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ABSTRACT

As communication systems scale up in speed and bandwidth,
the power consumption and cost of high-precision (e.g., 6-12
bits) analog-to-digital conversion (ADC) becomes the limit-
ing factor in modern receiver architectures based on digital
signal processing. In this paper, we consider the effects of
lowering the precision of the ADC on the performance of
the communication link. We focus on the most extreme sce-
nario, in which the receiver employs one-bit ADC at base-
band. While this constraint impacts every aspect of design
ranging from synchronization and channel estimation to de-
modulation and decoding, in this initial exposition, we focus
on the Shannon-theoretic limits imposed by one-bit ADC for
an ideal discrete-time real baseband Additive White Gaussian
Noise (AWGN) channel. Results are obtained both for non-
spread and spread spectrum systems. While binary phase shift
keying (BPSK) is optimal in a non-spread system, we obtain
less predictable results for spread spectrum system, including
the sub-optimality of BPSK and non-monotonicity of mutual
information with signal-to-noise ratio for a fixed constella-
tion.

1. INTRODUCTION

Digital signal processing (DSP) forms the core of modern dig-
ital communication receiver implementations, with the analog
baseband signal being converted to digital form using ADCs
with typically 6-12 bits of precision However, as we scale
the bandwidths and speeds of communication systems, the
cost and power consumption of the ADC required to main-
tain such precision becomes prohibitive[1]. One possible ap-
proach in this scenario is to live with lower precision ADC.
Such a design choice impacts all aspects of receiver design,
such as carrier and timing synchronization, equalization, and
the generation of soft information for decoding. However,
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before embarking on a comprehensive rethinking of commu-
nication system design, it is important to understand the fun-
damental limits on communication performance imposed by
low-precision ADC. In this paper, we take an initial step in
this direction, investigating the Shannon-theoretic limits im-
posed by the use of one-bit ADC for linear modulation over
a real baseband AWGN channel, with ideal sampling of the
received signal at the symbol rate. In addition to standard lin-
ear modulation, we also consider direct sequence (DS) spread
spectrum, for which low-cost implementations often imple-
ment one bit ADC.

Our main result for standard linear modulation is that, for
symbol rate Nyquist sampling with one bit ADC, the use of
BPSK is optimal. Of course, once we commit to using BPSK,
the degradation due to the use of hard decisions (i.e., one bit
ADC) relative to soft decisions (i.e., no limit on ADC preci-
sion) is the well-known figure of 1.97 dB [3]. It is worth not-
ing that, for discrete memoryless channels, Gallager’s clas-
sic text on information theory [2] shows that the number of
“active” inputs need not exceed the number of outputs. We
cannot directly apply Gallager’s results because we consider
a channel with power constraints, and employ a direct proof,
but leave open the question of whether Gallager’s proof can
be adapted to our scenario.

For DS spread spectrum systems, on the other hand, we
show that BPSK, which is often the modulation of choice in
such systems, is actually suboptimal even when the receiver
employs one bit ADC on its chip-rate samples. Intuitively,
this is because the despread output exhibits more than two
levels, and can therefore be used to distinguish between a
larger number of input levels. We demonstrate that a ternary
alphabet {0,±1} outperforms BPSK, while more sophisti-
cated constellations provide even greater gains. The gains
over BPSK are most significant at larger processing gains
and/or larger ‘chip SNR’ (henceforth SNR). Another inter-
esting feature of spread spectrum systems is that, for a fixed
constellation, the mutual information is actually not mono-
tonic in SNR. While we do not find the capacity and opti-
mal constellation for spreading gain greater than 1, we use



a heuristic based on the uncoded case and the plane-cutting
algorithm [5] to construct good constellations.

The next section describes the results for unspread sys-
tems. Spread spectrum systems are considered in Section 3,
followed by the conclusions in Section 4.

2. BPSK IS OPTIMAL

We assume that the received signal satisfies the Nyquist cri-
terion [3, pp. 543]. Hence the discrete time channel obtained
after sampling is memoryless and in case of one-bit ADC it is
given by:

Y = sign(X + σW ). (1)

Here X is the input satisfying the power constraint E[X2] ≤
P , W is N (0, 1) and is independent of X . Our first result
identifies the capacity of this channel.

