

∏

l=1

P (yl|x), (3.7)

given the priors, Π = {P (x[t])}, involves joint quantization of the L block fading

channels, incurring a complexity that is QL−1 times that of the single antenna

demodulator, where Q denotes the number of quantizer bins per mode.

We instead propose a computationally efficient, suboptimal demodulator that

is motivated by the conditional independence of the received signals {yl} given

the transmitted symbols x (3.6). The approach consists of running parallel non-

coherent demodulators, one for each dominant mode of the channel, and linearly

combining the resulting log-domain APPs. This approach has the advantage of

leveraging well-known techniques for efficient noncoherent demodulation of the

scalar block fading channel [10, 19], and entails phase quantization and amplitude

estimation of the unknown channel for each mode. Moreover, the complexity

of parallel noncoherent demodulation is linear (rather than exponential) in the

number of modes. Thus, we simply sum the LLRs output from each noncoherent

demodulator to get an estimate of the APPs of the transmitted symbols. The

decoder then computes its own posteriors for the transmitted symbols, based on

the aggregated output of the demodulators, and sends them back to each de-

modulator for use as priors. In this fashion, joint noncoherent demodulation and

decoding are performed iteratively until the codeword is decoded. Note that our

diversity combining differs significantly from conventional combining of differen-

tial demodulation statistics and is able to exploit channel continuity over the

coherence length.

We have simulated the preceding linear diversity combining scheme with rate-

3/4 convolutional coding and QPSK signaling. Figure 3.4 compares the perfor-

mance of diversity combining to capacity for an idealized parallel block fading

channel with one, two, and three equal strength modes. The results demonstrate
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Figure 3.4: Performance of noncoherent diversity combining receivers with the
parallel block fading channel, T = 10, at 1.35 bits/channel use.

near capacity performance for one and two mode channels. For the case of a three

mode channel, the suboptimal combining scheme suffers from a per mode noise

enhancement resulting from dividing the signal energy amongst the modes and

running parallel independent demodulators. Nonetheless, the results are very en-

couraging, since the focus is outdoor channels with relatively few dominant modes,

for which beamforming gains and complexity reductions increase significantly with

the lesser number of modes. Further, there are larger potential diversity gains for

the two mode channel over a one mode channel than there are by increasing the

number of dominant modes beyond two.

We next consider more realistic fading channels whose spatial modes are gen-

erated explicitly according to outdoor channel models, with Laplacian PAPs for

one and two cluster channels. As in the eigenbeamforming gain example, the

single mode channel consists of a L(0◦, 10◦) PAP, and the two mode channel con-
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sists of the superposition of two equal strength L(0◦, 10◦) and L(45◦, 10◦) PAPs.

The results are given in Figure 3.5. Performance clearly improves by considering

two modes rather than one. Of course, in the model employed here, the im-

provement consists of an increase in SNR due to employing an additional mode

(which is lesser for the single cluster channel), as well as a diversity advantage

expected at this rate of 1.35 bits/channel use (which is greater for the two cluster

channel). Again, parallel processing of three modes exhibits a slight performance

degradation due to the suboptimal combining technique employed. Thus, more

sophisticated demodulation techniques are required for channels with more than

two dominant modes, in order to exploit the SNR advantage for considering the

third mode. This is a topic of future research. Note, however, that for the one/two

cluster channel simulated here the major gains in SNR and complexity reduction

are achieved by the two mode demodulator.
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3.7 Spatial interference

The issue of spatial interference from neighboring cells in frequency reuse-1

OFDM systems is largely mitigated by random-like scheduling in time and fre-

quency. Inter-cell interference is further avoided in synchronous systems via coor-

dinated Time Division Multiplexing (TDM) and Frequency Division Multiplexing

(FDM) scheduling and power control techniques. Estimates of the desired user’s

spatial covariance matrix,

CS = E[a(Ω)a(Ω)H], (3.8)

rely on averaging over many subcarriers. If the interference in different subcarriers

is spatially uncorrelated, then their contribution to the averaged spatial covariance

matrix is approximately spatially white. In this case, the dominant eigenmodes

of the overall spatial covariance matrix provide a good estimate of the spatial

modes for the desired user. Interference resulting in non-white contributions to

the overall spatial covariance matrix of the received signal, illustrated in Figure

3.6, is defined as consistent spatial interference. Such interference would arise, for

example, if the uplink schedule of a radio in a nearby cell overlaps significantly

with that of the desired user for a block of symbols that is much longer than

the channel coherence length. Certainly, spatially non-white interference contri-

butions will affect the eigen-structure of the received signal and thus estimated

beamforming directions to the desired user. These issues lead us to consider inter-

ference learning receivers that estimate the spatial covariance of the interference

based on randomized insertion of pilot blocks into the transmitted data sequence.

