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1. INTRODUCTION

We investigate the problem of tracking targets using a network of binary proximity
sensors. Each sensor produces a single bit of output, which is 1 when one or more
targets are in its sensing range and O otherwise. These sensors are not able to
distinguish individual targets, decide how many distinct targets are in the range, or
provide any location-specific information. Despite the minimal information provided
by an individual binary sensor, a collaborative network of these sensors has been
shown in prior work [Shrivastava et al. 2006, 2009] to yield respectable performance
when tracking a single target: the resolution with which the target can be localized is
inversely proportional to p R%!, where p is the sensor density, R is the sensing range,
and d is the dimension of the space. In this article, we investigate the problem of
multiple target tracking with binary sensors, without a priori knowledge of the num-
ber of targets.

We have chosen to focus on the simple and minimalistic setting of binary sensors
because the cost and power consumption of sensor nodes is a severe constraint in large-
scale deployments, and both can be significantly reduced by restricting the nodes to
provide binary output. Thus, by constraining ourselves to a binary sensing model, we
can work with low-power, low-cost sensor nodes that can form the basis for a highly
scalable architecture for wide-area surveillance. This information can, of course, be
augmented by a small number of more capable sensors (e.g., cameras), although we do
not explore such enhancements in this article.

Examples of sensor modalities that are suitable for low-cost nodes include [Akyildiz
et al. 2002] seismic, acoustic, passive infrared (PIR), active infrared, ultra-wide-band
radar imaging, millimeter wave radar, magnetometer, and ultrasonic. For many types
of sensors, it is possible to use simple thresholding to get a binary reading or perform
onboard signal processing for rough classification. The former option requires drasti-
cally reduced processing, and leads to significant power savings. As an example, for
acoustic sensing (e.g., the Knowles EA-21842 sensor) and magnetometer sensing (e.g.,
the Honeywell HMC1002 sensor), the power consumption can be reduced fivefold by
using binary mode rather than classification mode. In our lab-scale experiments, we
employed PIR sensors due to their good performance, low cost, and ease of systems
integration [Moghavvemi and Seng 2004].

As shown in Shrivastava et al. [2009], the binary sensing model is analogous to
coarse-grained analog-to-digital conversion that filters out rapid variations in the
target’s trajectory. This motivates algorithms that attempt to track only “lowpass” ver-
sions of the trajectory. For multiple targets, however, we encounter significant addi-
tional difficulties, since we cannot tell how many targets are within a sensor’s range
when it outputs a 1. Our first task in this article, therefore, is to understand how
well we can count the number of targets, given a snapshot of the sensor readings. We
employ geometric arguments to characterize when an accurate count is possible, and
provide a lower bound on the number of targets, based on a greedy algorithm for ex-
plaining the sensors’ observations with the minimum number of targets. While these
arguments bring out the difficulty of target counting and localization based on a snap-
shot, they do not preclude the possibility of accurate counting and tracking when we
account for the evolution of the sensor readings in time, using a model for the targets’
behavior. To this end, we develop a particle filtering algorithm which employs a cost
function penalizing changes in velocity. It is shown by simulations that the particle
filter algorithm is effective in tracking targets even when their trajectories have sig-
nificant overlap. The algorithm is general enough to incorporate a simple model for
nonideal sensing, and provides acceptable tracking performance for our experimental
system with PIR sensors even when one of the sensors fails.
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For a large part of the article, we restrict our attention to one-dimensional (1D) sys-
tems. This enables us to gain fundamental insight, as well as to easily display multiple
trajectories on two-dimensional (2D) space-time plots. However, many of our geomet-
ric target counting arguments, and also the particle filtering algorithm, generalize to
higher dimensions: we comment on the generalization of the geometric target counting
arguments to higher dimensions as we go along, while the development of the particle
filter algorithm is itself general, and its application to a two-dimensional system is
validated through a sample simulation study.

Our focus in this article is on the efficacy of collaborative tracking rather on the
communication protocols used by the sensor nodes. Thus we assume that all of the
sensor readings are available at a centralized processor, which can then estimate the
targets’ locations and trajectories. Distributed implementations of our algorithms, in
which neighbors collaborate to estimate segments of trajectories, are possible, but are
not considered here.

The rest of the article is organized as follows. Section 2 provides a summary of the
prior related work. Section 3 discusses the problem of target counting based on a snap-
shot of the sensor readings. In Section 4, we describe our particle filtering algorithm.
Section 5 provides simulation results, while Section 6 describes our experimental setup
and results. We end with the conclusions in Section 7.

2. RELATED WORK

The problem of tracking multiple targets using sensor networks has been explored in
many prior references [Jung and Sukhatme 2002; Liu et al. 2004; Oh et al. 2005; Reid
1979; Shalom and Li 1979; Shin et al. 2003]. Owing to its simplicity and minimal
communication requirements, the specific use of binary proximity sensors for track-
ing applications has also drawn considerable attention of late. However, most of the
work related to binary sensing has been applied to the case of tracking a single target
[Aslam et al. 2003; Kim et al. 2005; Shrivastava et al. 2009]. The tracking techniques
employed in the large-scale deployment in Arora et al. [2004] can be loosely interpreted
in terms of a binary sensing model, even though a variety of sensing modalities and
a variety of targets were considered. Oh and Sastry [2005] contained a distributed
tracking algorithm for a binary sensor network, but assumed perfect knowledge about
the number of targets and their identities, unlike the present work.