Theorem 1. The capacity of channel (1) is achieved by BPSK
signalling and is given by

C = 1− h
(
Q

(√
SNR

))
, SNR =

P

σ2

where

h(a) = −a log(a)− (1− a) log(1− a)

and Q(x) is the complementary Gaussian distribution func-
tion:

Q(x) =
1√
2π

∫ ∞

x

exp(−t2/2)dt.

Proof. The capacity

C = max
E[X2]≤P

I(X, Y ).

Since Y is binary it is easy to see that

H(Y |X) = E

[
h

(
Q

(
X

σ

))]
.

Therefore

I(X,Y ) = H(Y )− E

[
h

(
Q

(
X

σ

))]

which we wish to maximize over all input distributions satis-
fying E[X2] ≤ P . We note that if X is symmetric random
variable (that is X and −X have the same distribution), then

P (Y = 1) = P (Y = −1) = 0.5

and H(Y ) takes its maximum value of 1. Now given a distri-
bution function F (x), we can construct another distribution
function

G(x) =
F (x)

2
+

1− F (−x)
2

such that

• G(x) is a mixture of the distribution F (x) of X and the
distribution 1− F (−x) of −X .

• G(x) is the distribution of a symmetric random variable
and hence for this distribution on X , H(Y ) attains its
maximum value 1.

• h(Q(x/σ)) is a symmetric function and hence H(Y |X)
is the same whether X is distributed as per F (x) or
G(x).

As a consequence of these facts, we can restrict our maxi-
mization only to symmetric X and we get

C = 1− min
X symmetric
E[X2]≤P

E

[
h

(
Q

(
X

σ

))]
.

Since h(Q(y)) is an even function, we get that

H(Y |X) = E

[
h

(
Q

(
X

σ

))]
= E

[
h

(
Q

( |X|
σ

))]
.

Below we show that h(Q(
√

y)) is convex in y and hence in-
voking Jensen’s inequality [4], we get

H(Y |X) ≥ h
(
Q

(√
SNR

))

with equality iff X2 = P . Coupled with the symmetry condi-
tion on X , this implies that BPSK achieves capacity and the
capacity is

C = 1− h
(
Q

(√
SNR

))
.

To complete the proof, we need to establish the convexity of
h(Q(

√
y)). One way to prove convexity of h(Q(

√
y)) is to

show that the second derivative is positive everywhere. It
is tedious but straightforward to show this for y sufficiently
large; for other values the positivity is demonstrated in Figure
1.

3. DIRECT SEQUENCE SPREAD SPECTRUM

Direct sequence spread spectrum communication is commonly
used in practice in the low spectral efficiency regime. In
this section we consider the case when the spreading gain is
K > 1, that is, each symbol is transmitted using K chips.
We assume that the Nyquist criterion is satisfied at the chip
level and hence after sampling there is no inter-chip interfer-
ence. In this case, the K output samples corresponding to
input symbol X are

Yk = sign(ckX + σWk), 1 ≤ k ≤ K

where {Wk} are i.i.d. N (0, 1), ck ∈ {1,−1} is the chip se-
quence known to the transmitter as well as the receiver. By
multiplying both sides by ck it is easy to see that the channel
is equivalent to

Zk = sign(X + σVk), 1 ≤ k ≤ K



10
−1

10
0

10
1

10
2

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

y

Fig. 1. The second derivative of h(Q(
√

y)) is positive every-
where.

where {Vk} are i.i.d. N (0, 1), or in vector notation,

ZZZ = sign(X + σVVV )

where VVV isN (0, I). In the remainder of this section, we study
the sufficient statistic for this channel, the input-output mu-
tual information, and construct good constellations to trans-
mit over this channel.

3.1. Sufficient Statistic

Let D := the number of ones in ZZZ. We next prove that X and
ZZZ are independent conditioned upon D. Since Vk are i.i.d.,

P(ZZZ = zzz|X = x,D = d) =
1(
K
d

) .

Therefore,

P(ZZZ = zzz|D = d) =
∫

R
P(ZZZ = zzz|X = x,D = d)dFX(x)

=
1(
K
d

)
∫

R
dFX(x)

= P(ZZZ = zzz|X = x, D = d).

Thus X and ZZZ are independent conditioned upon D, that is,
(X,D,ZZZ) is a Markov chain. But we know by the data pro-
cessing inequality [4] that

I(X;ZZZ) ≥ I(X;D)

with equality if and only if (X, D,ZZZ) is a Markov chain. Thus
we see that I(X;ZZZ) = I(X;D) and we have shown the fol-
lowing proposition for direct sequence spread spectrum with
1-bit ADC.