For typical outdoor scenarios, we would expect a small number of dominant

spatial modes, since the received energy from a given radio is typically concen-

trated within a narrow angular spread, with contributions from only one or two

dominant reflecting bodies. Thus, the overall spatial covariance matrix consists

of a “mixture” of dominant modes from the desired user and interferer. Thus,
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Figure 3.6: Examples of severe inter-cell interference on the uplink of a reuse-1
OFDMA system.

we might expect twice as many dominant modes as a single cluster channel, or

the same number of dominant modes as a multi-cluster channel, in the absence

of interference. The spatial covariance matrix can be estimated without overhead

by computing second order statistics from uplink measurements. If the dominant

spatial modes can be assumed to be due to the signal alone, then noncoherent

eigenbeamforming leads to significant gains, as shown in [6] for downlink and [16]

for uplink. This corresponds to projecting down to the low-dimensional signal

subspace corresponding to the dominant eigenmodes. However, when there is

significant contribution to the spatial eigenmodes due to the interference, then

use of second order statistics is not enough to distinguish the desired signal from

interference. We take the following approach for dealing with consistent spa-

tial interference: (a) project down to the signal subspace corresponding to the

dominant eigenmodes, (b) compute linear MMSE type interference-suppressing

correlators using pilot symbols for a selected number of subcarriers, and (c) find

a single interference-suppressing correlator that works well over the entire fre-

quency band, exploiting the fact that the signal and interference spatial modes

are the same across frequency. The projection step (a) reduces the dimension of
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the interference-suppressing correlator, and reduces the number of pilot symbols

needed in step (b).

3.8 Interference model

We consider the extreme case of a 0 dB interference process {xI[k]}, that

is uncorellated with the desired signal {xS[k]}. This in particular means that

the signal and interference are of equal energy, and we adopt the convention

E[|xS[k]|2] = E[|xI[k]|2] = 1. Analogous to the desired user’s own spatial channel

(3.8), the N × 1 spatial channel to the interferer is well modeled as zero-mean

Gaussian with covariance CI = E[aI(Ω)aI(Ω)H]. The interference array response

aI(Ω) varies according to the PAP of the angle of arrival, Ω. The PAPs of the

interference and data channels are modelled independent Laplacians, with the

same variance, but differing mean angles of arrival. This corresponds to the

extreme scenario in which the interference process is virtually indistinguishable

from an additional mode of the desired channel.

The baseband received symbol vector at the kth frequency channel is now

y[k] = hS[k]xS[k] + hI[k]xI[k] + n[k],

with hS[k] ∼ CN (0,CS), hI[k] ∼ CN (0,CI), and n[k] ∼ CN (0, 2σ2IN). Let-

ting V = [v1, . . . ,vL] denote the dominant eigenvectors of E[y[k]y[k]H], eigen-

beamforming consists of projecting the received signal y(t) down to the reduced

(L ≪ N) complex vector subspace spanned by V. This operation yields the

following sufficient statistic for the transmitted symbol sequence:

z[k] = VHy[k] = αS[k]xS[k] + αI[k]xI[k] + w[k], (3.9)

with αS[k] ∼ CN (0,ΣS), αI[k] ∼ CN (0,ΣI), and w[k] ∼ CN (0, 2σ2IL). Where we

have defined ΣS = VHCSV and ΣI = VHCIV to be the signal and interference

55



covariance in the reduced-space. The spatial covariance matrix of the received

signal, (3.9), is thus given by

R = E[z[k]z[k]H] = ΣS + ΣI + 2σ2IL.

3.9 MMSE framework

We next develop a MMSE framework for interference suppression with the

received signal model (3.9). The MMSE criterion is defined as

c = arg min E[|〈z[k], c〉 − xS[k]|2],

and the well known least squares solution: c = R−1p, where p = E[x∗
S[k]z[k]].

As an unrealizable benchmark, we first consider a genie aided receiver, which

does have access to the data and interference channel realizations, and thus ideal

MMSE filter,

cMMSE[k] = (αS[k]αS[k]H + αI[k]αI[k]H + 2σ2IL)−1
αS[k]. (3.10)

For continuously fading channels, this solution holds for the entire coherence

length of the channel. In the wideband systems considered here, spatial covari-

ances ΣS and ΣI are assumed to vary slowly with respect to the channel coherence

length. Thus, accurate estimates of the desired user’s spatial modes are achiev-

able, at little cost, via pilot-based uplink measurements. Once the receiver has

been trained to the data channel’s spatial modes, the computed filters are ap-

plicable for the entire duration of the interference region. In simulation results,

for example, less than 3% (or roughly 0.15 dB) of pilot overhead is required to

adequately train the MMSE filters.

As a measure of performance of ideal MMSE interference suppression, we eval-

uate the Signal-to-Interference Ratio (SIR) at the correlator output, defined as,

E[ |〈αS[k], cMMSE[k]〉|2 ]

E[ |〈αI[k], cMMSE[k]〉|2 ]
.
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Figure 3.7: Ideal MMSE interference suppression with a 10 element receive array.