In our work, we investigate both target counting and tracking. Prior work on
counting targets includes Fang et al. [2002], but it assumed more detailed sensing
capabilities than our simple binary model. The classical framework for tracking is
based on Kalman filtering, with a linear model for the sensor observations corrupted
by Gaussian noise; for example, McErlean and Narayanan [2002] investigated the
use of Kalman filtering for distributed tracking. In recent years, the use of parti-
cle filters, which can handle more general observation models, has become popular
[Arulampalam et al. 2002]. However, most prior work on the use of particle filters
for tracking in sensor networks [Coates 2004; Khan et al. 2003, 2005] has assumed
a richer sensing model than the binary model we consider. Exceptions are the prior
work in Shrivastava et al. [2006, 2009] on the use of particle filters for tracking a sin-
gle target using binary sensing, and also the preliminary results from our conference
publication [Singh et al. 2007]. In this article, we build on Singh et al. [2007], provid-
ing new analytical design criteria that assist in the efficient and reliable operation of
our particle filter algorithm, and present a more detailed simulation-based analysis to
evaluate the performance of the algorithm. In addition, we include simulation results
and new theoretical proofs for two dimensions (Singh et al. [2007] only considered a
one-dimensional setting).
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3. SNAPSHOT-BASED INFERENCE: TARGET COUNTABILITY

We begin our investigation by asking under what circumstances an algorithm can re-
liably determine the number of distinct targets in the field, given a snapshot of the
sensor readings. In order to develop fundamental geometric insights, we restrict at-
tention in this section to an idealized model in which each sensor’s coverage area is a
circular disk of radius R: each sensor detects a target without fail if it falls within this
disk, and does not produce false positives or negatives. While we develop our basic
ideas and theorems in one dimension, we comment on their relevance and extensions
to higher dimensions as appropriate.

3.1. Target Counting with Binary Sensing

Some spatial separation among the targets is clearly a necessary precondition for ac-
curately disambiguating among different targets, but what does that mean, and how
much separation is enough? For instance, is the following simple condition adequate:
each target moves sufficiently (arbitrarily) far from the remaining targets at some
point during the motion. Let us call this the condition of individual separation. Un-
fortunately, as the following simple result shows, this alone is not enough to count the
number of targets accurately.

THEOREM 1. Even arbitrarily large individual separation is not sufficient to reliably
count a set of targets using binary sensors.

PROOF. We give a construction in one dimension establishing the claim. Imagine a
group of m targets moving at uniform speed along a straight line L. Initially, all targets
are together and appear as one target to the sensor field. Now let target 1 speed up
and move away from the rest of the group. Once it moves sufficiently far to the right,
we can infer that there are at least two targets. Next, target 1 stops and waits until
the rest of the group meets up with it, and then they all resume their motion. Then
target 2 separates from the rest of the group and repeats the action of target 1, and
so on. One can easily see that, in this scenario, every target achieves large individual
separation from the rest, and yet no binary sensing-based algorithm can ever decide
whether there are two targets or m targets, for an arbitrary value of m. O

On the other hand, if the group of targets has pairwise separation more than 4R,
then binary sensing permits precise counting of targets.

THEOREM 2. Suppose every pair in a set of targets has separation more than 4R
in d-dimensional Euclidean space, where R is the sensing range, and suppose that the
average sensor density (per unit area) is p. Then, using binary proximity sensors, we
can precisely determine the number of distinct targets as well as localize each target
within a spatial error of at most ©(1/pR41).

PROOF. Suppose there are m targets, and let S; be the set of sensors that sense
target i. Because each sensor’s range has radius R, by the assumption of pairwise
target separation, we must have S; N S; = @, for any two targets ¢ and j. (This follows
because the union of two overlapping ranges has a diameter less than 4R, while any
two targets are assumed to be more than 4R apart.) As a result, the “on” sensors are
naturally partitioned into m groups, one per target: all sensors in the ith group are
on precisely because of one target. Thus the target sensed by the ith group S; can be
localized to the common intersection of all the ranges in S; and the complement of the
ranges of all the “off” sensors. The prior analysis for single-target localization [Shri-
vastava et al. 2009] has shown that the diameter of this intersection region (which
need not be connected) is ®(1/pR%1). This completes the proof. O
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Fig. 1. A sample illustration for the feasible target space (F). Here, g1 and g2 represent the contributions
of the “ON” sensors to F.

In some sense, the preceding example and the theorem settle the “easy” case: when
the objects are pairwise far apart, they can be counted as well as localized quite pre-
cisely, but individual separation does not help in tracking. We now delve into the more
complex (and interesting) situation when these easy conditions do not hold. We point
out that there is no local fundamental limit based purely on minimum separation
among targets: two targets no matter how close can always be disambiguated if two
sensors with nonoverlapping sensing ranges detect them. At the same time, simply
increasing the sensor density to disambiguate nearby targets does not seem possible
either. (However, as prior work [Shrivastava et al. 2009] has shown, the “localization”
of an individual target does improve linearly with the increasing density.) It seems
that we need a more global argument to understand the limit of target counting.