Proposition 1. D is a sufficient statistic and no information
loss is encountered if the receiver just counts D.
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Fig. 2. Mutual information per chip (K = 2) for BPSK and
ternary alphabets, showing that BPSK is not optimal.

We note that

D = d iff
∑

k

ckYk = 2d−K, 0 ≤ d ≤ K.

Hence the usual despreader leads to no information loss
in the 1-bit ADC case. This despreader is also simple to
implement.

3.2. Non-optimality of BPSK for K ≥ 2

The capacity with spreading gain K is given by

CK = max
E[X2]≤P

I(X;ZZZ)
K

= max
E[X2]≤P

I(X; D)
K

.

We note that even though for K = 1 BPSK is optimal, this
is not necessarily the case for K ≥ 2. For example, consider
K = 2 and the ternary alphabet [−1, 0, 1]. When P(X =
0) = 0.15, P(X = 1) = P(X = −1) = 0.425, it is seen
in Figure 2 that for SNR > 6 dB the ternary input leads to a
larger input-output mutual information than BPSK.

3.3. Non-monotonicity of Mutual Information with SNR

Another interesting phenomenon that we have observed is that
for K ≥ 2, depending upon input distribution, as SNR in-
creases, the mutual information I(X; Y ) may not increase
monotonically. For example, consider the case when X is
uniformly distributed on [−2,−1, 0, 1, 2] and K = 8. Figure
3 shows that as SNR increases, I(X;Y ) first reaches a global
maximum, then a local minimum, and finally settles to a lim-
iting value. This behavior has several practical implications.
For example, if for the above 5-PAM constellation, the SNR is
more than 7 dB, then the capacity can be increased by adding
Gaussian noise to the received signal before quantization so
that the SNR becomes 7 dB. In general, identifying the SNR
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Fig. 3. Mutual information per chip (K = 8) for a uniformly
distributed 5-PAM constellation is not monotonic with SNR.

at which the maximum occurs for a given input X seems an-
alytically intractable, though the limiting value as σ → 0 is
easily found and it is given below.

Proposition 2. Suppose P(X > 0) = P(X < 0) = a and
P(X = 0) = 1− 2a. Then

lim
σ→0

I(X; D) =−
K∑

d=0

p(d) log(p(d))

+ (1− 2a)
K∑

d=0

u(d) log(u(d))

where

u(d) :=
1

2K
·
(

K

d

)

and

p(d) = a +
1− 2a

2K

(
K

d

)
, d ∈ {0,K}

=
1− 2a

2K

(
K

d

)
, d ∈ {1, 2, . . . ,K − 1}.

The proof is given in the Appendix. Note that two differ-
ent constellations with an identical a have the same limiting
value of mutual information, irrespective of what their actual
transmit levels are.
The value of a that maximizes this limiting mutual informa-
tion, for a given K, is found to be

â =
R

2R + 2K
, R = exp(

2KK ln(2)
2K − 2

)− 1

3.4. Construction of Good Constellation

Finding the capacity for K ≥ 2 is a non-trivial task and we
resort to the plane-cutting algorithm [5] to find it numerically.
To ensure that the linear program employed by the algorithm
is finite dimensional, we take the state space of the input to
be finite. Next, we develop a heuristic for constructing good
input constellations using the uncoded case.

In practice usually K is large. Now if the symbol x is
transmitted, then for large K, by the central limit theorem,
(D −K ∗ p)/

√
K is Gaussian with zero mean and variance

p(1 − p) where p = Q(−x/σ). Note that to choose the con-
stellation, we could choose the corresponding p-values. The
p-values can be chosen so that the Gaussians centered at the
respective p-values have small overlap. Thus we can con-
struct symmetric constellations by choosing p-values sym-
metric around 0.5. We choose the first point to be p1 = 0.5.
When the corresponding symbol x1 = 0 is transmitted, D/K
is roughly Gaussian with mean 0.5 and standard deviation√

p1(1−p1)
K = 0.5/

√
K. The next point p2 > p1 is cho-

sen such that the α
√

p2(1−p2)
K point of the Gaussian centered

at p2 coincides with the α
√

p1(1−p1)
K point of the gaussian

centered at p1. Thus we are choosing the p-values such that

the intersections of the Gaussians are at α
√

p(1−p)
K points.