For this purpose, the signal and interference PAPs are modelled as Laplacian,

L(θ, ∆θ), with means {θ}, and angular spread ∆θ = 10◦. Figure 3.7 displays

MMSE SIR as a function of the mean angle of arrival of the interference PAP,

where the desired user’s PAP is taken to be zero-mean. Observed, for example, is

that half-wavelength spaced antenna arrays are in principle better able to resolve

interference at mean angles of arrival between 30 and 45◦.

In practice, the receiver employs the same, averaged MMSE filters, {cavg},

whose number depends on the number of dominant modes of the data channel, for

the entire interference duration. They are computed from regular pilot symbols

transmitted by the desired user. The pilot symbols are ideally transmitted in

bursts of length chosen to match the coherence length of the channel, or sufficiently

long to obtain accurate estimates of the instantaneous channel realization. By

assumption, the channel α(k) , αS[t] is constant over the kth coherence block
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and is thus well estimated by

p(k) =
1

T

∑

t∈T (k)

x∗
S[t]z[t], (3.11)

where T (k) denotes the set of symbol indices corresponding to the kth coher-

ence block, and T is the coherence length of the channel. On the other hand,

estimates of the spatial covariance, R, do not require pilots, and are formed by

averaging the received signal over the whole of the interference duration. Thus,

the instantaneous MMSE filter estimate is given by c(k) = R−1p(k). Due to the

high degree of variability in fading channels, multiple pilot estimates are required

to adequately train the receiver to the desired user’s spatial covariance matrix.

Thus, letting P denote the index set of P pilot blocks, the receiver is equipped

with the correlator estimates {c(k)}, k ∈ P. Note that although each of these

correlators is trained to the dominant mode of the data channel, they cannot be

combined directly, since the phase of the data channel is i.i.d. uniform across

pilot blocks. We thus propose the following solution for combining multiple pilot

blocks. Letting A =
∑

k∈P p(k)p(k)H,

cavg = R−1 dominant
eigenvector{A} (3.12)

is an estimate of the ideal MMSE filter trained to the dominant spatial mode of the

data channel. Furthermore, employing the second dominant eigenvector of A in

(3.12) gives an estimate of the MMSE filter trained to the second dominant mode

of the data channel. In simulation results of coded systems, we have found this

estimate to perform extremely well; for the details of its derivation see Appendix

D.

3.10 Numerical results

We consider the performance of noncoherent eigenbeamforming with 0 dB in-

terference, in which pilot blocks are employed to estimate the second order statis-
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tics of the desired user’s spatial channel. The model (3.9) is employed for simula-

tion. That is, αS[k] ∼ CN (0,ΣS), αI[k] ∼ CN (0,ΣI), are generated explicitly for

the simulation results, where Laplacian PAPs, and a 10 element half-wavelength

spaced linear array, are considered for CS and CI computation. The PAPs of the

data and interference channel are taken to be L(0◦, 10◦) and L(45◦, 10◦), respec-

tively. These PAPs model single cluster channels, and are known to be character-

ized by one or two dominant spatial modes. The dimension of the reduced-space,

span{V}, is L = 2 (L = 4) for the one (two) mode demodulator. Moreover,

the accuracy of the MMSE filter estimates (3.12) is expected to be superior to

estimates computed in the original 10-dimensional complex vector space.

Figure 3.8 compares the performance of convolutional coded differential QPSK

modulation at rate-1.35 bits/symbol with ideal and averaged MMSE interference

suppression. The codeword length is chosen to be 64,000 bits, and the coherence

length of the channel is T = 10 symbols. We first note that averaged MMSE

performance is within 0.25 dB of ideal MMSE interference suppression, where

approximately 0.15 dB is attributed to pilot overhead. Given the performance

improvement for diversity combining with the top two modes of a one cluster

channel with no interference, we employ the top two MMSE correlators (3.12) for

diversity combining in the presence of interference. The results are also displayed

in Figure 3.8, demonstrating comparable performance to that of the ideal single

mode block fading channel with no interference.

3.11 Conclusions

This chapter focuses on transceiver design for increasing the capacity of wire-

less cellular uplinks. Forthcoming cellular systems, for example WMANs, will have

to overcome hurdles such as severe channel dispersion, no line of sight between

transmitter and receiver, mobility at vehicular speeds, and inter-cell interference
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arising from shared spectrum scheduling. The fading rates that result in time

and frequency may prohibit the use of conventional coherent transceiver designs.

These issues motivate us to consider spectrally efficient noncoherent communi-

cation that does not rely on pilot-symbol based estimation of the continuously

varying channel. Rather, the spatial covariance matrix is estimated with “feed-

back” implicitly available in wideband systems, while techniques of coded nonco-

herent communication are employed to approach noncoherent capacity, where no

prior channel realization information is assumed at the transmitter or receiver.

The outdoor channels that are considered here are typically characterized by a

relatively few number of dominant spatial modes. Thus, by projecting along,

and processing only, the dominant modes of the channel, the receiver is able to

dramatically improve its per mode SNR while simultaneously obtaining reason-

able levels of complexity. We further investigate a scenario in which inter-cell

interference gives rise to non-white contributions to the received spatial covari-

ance matrix. We propose an MMSE framework based on regularly transmitted

pilot blocks to distinguish between the data and interference channels’ dominant

eigenmodes. Simulation results verify our hypothesis that significantly less pilot

overhead (less than 3%) is required to measure the channel covariance than is

required to measure its realization (which is expected to be as much as 20% [21]).