We now focus on one-dimensional space. Much of the difficulty in the binary sensing
model has less to do with the dimension of the ambient space and more to do with the
“interference” between the influence of different targets on the sensor readings. Any
impossibility or hardness results we prove in one dimension naturally hold in higher
dimensions as well.

3.2. The Geometry of Target Counting

We begin with some geometric preliminaries. Suppose we have N binary proximity
sensors deployed along a line. Each sensor’s range is then an interval of length 2R.
We use the notation C; to denote the interval covered by sensor i (that is, sensor i
outputs a 1 if and only if a target falls in C;). We assume that the domain of interest is
covered by the union of the {C;}, that is, that there are no gaps in coverage.

Any positioning of targets along the line leads to a vector of binary outputs from the
sensors. In particular, we have contiguous groups of “on-sensors” separated by groups
of “off-sensors.” Geometrically, the on-sensors inform us about the intervals on the line
where the targets might be, and the off-sensors tell us about the regions where there
are no targets. If we let I be the set of sensors whose binary output is 1 and Z be the
set of sensors whose output is 0, then all the targets must lie in the region F, which
we call the feasible target space:

F=JC-Jc¢

iel JEZ

The region F' is a subset of the line, whose connected components are unions of
portions of the sensing ranges of the on-sensors. In particular, for sensor i, the portion
of its sensing range that appearsin Fis g, =C; — |J ez C;, namely, the part not clipped
by the off-sensors. An example is shown in Figure 1. The feasible target space is
simply the union of these (overlapping) subintervals: F = |J,_; g:.

The feasible target space has an interesting geometric structure. While each on or
off sensor contributes exactly 1 bit, the information content of the off sensors seems
richer, especially in localizing the targets: the 1 bit only tells us that there is at least
one target somewhere in the sensor’s range, the 0 bit assures us that there is no target

ACM Transactions on Sensor Networks, Vol. 8, No. 1, Article 5, Publication date: August 2011.



5:6 J. Singh et al.

ON

oy )

Case 1

( a C ) ON
o)

Case 2

Fig. 2. Positively independent sensors: case 1 shows two sufficiently far apart on sensor; case 2 shows two
on sensors separated by an off sensor.

anywhere in the sensor’s range. This observation leads to the following geometric
property of the region F.

LEMMA 1. Any two connected components of the feasible target space F are sepa-
rated by at least distance 2R.

PROOF. Choose a point x that is between two connected components of F. Since x
must lie in the range of some sensor, and x ¢ F, that sensor must have binary output 0.
A sensor with binary output zero eliminates length 2R of the line for possible locations
of the targets, and so the “gap” containing the point x must be at least as wide
as 2R. O

3.2.1. Fundamental Counting Resolution. We now use this geometric framework to es-
tablish a theorem on the fundamental limit of target counting. Toward that goal, let
us define two sensors to be positively independent if (i) they both have binary output
1, and (ii) either their sensing ranges are disjoint or they belong to different connected
components of the feasible target space F. (Note that the independence property is
defined with respect to a particular instant, for a given vector of sensor outputs.) In
other words, as illustrated in Figure 2, two sensors are positively independent if they
are both detecting targets and are either sufficiently far apart (case 1) or are separated
by an off sensor (case 2). Then, the following result gives a necessary and sufficient
condition for correctly counting the number of targets along a line.

THEOREM 3. A set of k targets on a line can be counted correctly if and only if there
exist k (pairwise) positively independent sensors.

PROOF. We recall that by definition independent sensors have output 1. The “if”
part of the claim is therefore immediate: due to their independence, no two sensors
can be on because of the same target, and so there must be at least & targets. In order
to show the “only if” part, we argue that, if 2 independent sensors do not exist, then the
counting is not guaranteed to be correct. In other words, the sensors cannot distinguish
between two scenarios, one with £ targets and one with fewer than % targets, thereby
violating the correctness.

Without loss of generality, let us number the targets 1,...,% in the left-to-right
order along the line, and generate a list of sensors s1,s2,...,s; as follows. Let s; be
the leftmost sensor with binary output 1. In general, let s; be the leftmost sensor
with output 1 that is independent of s;_;. Since we have assumed that £ independent
sensors do not exist, we must have j < k. By the pigeon-hole principle, therefore, there
must be a sensor among s, s2, ..., s; whose range in F includes at least two targets.
We now observe that the binary outputs of none of the sensors will be affected if we
translated all the targets to the right until each target was at the rightmost point
of their independent sensor’s range g;. The sensor with two or more targets clearly
has a redundancy, and the binary outputs will not change if one of those targets was
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eliminated. It follows that the counting algorithm cannot distinguish between the case
of k targets and the £ — 1 targets. This completes the proof. O

3.2.2. Remark on Counting Resolution. By the previous theorem, the number of distinct
targets that can be “resolved” at any snapshot of the sensing output equals the number
of positively independent sensors. Each such sensor is either distance 2R away from its
left neighbor (if that neighbor is in the same connected component), or it is preceded
by a sensor with binary output 0, which guarantees that no target is present in its
coverage area of length 2R. This can be interpreted “geometrically” to mean that in
a space of length 2¢R, at most ¢ + 1 targets can be resolved. Thus, irrespective of
sensor density, we can only hope to achieve the counting resolution of about one target
per distance 2R. The payoff of a higher-density deployment comes either in tracking
widely separated targets or in resolving two closely spaced targets.