The constellation points can be obtained by inverting the Q-
function and scaling to satisfy power constraint. For large α,
we expect the hard demodulator to give small demodulation
error and hence we expect this to be a reasonable choice of
constellation.

Simulation Results: For K = 32 and α = 2, the p-
values obtained were {0.011, 0.186, 0.5, 0.814, 0.989}, and
the corresponding constellation points were such that x

σ =
{−2.287,−0.894, 0, 0.894, 2.287}. The power constraint P
on the input was assumed to be 1, i.e., E[X2] ≤ 1. Figure
4 compares the performance of the heuristic based constel-
lation with that of BPSK, Ternary PAM ([-1 0 1]), and a 21
point PAM uniformly spread over the interval [−2, 2].

In the low SNR regime, noise dominates over the signal
and therefore BPSK leads to only small information loss [5].
However, as the SNR is increased, BPSK becomes quite sub-
optimal due to the absence of {x = 0} transmit level, which
can potentially induce enough randomness in the output so
as to increase the mutual information. The limiting value for
BPSK as σ → 0 is 1

K = 0.0313, which is expected since
H(X) → 1, while H(X|Y ) → 0. The ternary alphabet also
performs worse than the heuristic based and 21 PAM constel-
lations. However, its limiting value as σ → 0 is identical
to that for 21 PAM, since the limiting value depends only
on the probabilities {P(x > 0), P(x = 0), P(x < 0)}, and
not on the choice of alphabet that achieves them. Note that
the heuristic constellation does not show non-monotonicity in
mutual information since its choice is governed by σ. For
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high SNR(σ → 0), the transmit levels in the heuristic based
constellation are also concentrated around 0, which is not the
case with a fixed constellation.

4. CONCLUSIONS

The results presented here are but a first step towards un-
derstanding the fundamental limits of communication perfor-
mance as a function of the speed and precision of receiver
ADC. We have seen that one-bit modulation (BPSK) is opti-
mal for one-bit ADC with symbol rate sampling. The results
for fractionally spaced sampling are expected to be differ-
ent, and to bring up interesting tradeoffs regarding the speed
versus the precision of ADC. Analogous results for multiple
(e.g., 2-4) bits of ADC precision are currently being investi-
gated.

The suboptimality of BPSK for DS spread spectrum sys-
tems with one-bit ADC is not really that surprising in retro-
spect. Even though the input to the despreader has a preci-
sion of one bit per chip, the precision of the output of the
despreader is larger than one, and can therefore convey more
than one bit of information per spread symbol. The high SNR
regime in which we see the nonmonotonicity of mutual infor-
mation (for a given constellation) may not be of practical sig-
nificance, since spread spectrum is usually employed at low
SNRs. However, we see that even at moderate SNRs, there are
significant gains to be obtained from the use of non-BPSK al-
phabets. For example, for a processing gain of 32, we can
see significant gains from constellation optimization even at a
SNR of 0 dB.

5. APPENDIX

Proof of Proposition 2: To find the limiting value of I(X;D),

we first note that as σ → 0, the conditional probability mass
function (PMF) P(D = d|X = x) tends to the unit mass at
d = K for x > 0, P(D = d|X = x) tends to the unit mass at
d = 0 for x < 0, and

P(D = d|X = 0) → 1
2K

·
(

K

d

)
= u(d). (2)

The last limit follows from the fact that the Gaussian den-
sity is symmetric and therefore when x = 0 is transmitted
all 2K output sequences are equally likely. Since P(X >
0) = P(X < 0) = a and P(X = 0) = 1 − 2a, the limit of
P(D = d|X = x) is the mixture p(d).

Using the fact that the entropy of a finite alphabet random
variable is a continuous function of its probability law, we get

lim
σ→0

H(D) = H( lim
σ→0

P(D))

= −
K∑

d=0

p(d) log(p(d)).

Now

H(D|X) =
∫

R
H(D|X = x)FX(dx).

Since H(D|X = x) ≤ log(K + 1), by the dominated con-
vergence theorem,

lim
σ→0

H(D|X) =
∫

R
lim
σ→0

H(D|X = x)FX(dx)

= −(1− 2a)
K∑

d=0

u(d) log(u(d))

where u(d) is as defined in (2) above.
The limiting value of mutual information is now obtained

as
lim
σ→0

I(X;D) = lim
σ→0

H(D)− lim
σ→0

H(D|X).
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