These concepts are demonstrated with simulation results, and capacity com-

parisons, for a proposed linear diversity combining receiver with convolutionally

coded differential QPSK modulation. The diversity combining receiver, although

suboptimal, performs extremely well for the case of two mode combining, and of-

fers the advantage of leveraging well-established techniques of coding and modula-

tion for single antenna noncoherent channels. Further avenues of research include

more sophisticated receiver algorithms for joint processing of three or more spa-

tial modes (at the expense of increased complexity). However, for the tradeoffs

in beamforming gain and diversity level described in this paper, we argue that
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Figure 3.8: Performance of MMSE filters with 0 dB interference at mean angle
of arrival 45◦.

the proposed transceiver achieves the most gains, in terms of SNR increase and

complexity reduction, for two mode channels. Further extensions to the case of

multiple transmit antennas are also a topic of future research.
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Chapter 4

Comparison with coherent
transceiver

In this chapter, a detailed comparison of the performance of noncoherent and

coherent transceiver designs in an OFDM system is conducted. Noncoherent

transceivers hold the potential to significantly improve the throughput of wireless

communication systems, as they eliminate the overhead of pilot symbol transmis-

sions. However, to achieve a level of performance that is comparable to that of

coherent systems, noncoherent systems typically require significantly more com-

plex processing at the receiver. Thus, this chapter is devoted to a side-by-side

comparison of the two approaches to wireless transceiver design in the context of

a packetized OFDM system, exploring complexity and throughput tradeoffs. For

the noncoherent transceiver, differential QPSK modulation with convolutional

coding is employed. Noncoherent demodulation and decoding are performed as

described in Chapter 2, with time-frequency symbol mapping and demodulator

block size tailored to the OFDM channel. The coherent transceiver is composed

of turbo-coded QPSK modulation with time-frequency channel estimation based

on regularly transmitted pilot symbols. We assume 20% pilot overhead, as is ex-

pected in forthcoming wireless metropolitan area networks, with users moving at

vehicular speeds and severe multipath environments. The coherent receiver also

employs iterative demodulation and decoding, where feedback from the code is
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used to refine channel estimates (referred to as decision directed channel estima-

tion) in the subsequent demodulation iteration.

For the comparison, we consider a 4th Generation (4G) OFDM concept system

that is under development at Motorola Labs [21]. Specifications of the OFDM sys-

tem, such as number of subcarriers, subcarrier spacing, cyclic prefix length, and

so forth, are the same for both systems. The proposed noncoherent transceiver

(henceforth referred to as the differential system) is evaluated via direct through-

put comparison with the coherent system. An effort is made to keep the de-

coding/demodulation complexity of the two systems roughly equivalent, so as to

facilitate a fair comparison. In particular, as both the coherent and differential

systems rely on APP computation as the basis for SISO demodulation and de-

coding, the complexity of both systems is estimated in terms of the number of

max-star (log-APP) kernel operations required for complete decoding of a code

word. Detailed descriptions of the OFDM system, channel model, and implemen-

tations of the differential and coherent systems are provided in the sequel.

4.1 Noncoherent OFDM

This section describes the application of noncoherent transceiver designs to

OFDM systems. By definition, noncoherent systems do not rely on the trans-

mission of pilot symbols for channel estimation and tracking. Rather, channel

continuity in time and frequency is leveraged by a turbo architecture that itera-

tively demodulates and decodes the received data sequence. At the demodulator,

channel uncertainty is handled with a block fading model with (1) signal energy

based amplitude estimation and (2) Bayesian combination of coherent symbol

probabilities that result from quantizing the unknown channel phase.

System model: The turbo architecture described in Section 2.1 of Chapter 2 is

employed with convolutional channel coding and differential QPSK modulation.
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For numerical evaluation, the channel is modeled with the Wide Sense Station-

ary with Uncorrelated Scattering (WSSUS) channel model, widely employed for

modelling outdoor channels. Block noncoherent demodulation is based on ap-

proximating the channel as constant over an appropriate number of time and

frequency bins. Thus, the transmitted symbol sequence is ideally mapped to time

and frequency in a fashion that maximizes the correlation between channels seen

by successive symbols. For this purpose, the OFDM channel is nicely represented

with a time-frequency grid, illustrated in Figure 4.1, in which columns correspond

to subcarriers and rows correspond to OFDM symbol intervals. The depicted ar-

rows represent a mapping of QPSK symbols onto subcarriers of successive OFDM

symbols. Thus, the depicted mapping is well suited to a time-frequency channel

that does not vary significantly over four OFDM symbols. Note that the receiver

is free to choose the number of subcarriers for which the block fading approxima-

tion makes sense, but is constrained by the transmitter as for the block length

in time. For example, the Typical Urban (TU) WSSUS channel, which models

severe channel dispersion and is employed here for numerical simulations, is best

approximated as constant over two subcarriers. Thus, a demodulator block size of

nine symbols, where one symbol overlaps adjacent blocks (see Section 2.1.1), best

suits the time-frequency symbol mapping of Figure 4.1. Note that in contrast to

the block fading channel model, block noncoherent demodulation of continuously

modulated differential data with a continuously fading channel does not incur a

one symbol per block rate penalty.