3.3. A Lower Bound on the Target Count

Given the ambiguity in the mapping between sensor readings and target locations, it
is of interest to ask what the simplest explanation for a given snapshot of sensor read-
ings is. This Occam’s razor viewpoint translates to determining the minimum number
of targets consistent with the sensor readings. Interestingly, in one dimension, this
minimum number matches precisely the maximum number of independent sensors
used in Theorem 3.

THEOREM 4. Given a one-dimensional field of binary proximity sensors, let F be
the feasible target space corresponding to their signals at a particular time. Let T be
a minimal set of targets consistent with F and let S be a maximum set of positively
independent sensors for F. Then, we must have |T| = |S|.

PROOF. Let s1, 89, ..., sy be the sensors with binary output 1, and let g1, g2, ...,8mn
be the intervals they contribute to F. (Recall that g; is just the range of's; clipped by the
off sensors’ ranges.) We can now think of 7" as the minimum number of points needed
to “hit” all the intervals g1,g9,...,8n, and S as the maximum number of pairwise
nonoverlapping intervals in this collection. That these quantities are equal can be
seen by the following simple greedy scheme, illustrated in Figure 3:

sort the intervals g1, g2, ...,gn in the increasing order of their right end-
points; pick the first interval (call it ) in this order and add it to S; delete
all intervals that overlap with 4; pick the next available interval; and repeat
until no more intervals are left.

A simple analysis shows that this greedy scheme finds the maximum possible nonover-
lapping intervals in the set, and this correctly returns S. It is also clear that, by
putting a target at the right endpoint of each of these intervals, we get the minimum
possible set T: since intervals of S are disjoint, we clearly need at least one mem-
ber in T for each member in S; that this is also sufficient follows because the only
intervals not considered are the ones that overlap with members of S at their right
endpoints, where the target point is placed. This shows that |T'| = |S|, and the proof is
finished. O

The previous theorem establishes a pleasing fact that a minimal target hypothesis
is consistent with the fundamental limit of target countability using binary sensors.
The greedy algorithm in the proof of the theorem can also be used to determine a set of
target locations that provides a minimal explanation for the readings. The algorithm
is highly efficient as well: it requires a single sorting and a scan, so takes O(nlogn)
time, if n is the number of sensors.
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Fig. 3. Illustration of the greedy scheme in Theorem 4. s indicates an off sensor, while other sensors are on.
The interval & in step 1 is g1, while in step 2, it is g4.

The ideas of the minimum target set 7" as well as the maximum independent sensor
set S extend naturally to two or more dimensions, although computing them becomes
provably intractable (NP-complete). In two or more dimensions, however, they do not
always have the same value, although the inequality |S| < |T'| is always satisfied. That
is, the maximum number of independent sensors is a lower bound on the minimum
number of targets that are consistent with F'. See Appendix A for detailed proofs.

Having analyzed the intrinsic limits of target counting using sensor snapshots, we
now move on to the problem of tracking the targets across multiple snapshots. One
possible approach to do this is to exploit our preceding geometric results to perform
snapshot based inferences at each time instant, and then piece the snapshots together.
For instance, we could use our greedy algorithm to determine a set of target locations
that provides a minimal explanation for the readings at each time instant, and then
merge them across time to obtain a set of possible target trajectories. In a worst-case
scenario, where the targets move along arbitrary (adversarial) paths with arbitrarily
changing velocities, we cannot hope to do any better than this. However, in a more
benign and practical setting where the targets’ motion exhibits a certain degree of
temporal correlations, we can possibly count and track the targets more accurately
by exploiting these correlations. Specifically, instead of taking a greedy minimalistic
approach, we can rather work with a potentially large pool of candidate trajectories
(obtained by sampling the feasible target spaces), and hope that, on letting these tra-
jectories evolve over time, only a subset of them (which actually correspond to the true
target paths) would exhibit the desired temporal correlations. In the following sec-
tion, we develop a particle filter algorithm that does precisely this, and show through
simulations and lab-scale experiments that it is quite effective in tracking multiple
targets.

4. TRACKING ACROSS SNAPSHOTS: PARTICLE FILTER ALGORITHM

We consider a centralized model in which a tracker node collects the information gath-
ered by all the sensors over a certain interval of time, and processes the collected data
to estimate the trajectories. This centralized architecture may be the most practical
option in many settings, given the minimal communication needed to convey the bi-
nary sensor readings. However, there are many possible approaches for obtaining
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distributed or hierarchical versions of our algorithms, and some of these may be fruit-
ful topics for future work.

Before providing details of the particle filter algorithm, we first provide a formal
problem statement. Suppose that there are @ targets, moving in a field of binary
proximity sensors. Each sensor reports its 1-bit reading, regarding the presence or
absence of targets within its range, at the discrete set of time instants ¢t € {1,2,..., T}.
Based on the sensor readings, let the set of feasible target spaces be F = {F[t]}, where
F[f] denotes the feasible target space at instant ¢. Denote the location of the gth target
at the time instant ¢ by x,[t], for ¢ € {1, ..., @}. The true trajectory of the gth target is
given by the set of its locations at the T' time instants, that is, {x,[¢{] : ¢t € {1,..., T}}.
Given the set 7, and without any prior information about the number of targets @, we
wish to generate estimates of the target trajectories, denoted by {y,[t] : ¢ € {1,..., T}},
where y,[t] is an estimate of the location of the gqth target at instant .