The received symbol vector for one block of transmitted symbols may be ex-

pressed as

y = h′x′ + w = hx + w, (4.1)

where h = h′x[0] and x = x∗[0]x′. Note that, for the QPSK modulation considered

here, h and h′ are identically distributed. In general, the received symbol block

may be de-rotated by the phase of the reference symbol x[0] (first symbol of
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Figure 4.1: Mapping the transmitted symbol sequence to a time/frequency chan-
nel, for block noncoherent demodulation.

the block) without any affect on the channel model or symbol estimates. Thus,

conditional on the channel phase, the demodulator may estimate x assuming the

path traversed on the trellis of the modulation code begins from the zero state.

4.2 Coherent system

For the coherent system, we assume that one pilot symbol is transmitted for

every four data bearing symbols. The transmitter accepts a frame of information

bits, performs turbo-encoding and interleaving and Gray-maps the resulting coded

bits to QPSK symbols. As in the differential system, the transmitted codeword

extends over four OFDM symbols, with one QPSK symbol transmitted on each

OFDM subcarrier and a pilot symbol preceding and succeeding each set of four

QPSK symbols in time. The receiver employs the pilot symbols to estimate the

channel and thus the transmitted codeword. Initially, iterations of the standard

turbo-decoding algorithm are performed based on channel estimates obtained from

the pilot symbols. The resulting bit-level APPs are then converted to probabilities

on the transmitted symbols for refining the channel estimates in the next demodu-

lation iteration. Thus, coherent systems also benefit from iterative demodulation

and decoding, though, based on the results of the comparison performed here, to

a lesser extent than noncoherent systems.

65



In the first iteration, channel estimation is performed solely based on the pilot

symbols. In particular, the demodulated pilot symbols provide raw estimates of

the channel gain for each subcarrier in the OFDM symbol in which they appear.

Leveraging channel continuity in frequency, the raw channel estimates are then

smoothed across subcarriers with an FIR filter corresponding to the coherence

bandwidth of the channel. Channel estimates for the data symbols of a given sub-

carrier are then obtained by linearly interpolating the smoothed channel estimates

preceding and succeeding the data symbols.

In subsequent iterations, channel estimates are refined according to feedback

from the outer code. The per-symbol raw channel estimates for the data symbols

are obtained as the solution to the following MMSE formulation:

ĥ = arg min
h

E[|y[n] − hx[n]|2], (4.2)

where expectation is taken with respect to the PDF of the transmitted symbols,

obtained by converting code-bit APPs yielded by the turbo-decoder to symbol-

level probabilities. The solution is given by y[n]E[x∗[n]]/ |E[x[n]]|. As before, the

raw channel estimates (now for each OFDM symbol) are smoothed in frequency

with an FIR filter. Thus, at this point of the decoder algorithm, there are six

channel estimates obtained for each frequency bin, corresponding to the preceding

and succeeding pilot symbols, and four data-bearing symbols. They are viewed

as estimates of time samples of the channel fading process in each frequency bin.

As a first order approximation, the channel fading process is assumed to be linear

across two pilot symbols. Thus, the final channel estimate for the data symbols of

each subcarrier is obtained by sampling a line fitted to the six channel estimates

at the appropriate time instance.
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4.3 Numerical results

In this section, results of the numerical comparison between the differential

and coherent transceivers in the context a packetized OFDM system are pre-

sented. The comparison is performed in terms of the Frame Error Rate (FER)

and throughput attained by the receivers. The WSSUS channel model with a TU

power delay profile is employed for the comparison. Each ray of the power delay

profile of the WSSUS channel constitutes an independent fading channel at the

Doppler rate of 160 Hz, roughly equivalent to a speed of 30 MPH, at a carrier

frequency of 3.676 GHz. The parameters of each system are chosen to maintain

equivalent levels of complexity, defined in terms of the number of log-APP binary

kernel operations per second (bkops) [21].

The parameters of the OFDM system are chosen to model a packetized system

with relatively short codeword length, corresponding to one transmitted frame.

The FFT size is 1024, sample rate 25.6 MHz, and length of the cyclic prefix is

256. The corresponding OFDM symbol duration is 50 µsec. The number of sub-

carriers used for data transmission is 768, corresponding to a system bandwidth

of 19.2 MHz. In both the differential and coherent systems, coding is performed

over four contiguous OFDM symbols, resulting in a codeword length of 6144

bits. For the coherent system, pilot symbols are inserted between each codeword

frame, resulting in a throughput loss of 4/5. Both systems employ four iterations

of demodulation and decoding. In the differential system, a standard rate-1/2

convolutional code of memory 6 is chosen, resulting in a maximum throughput

(corresponding to zero frame errors) of 15.4 Mbps, at the computational complex-

ity of 28.6 giga-bkops. The turbo-code employed by the coherent receiver consists

of two rate-1/3, memory 3, convolutional codes, for an overall rate of 1/2. The

corresponding maximum throughput is 12.28 Mbps, at the complexity of 24.6

giga-bkops.
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Figure 4.2: Raw FER of coherent and noncoherent transceivers.