The particle filter approach for tracking a single target has been used before in
Shrivastava et al. [2009]. We next provide an outline of this approach, discuss its limi-
tations in the setting of multiple targets, and then present a modified version tailored
to the multiple-targets problem.

4.1. Tracking A Single Target

The particle filter algorithm for a single target (@ = 1 known beforehand) works as
follows. We begin at ¢+ = 1, and proceed step by step to ¢ = 7, while maintaining a
(large) set of K candidate trajectories (or particles) at each instant. Each of the K
particles at an intermediate time ¢ is a candidate for the estimated trajectory till time
t, that is, a candidate for {y;1[#] : ¢ € {1,...,t}}. Let us denote the kth particle at time ¢
by P., for 1 < k£ < K. For each k, P!, is a vector of length ¢, and let it be specified by the
set of locations (%;[1], - - - , Xz[#]). For instance, at ¢t = 3, each particle would be a vector
of length 3, and would be a candidate for an estimate of the true target path for the
first three time instants. The algorithm is initialized by picking K points in a uniform
manner from the set F[1] to get the set of K particles at the first time instant {Pi}.
Each of these is extended to ¢ = 2 by picking a point randomly (in a uniform manner)
from the set F[2]. This generates the set {Pi}. Now, given K particles at time ¢ > 2,
the K particles at time ¢+ 1 are obtained in the following manner. Each of the particles
P, is extended to time ¢ + 1 by choosing m > 1 candidates for % [¢ + 1], using uniform
sampling over the feasible set F[t + 1]. This produces a total of mK particles, each a
vector of length (¢+ 1). Based on a cost function, the K lowest cost particles out of these
mK particles are picked and designated as the K surviving particles at time (¢ + 1).
The algorithm proceeds in a similar manner till the last instant 7', and, that time,
the particle with the smallest cost function out of the K particles {P{} is picked and
designated as {y1lt] : ¢ € {1, ..., T}}, that is, it is our estimate of the true target trajec-
tory. The basic premise underlying the particle filtering approach is that, if the choice
of the cost function is in accordance with the actual motion of the target, then the
particles that do not conform to this motion will eventually drop out due to large cost
functions, while the surviving particles will be good estimates of the true trajectory.
While we pick the lowest cost particle at the last time instant as our estimate of the
true path, if we look at the entire set of the K surviving particles {PZ}, it is very likely
that a significant fraction of them would not differ appreciably from the best one. In
other words, we would expect to see a cluster of good particles around the best one.
This observation is crucial as we now consider multiple targets, since the clustering of
particles enables us to distinguish between, and track, multiple targets. Specifically, if
the paths taken by the different targets are (reasonably) separable over time, then we
would expect that the K surviving particles at the last time instant would comprise

ACM Transactions on Sensor Networks, Vol. 8, No. 1, Article 5, Publication date: August 2011.



5:10 J. Singh et al.

of distinct clusters of particles, with each cluster corresponding to one of the actual
targets. This leads to the intuition that the particle filtering approach can be employed
to track multiple targets by looking for clusters of particles among the survivors at the
last time instant, instead of choosing a single best particle. Unfortunately, this naive
extension of single-target tracking does not serve our purpose completely: while in
general we expect clusters of particles in the vicinity of each of the target paths, in
certain situations, we may end up getting clusters around only a subset of the target
paths. As a simple example, consider an instance when one of the targets (say q1) is
far from the others, and moves in a manner that is much more amenable to the cost
function than the rest of the targets. Since the particle filter algorithm retains the K
best particles, it is quite possible that all of these “lock onto” the trajectory of target q1,
discarding particles corresponding to other targets. A brute force approach to tackle
this problem of monopolization would be to increase the number of particles that we
store (i.e., increase K), but the number of particles needed to make this work, and the
associated computational complexity, can be excessive. Instead, as described in the
next section, we propose an algorithm in which we identify cluster formation as we go,
and limit the number of particles allocated to each cluster.

4.2. Tracking Multiple Targets: The CLUSTERTRACK Algorithm

We call our proposed scheme CLUSTERTRACK. The method is specifically designed to
prevent a subset of targets from monopolizing all of the available particles. To this
end, instead of looking for clusters at the end, we monitor their formation throughout
the tracking process, and limit the number of particles per cluster. We still retain K
particles at each time instant. However, instead of picking the K best particles, we
pick the K best particles subject to the constraint that the number of particles per
cluster does not exceed a threshold H. A cluster is defined as a group of particles
that are “similar,” where similarity between two particles is measured in terms of a
distance metric to be specified. Thus we scan the set of particles in increasing order of
cost functions as before, but we retain a particle only if the number of similar particles
retained thus far is less than the threshold H. This procedure enhances the likelihood
that the particle filter catches all of the targets. In order to ensure that we do not end
up scanning the entire sequence of particles at each instant, we can also put a limit L
(L > K) on the number of particles that we consider. In this case, we stop the search for
particles when either K particles have been retained, or L of them have been scanned,
whichever happens first. The actual number of particles retained at time ¢ is denoted
by K;, where K; < K.