The numerical results are displayed in Figures 4.2 and 4.3. The FER of the

two systems is shown in Figure 4.2. The results demonstrate that the pilot-based

system is better able to leverage channel continuity in frequency than the nonco-

herent system in its current form. This arises from the fact that block noncoherent

demodulation assumes independent channel realizations from block to block. Also

depicted is the performance of a genie-aided noncoherent receiver which has ac-

cess to the true channel phase. Since there is a significant gap to the genie-aided

receiver, we conjecture that there is room for improvement in the noncoherent sys-

tem with more detailed modelling of channel frequency variation than is provided

by the i.i.d. block fading model. However, design of such a receiver is beyond the

scope of this paper and will likely incur additional complexity cost. Nonetheless,

also reported in Figure 4.2 is an initial foray into this interesting topic, consisting

of a diversity combining receiver similar to that employed for the parallel block

fading channel. The diversity combining receiver demodulates the received symbol
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Figure 4.3: Throughput advantage of noncoherent transceiver designs.

sequence twice, with offset blocks in frequency, and linearly combines the resulting

symbol posteriors. This approach essentially mitigates edge effects of noncoherent

block demodulation for symbols at block boundaries, yielding a modest gain of

roughly 0.4 dB.

Figure 4.3 demonstrates the throughput advantage of noncoherent communi-

cation, where throughput is defined as

T (SNR) = (1 − FER(SNR))Rmax, (4.3)

and Rmax is the maximum bit rate supported by a given combination of modula-

tion and channel code.

69



4.4 Discussion

Noncoherent iterative demodulation and decoding is demonstrated to be a

viable alternative to standard receivers that rely on pilot symbols for channel es-

timation, demodulation and decoding. As demonstrated in this chapter, omission

of pilot transmissions results in higher throughputs for the differential system rel-

ative to the coherent system. As noncoherent iterative schemes require Bayesian

processing of the unknown channel phase, they are inherently more complex than

standard coherent receivers. On the other hand, there is more to be gained in

terms of the performance of coded differential systems by allowing for more iter-

ations, and thus higher levels of complexity. This follows from the convolutional

structure of differential modulation, which introduces memory into the modulated

data and thus better exploits the channel’s memory with SISO demodulation and

decoding in a turbo-architecture. However, since the performance results reported

in this Chapter were obtained at roughly equivalent levels of complexity, we find

that this complexity increase may not be prohibitive. Moreover, there is clearly

room for improvement in the noncoherent system by leveraging channel continuity

between blocks. Since the throughput is defined in terms of the FER attained,

the advantage of noncoherent systems will only increase as inter-block continuity

is better leveraged by the receiver. This is a subject of future research.
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Chapter 5

Conclusions

This body of work is primarily focused on attaining capacity of wireless time-

varying channels. We have examined three main subjects:

Design of modulation and channel codes for efficient noncoherent com-

munication: We have considered a single antenna transmitter and receiver pair in

which no prior knowledge of channel realizations is assumed. Information theoretic

computations demonstrate the advantage of large amplitude/phase constellations

for the noncoherent block fading channel, as is well-known to be the case for a

classical AWGN channel. Yet, heretofore, the research community has not con-

sidered the appropriate choice of QAM modulation code for turbo-architectures

designed to approach capacity of the block fading channel.

Our research (i) finds that QAM constellations classically employed for sig-

nalling over AWGN channels perform poorly over noncoherent fading channels,

and (ii) yields new constellations well-matched to noncoherent fading channels

that realize the capacity advantage of amplitude/phase signalling. These results

are facilitated by the development of EXIT analysis techniques for coded non-

coherent communication. The analysis techniques developed here are useful in

their own right, for guidance in the design of high performance coded modula-

tion systems. For example, EXIT analysis of coded noncoherent communication

provides a rigorous explanation for the near optimality of simple convolutional
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codes in concatenation with unit-rate differential modulation. This fact, observed

previously in the literature, had only been justified with heuristics.

Throughout this work we have consistently focused on practical implementa-

tions of the noncoherent transceivers developed. The proposed reduced complexity

receiver loses only 0.1 dB to the full complexity implementation in performance

simulations. Moreover, after the first iteration of demodulation and decoding,

the complexity is only twice that of genie-aided demodulation of the noncoherent

code, in which the channel is assumed to be known. In summary, a practical

coded noncoherent transceiver is developed that realizes the capacity advantage

of large amplitude/phase constellations over PSK for alphabets of size 16 or larger

and SNR greater than 6.5 dB.

Eigenbeamforming receivers: Accurate estimates of the spatial covariance

matrix, available through averaging in wideband systems, allow eigenbeamform-

ing at the base station along the dominant channel modes. For a typical outdoor

channel, where the number of dominant modes is small, this allows the receiver

to increase its SNR by scaling up the number of antennas, while limiting the de-

modulation and decoding complexity (which scales with the number of channel

modes used by the receiver). Averaging over time and frequency compensates for

the reduced level of spatial diversity in outdoor systems. The proposed eigen-

beamforming receiver is consistent with the approach of noncoherent transceiver

design, in contrast to classical coherent receive beamforming based on explicit

channel estimates. This can potentially eliminate the significant pilot overhead

required for estimating the channel to each mobile at the base station.

The case of spatial interference at the receive array is handled with MMSE

interference suppression techniques, yielding excellent performance with little pilot

overhead. Thus, noncoherent eigenbeamforming is demonstrated to be a practical

and realizable transceiver strategy that is well-suited to emerging wireless cellular

systems.
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Comparison with coherent transceiver: Although noncoherent transceivers

are not yet able to achieve the same raw FER as their pilot-based coherent coun-

terparts, the claimed throughput advantage is verified in the context of next gen-

eration cellular systems. Clearly, the performance of noncoherent transceivers

benefits from allowing additional complexity, much more so than coherent sys-

tems. More importantly, however, noncoherent wireless transceivers will have to

better leverage channel continuity in order to attain indisputable levels of perfor-

mance gain. We conjecture that this goal is fully realizable, and will perhaps be

facilitated as the fundamental limits of wireless time-varying channels are better

understood. Progress in this direction is reported in [11], where the Gauss-Markov

channel model for continuous variations is employed to derive capacity bounds and

design near capacity performing receivers.

5.1 Open issues

Although we consider the design of capacity approaching wireless communi-

cation systems for time-varying channels, information theoretic guidance is based

on the block fading model which fails to account for channel continuity between

blocks, and thus falls sort in describing truly continuous fading channels. The

Shannon limits of continuously varying noncoherent channels is still very much an

open research topic.

Initial results in this direction [23] show that, for a general ergodic and station-

ary fading process, the MIMO capacity is dominated by a log log SNR term in the

limit as SNR tends to infinity, regardless of the number of antenna elements. This

is in stark contrast to coherent MIMO capacity [35], which scales linearly in the

minimum of the number of transmit and receive elements (the so-called degrees

of freedom). The model employed in [23] essentially assumes a fixed symbol-to-
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symbol channel variation, which dictates performance when the noise power is

small.

However, more recently, it is argued [13] that this operating regime does not

describe most practical cases of interest, in which the channel is underspread (with

fading rates much slower than the system bandwidth) and thus both channel

variation and noise determine capacity. Their result indicates that for a Gauss-

Markov fading process, with channel variation and noise power tending to zero

simultaneously, capacity again exhibits a linear growth in the degrees of freedom,

and thus communication systems benefit from the use of multiple antennas.

It is certainly evident from both of these works that the SNR regime of oper-

ation drastically affects the capacity scaling laws of continuous fading channels,

and thus plays a pivotal role in system design. Moreover, emerging results [13, 39]

indicate that neither the SNR nor fading rate alone determines the behavior of

capacity, but that these parameters must be analyzed jointly to determine the

Shannon theoretic limits of real world channels.
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Appendix A

BCJR recursions

The forwards/backwards recursions employed for block noncoherent APP de-

modulation are, conditional on the channel, h,

αn(s) = max
e:sF (e)=s

⋆
{

γn(e|h) + αn−1(s
I(e))

}

, α1(s) = σ−2 ℜ〈y[1], hs〉, s ∈ A,

(A.1)

βn(s) = max
e:sI(e)=s

⋆
{

γn+1(e|h) + βn+1(s
F (e))

}

, βT (s) = − log2(M), s ∈ A.

(A.2)
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Appendix B

Channel amplitude estimation

We present an amplitude estimate that is well matched QAM constellations

based on concentric rings. Developed here for the case of two ring-level, M-ary

alphabets, the estimate generalizes easily to larger constellations. The complex-

ity is linear in the product of the number of amplitude levels and size of the

modulation alphabet. The polar representation of the nth transmitted symbol

is defined as x[n] = r[n] exp(jφ[n]), where r[n] ∈ R = {r0, r1} denotes the am-

plitude level of the nth symbol, and φ[n] the phase. Conventional two-symbol

differential detection statistics do not require channel knowledge, and are used to

obtain the distribution of r[n]. The amplitude likelihoods (B.3) are then used to

compute an energy based estimate of a. Note that this bootstrap is not required

of constant-amplitude, PSK signaling [10]. The vector of two received symbols is

y[n] ,





y[n − 1]

y[n]



 = h





r[n − 1]

r[n] exp(jφ[n])



 +





w[n − 1]

w[n]



 = hx[n] + w[n]. (B.1)