At the final time instant, we take the best particle from each of the clusters obtained,
and designate it as our estimate of the trajectory followed by one of the targets. An
alternative would be to choose a “consensus path” (e.g., based on a median filter at
each time instant) for each cluster.

The pseudo code description for the CLUSTERTRACK at a particular time instant ¢ is
given in Algorithm 1. Cluster; represents the jth cluster, count; denotes the number of
particles retained in Cluster, N¢ is the number of clusters, H is the maximum number
of particles to be retained from a particular cluster, and L is the maximum number of
particles to be inspected in order to find the surviving particles at time ¢.

4.2.1. Sampling Strategy and Cost Function. Step 2 of the algorithm requires us to ex-
tend each of the surviving particles to the current time instant ¢, while step 3 requires
assigning a cost to each particle. The first task is performed by picking samples uni-
formly from F[¢], with a fixed sampling density of m, samples per unit area. Note that
the total number of samples picked is thus a function of time (it depends on the size of
the set F'[f]), and is hence labeled as m;.
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Algorithm 1: CLUSTERTRACK (F) at time (¢)

1: Get the set {Pz_l} of K;_; surviving particles from time ¢ — 1.

2: Extend this set to time ¢, generating a total of m;K;_; particles.
3: Sort the m;K;_; particles in ascending order of cost to get the set {f’l, R f)mth_1}
4: Put P; in Cluster;, P, =P;, Nc =1, Count; = 1,i =2,k = 1

5: while ( < L and 2 < K) do

6. if(P; e Cluster; for some j) then

7: if Count; < H then

8: Count; < Countj+ 1,k < k+1

9: Retain P; and P = P;

10: else

11: Abandon f’i

12: end if

13: else

14: Make new cluster for f’i, Ne <« Ne+1,k«—k+1

15: P, =P,

16: end if

17 i«i+1
18: end while

We work under the assumption of smooth target trajectories (i.e., the targets do not
have abrupt velocity changes), and hence pick a cost function that penalizes changes
in velocity. Let P = (%[1], ..., Z[¢t]) denote a particle. The instantaneous estimate of
this particle’s velocity vector at any time n € [1,¢ — 1] is the increment in position
X[n+1] — x[n]. The instantaneous contribution to the cost, in going from time nton+1,
is taken to be the norm of the change in velocity

clnl = |@&[n + 1] — z[nl) — &[] — 2[n — 1D
=||1Z[n+ 1] + 2[n — 1] — 2&[n]||

where || - || denotes Euclidean norm. Assuming that rapid accelerations are unlikely in
smooth paths, the cost c[n] should be inversely related to the probability that a target
moves from the location Z[n] at time n to &[n + 1] at time (n + 1), given that it had
moved from X[n — 1] to Z[n] between time instants (n — 1) and n. The net cost function
associated with the particle P is simply taken to be the sum of the incremental costs:

>z clnl.

4.2.2. Choice of Algorithm Parameters and Clustering Criterion. The performance of CLUS-
TERTRACK depends on the criterion we adopt to cluster different particles, and
also on the choice of the following tunable parameters: m, (the sampling density);
K, L and H (the maximum number of particles retained at any time, the maxi-
mum number of particles scanned at any time, and the maximum number of parti-
cles retained in a cluster at any time, respectively). We focus first on the choice of
parameters.

Choice of the parameters. If the motion of the targets is in accordance with the choice of
our cost function, increasing the value of m,, and/or H (with corresponding increase in
K and L) is expected to provide improved performance in terms of generating lower-
cost estimated trajectories, since it allows us to populate the sample space with a
larger number of particles, and/or to retain a larger number of particles at each step.
Of course, the level to which we can increase them is governed by the complexity we
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can tolerate. We assume that the values of m, and H are fixed, and try to analyze the
values of K and L that we should use for CLUSTERTRACK.

Assuming for the moment that we have an estimate @ for the number of targets,
it is easy to obtain suitable rules of thumb for K and L. Specifically, if we retain H
particles per target, then the total number of particles we retain should be K ~ H Q.
In order to get a suitable value for L, we need to answer the following question: what
is the maximum number of particles we need to scan to make sure that particles corre-
sponding to all targets are caught? To answer this question, consider the H particles
corresponding to a particular target (say q1) that were retained at the previous time
instant. Denoting the size of the feasible target space F at the current time instant by
Sr, each of these H particles will be extended to the current time by picking m, Sy sam-
ples from F, so as to generate a total of H m, Sy particles. However, out of this huge
set, we expect that the set of good particles (in terms of the cost function) would be re-
stricted to those for which the current sample is picked in that portion of F which was
actually contributed by the target ¢1. It is hard to precisely quantify the contribution
which a particular target makes to F' at any given time instant, since it is governed not
only by its own location, but also by the location of the targets in its vicinity. However,
an empirical estimate A of theTaverage contribution can be obtained from the collected
sensor data as follows: A ~ Z;,—SQF(D, where Sr(#) denotes the size of the feasible target
space at time ¢, T is the total number of time instants, and @ is the estimated number
of targets. Given this empirical estimate, we expect that, on average, the number of
good particles corresponding to a particular target would be close to H m, A. Since
we need to catch the good particles corresponding to each of the targets, a good design

T
choice for L, therefore is, (H m, A) @ = H m, w Note that this does not directly
depend on the estimated number of targets, but only on the size of the resulting fea-
sible target space. This makes intuitive sense, since, if we keep adding more targets
without changing the feasible space, the total number of smooth particles that we can
populate the space with would not change.

Clustering criterion. ’IA‘he decision in step 6 of the algorithm (whether the particle
under consideration, P;, belongs to any of the existing clusters) is made as follows. For
each of the N¢ existing clusters, denote by CH; the first particle that joined the jth
cluster, where j € {1,---, N¢}. We refer to this first particle CH; as the cluster-head
of the jth cluster. For time instant ¢, both P; and CH ; are vectors of length ¢. Define
the distance between them to be the mean of the absolute differences between their
components, that is, D(P;, CH)) = 1>/ |P;[l] — CH,[l]]. Compute D(P;, CH)) for
each j, and compare the minimum of these distances against a threshold Dy. If the
minimum is smaller than the threshold, conclude that the particle P; belongs to that
cluster whose cluster-head has the minimum distance from it. Otherwise, conclude
that the particle does not belong to any of the existing clusters. To pick the threshold,
we need to answer the following question: for what maximum mean separation
between two distinct particles should we consider them to correspond to the same true
trajectory? From the preceding discussion, we already have an empirical estimate A
for the average contribution that a target makes to the area of the feasible space. Thus
a suitable choice for the threshold D, is (A)7 (where n denotes the dimensionality of
the space), since we can expect that two particles that correspond to the same target
would have maximum average separation close to (A)r.

It remains to specify an estimator for the number of targets @. In one dimension,
as discussed in Section 3.3, we can obtain a lower bound on the target count at each
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time instant. The maximum of these lower bounds provides a good lower bound on @,
which would actually be tight if the targets separate out just enough even at only one
time instant. In our simulations, we investigated the performance of the algorithm
for different choices of @ greater than the maximum lower bound. For two or more
dimensions, computation of the bounds on the target count becomes intractable. In
such a scenario, a simple lower bound on the target count is the maximum number
(over all time instants) of disjoint regions that form the feasible space. This lower
bound would be tight if the targets were separated widely enough even at only one
time instant.

Finally, note that in spite of using the suggested analytical rules for the various
parameters, there is no theoretical guarantee that the CLUSTERTRACK algorithm will
catch all targets (even if our estimate @ is correct). However, once the algorithm has
been run, we can perform a simple test to check whether the generated trajectories
at least satisfy the instantaneous lower bounds on the target count. As described in
detail in Appendix B, if we find that the number of trajectories is smaller than the
lower bound, then we run the algorithm again to generate additional trajectories.

Next, we present simulation results to evaluate the performance of our tracking
algorithm.

5. SIMULATION RESULTS

Most of our simulations were for a one-dimensional system with sensors placed uni-
formly along a line (see Section 5.3 for 2D simulations). We denote the sensor radius
by R, the sensor density by p, the sampling density by m,, and the location of the
gth target at instant ¢ by x,(¢). Further, let X denote the collection of the true target
locations, for all the targets, over all the time instants.

The geometry of our sensing model is best revealed by expressing our results
in terms of scale-invariant parameters. Note first that a system with parame-
ters (R, p, m,, X) has the same performance as that of a system with parameters
(g, po, Myat, %), for any positive scale factor «, except that all trajectories also scale

by % Consequently, we analyze and report our results as a function of the following
normalized parameters: (p R, m, R, %). Note that p R is the number of sensors per unit

radius, m, R is the number of samples we pick per unit radius, and % denotes the
positions of the targets in units of R.

We begin with an ideal sensing model, wherein each sensor detects the targets
within its range without any misses. We then show that our algorithm also works
well for a simple model for nonideal sensing.

5.1. Tracking with Ideal Sensing

We considered five targets, and generated trajectories over 20 time instants for
each of them. In keeping with our assumption of smooth target trajectories (i.e.,
no abrupt velocity changes), we picked the velocity of a particular target, at each
instant, randomly within + 20 % of some mean value (using a uniform distribution).
The model applies, for instance, if we consider the motion of vehicles on a freeway,
over a reasonably short time window. The parameter p R was taken to be 1 (i.e., the
separation between consecutive sensors was equal to the sensing radius, so that the
coverage areas for two adjacent sensors had 50% overlap). For the CLUSTERTRACK
algorithm, we took the maximum number of particles per cluster, H = 25, and the
sampling density m, R = 15. Each of the plots shown ahead is a location v/s time plot.
Solid curves (colored red) denote the actual target paths, while dashed and/or dotted
curves (colored blue or black) denote the estimated trajectories.
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Fig. 4. Example scenarios to depict the performance of CLUSTERTRACK with roughly constant velocity
motion, for two different settings (plots (a) and (b)). (Solid curves are used to denote the actual target paths,
while dashed and/or dotted curves denote the estimated trajectories). Plot (c) shows the results for the
same setting as in plot (b), in a simulation run that resulted in some spurious estimated trajectories as well
(marked out by the special characters).