We note that the phase of the (n− 1)th symbol may be factored into the channel,

without changing its density. The log likelihood of the received symbol given the

transmitted symbol is

log P (y[n]|x[n]) =
1

2σ2

∣

∣y[n]Hx[n]
∣

∣

2

‖x[n]‖2 + 2σ2
− log(‖x[n]‖2 + 2σ2) + const. (B.2)
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Defining the probability of the nth symbol amplitude, r[n], as

µn(r) , P (r[n] = r|y[n]) ∝
∑

x∈R×A:r[n]=r

P (y[n]|x[n] = x), (B.3)

the energy based channel amplitude estimate, â, is computed with (B.4), where

T denotes the coherence length of the channel,

â2 = max

{

0,
‖y‖2 − 2Tσ2

∑T

n=1

∑

r∈R µn(r)r2

}

. (B.4)
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Appendix C

Parallel block fading capacity
calculation

Property 4. Any MPSK signal vector can be written as a unitary matrix times

the all ones vector x = Φ(x)1, where Φ(x) = diag(x1, x2, ..., xT ). We shall refer

to Φ of this form as a “discrete rotation,” since the signal alphabet, X = ΦX , is

the same with all of the elements multiplied by Φ.

The following lemma shows that the conditional PDF of the parallel block

fading channel is consistent with respect to rotations of the underlying signal

space. An immediate consequence is that the PDF of Y is unaffected by discrete

rotations.

Lemma 1. P (UY|x) = P (Y|UHx) for any unitary transformation U.

Proof. Let fN(n) denote the noise PDF. By the circular symmetry of Gaussian

noise:

P (UY|x) =
L

∏

l=1

P (Uyl|x)

=
L

∏

l=1

∫

dhlP (hl)fN(Uyl − hlx)

=
L

∏

l=1

∫

dhlP (hl)fN(yl − hlU
Hx)

= P (Y|UHx)
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Corollary 1. For any discrete rotation, Φ, P (ΦY) = P (Y).

Proof. Given the above Lemma, note,

P (ΦY) =
1

MT

∑

x∈X

P (ΦY|x)

=
1

MT

∑

x∈X

P (Y|ΦHx)

=
1

MT

∑

x∈ΦHX

P (Y|x)

= P (Y)

Proposition 1. H(Y) = −E[log P (Y)|x = 1]

Proof.

H(Y) = −

∫

dYP (Y) log P (Y)

= −
1

MT

∫

dY
(

∑

x∈X

P (Y|x)
)

log P (Y)

= −
1

MT

∑

x∈X

∫

dYP (Φ(x)HY|1) log P (Y)

= −
1

MT

∑

x∈X

∫

dΦ(x)YP (Y|1) log P (Φ(x)Y)

= −

∫

dYP (Y|1) log P (Y)

= −E[log P (Y)|x = 1],

since the Jacobian determinant of a unitary matrix is one.

Finally, regarding the conditional entropy of Y given x, note that, condi-

tioned on x, {yl} are independent Gaussian random vectors of entropy H(yl|x) =

log det(πeE[yly
H
l ]). Thus,

H(Y|x) =
L

∑

l=1

H(yl|x) = LT log(2πeσ2) + log
(

L
∏

l=1

(1 +
λlT

2σ2
)
)

.
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Using (C.1) and Proposition 1 with Monte-Carlo integration, we can efficiently

compute the noncoherent capacity of the L × 1 block fading channel.
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Appendix D

MMSE interference suppression
correlators

The following proposition pertains to the combining of multiple pilot measure-

ments for computing interference suppression correlators. The proposition yields

an estimates of the MMSE correlators trained to the dominant spatial modes of

the desired signal.

Proposition 2. Let ΣS = UΛUH, U = [u1 · · ·uL], Λ = diag([λ1 · · ·λL]), denote

the eigendecomposition of the desired user’s spatial covariance matrix. The data

channel may thus be written as α(k) = U[α1(k) · · ·αL(k)]T, where {αl(k)} are

independent Gaussian random variables, αl(k) ∼ CN (0, λl). Then, with A =
∑

k∈P p(k)p(k)H,

cavg = R−1 dominant
eigenvector{A} (D.1)

is an estimate of the MMSE filter, c1 = arg min E[|〈z[k], c〉 − α1(p)xS[k]|2], that

is trained to the dominant mode of the data channel.

Proof. First, by the law of large numbers,

lim
T→∞

p(k) = E[x∗
S[k]z[k]] = α(k) (D.2)

Now, letting Ψ(P, T ) = 1
P
A,

lim
P,T→∞

Ψ(P, T ) = lim
P→∞

1

P

∑

k∈P

α(k)α(k)H = ΣS. (D.3)
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The eigendecomposition of Ψ(P, T ) converges to UΛUH with probability one.

Thus, the dominant eigenvectors of A yield estimates of the dominant spatial

modes of the data channel, {ul}. Finally, the MMSE correlator trained to the lth

dominant spatial mode of the desired user, defined as

arg min E[|〈z[t], c〉 − αl(k)xS[t]|
2], (D.4)

is given by cl = R−1ul.
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