With (roughly) constant velocity motion, as long as the velocities of two targets are
not equal, they are guaranteed to separate out at some point of time. We therefore
simulated two types of scenarios: (a) targets starting out well separated, getting close
to each other, and then separating out again; (b) targets starting in close proximity
to begin with, and then separating out. We found that CLUSTERTRACK performed
fairly well in both settings. Sample plots are shown in Figures 4(a) and 4(b), each
corresponding to a single simulation run. We see that the algorithm succeeded in
catching and tracking all targets. We note that the performance of the algorithm
varied across simulation runs, and, over multiple runs, the algorithm generated
between five and seven trajectories, with five of the trajectories almost invariably
providing good approximations of the true paths. For example, the results from a
simulation resulting in seven estimated trajectories are shown in Figure 4(c), where
the additional spurious estimates are marked by the special characters. Note that we
got spurious estimates of both types, low-cost smooth estimates (the estimate marked
by ’0’), and also high-cost estimates with sharp transitions (the estimate marked
by ’*’). In general, the emergence of low-cost spurious estimates was governed by
the nature of the true trajectories: if the true trajectories allow smooth transitions
from one to another, low-cost spurious estimates can arise. On the other hand, the
high-cost spurious estimates were seen to emerge only in (a subset of) those cases
when the algorithm had to be rerun, because the trajectories generated in the first
go could not satisfy the lower bounds on the target count. As explained in Appendix
B, this rerun of the algorithm constrains the new trajectories to pass through some
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particular connected components of the feasible target space, so that it can result in
the generation of rapidly fluctuating trajectories as well. Of course, given their high
cost, such spurious estimates are very unlikely to correspond to any actual target.

To obtain the preceding results, we took @, the estimate of the number of targets,
to be exactly equal to the maximum of the instantaneous lower bounds on the target
count. (Remember that we need @ in order to decide the values for some of the parame-
ters of the algorithm.) Although this estimate was accurate, we found that, in the first
go, the algorithm usually managed to catch four (occasionally three, or, five) of the five
targets. The remaining targets were caught when the algorithm was run again in order
to satisfy the lower bounds. Given this observation, it is worthwhile to evaluate the per-
formance of our algorithm for larger values of @. This increases the likelihood that the
algorithm catches all the targets in one go, albeit at the cost of generating additional
spurious trajectories. For the same settings as in Figures 4(a) and 4(b), we tested the
performance with @ as high as twice the maximum of the instantaneous lower bounds.
We found that the algorithm did increasingly manage to catch all the targets in one
go, and there was no significant increase in the number of spurious estimates.

We also note that, if the overlap between the trajectories is significantly increased,
the algorithm can fail to catch some of the targets. An example of such a setting is
provided later, when we consider the impact of variations in the system setup on the
performance of the algorithm.

For the preceding scenario (relatively constant target velocities), the low-cost spu-
rious estimates formed by joining pieces of the true paths are less likely to emerge as
compared to the estimates that actually correspond to the true paths. This is simply
because transitioning from one constant velocity path to another requires a change in
velocity (resulting in a higher cost function), as opposed to continuing on one partic-
ular path. As a result, low-cost spurious estimates emerge quite rarely. However, if
we now consider a model that allows for some velocity variations to begin with, while
still working with a cost function that penalizes changes in velocity, the likelihood of
getting spurious estimates increases. Specifically, if the true paths are such that the
estimates obtained by merging them actually have smaller cost functions than the es-
timates corresponding to the true paths, the algorithm is likely to generate the former
category of estimates. An example scenario is shown in Figure 5(a), where we consider
constant acceleration motion, so that the target velocities vary over time. As is evi-
dent in this particular situation, the estimates formed by combining pieces of the two
trajectories have smaller cost functions than the true trajectories themselves. While
we constructed this example specifically to show how our decision to penalize velocity
variations may not be the most appropriate choice when the targets do vary their ve-
locities, we note that there can be many other nonconstant velocity scenarios where
it can still provide good performance. Figure 5(b) shows such an instance, with five
targets moving with constant accelerations. We found that the algorithm tracked all
five targets correctly in almost all the simulation runs, while generating two to three
spurious estimates in some of the runs.

Remark. In the simulation results we have presented, all the targets did separate
out at least for one time instant, so that our lower bound on the estimate of the target
count @ is tight. We also tried to simulate scenarios in which this was not the case, so
that the lower bound was not tight. While we managed to find example instances in
which the algorithm still was able to catch all the targets (this required us to use a @
significantly larger than the lower bound), in general, there is no guarantee that the
algorithm will succeed. An interesting open problem is to determine conditions under

ACM Transactions on Sensor Networks, Vol. 8, No. 1, Article 5, Publication date: August 2011.



5:16 J. Singh et al.

Location /R
Location/R

O 4 6 5 10 12 1w 16 18 2
Time Time

Fig. 5. Example scenarios to depict the performance of CLUSTERTRACK with constant acceleration motion.

Plot (a) shows a situation where spurious estimates can have smaller cost functions than the estimates

corresponding to the true trajectories, so that the true trajectories may not be generated by the algorithm.

However, in less averse scenarios, CLUSTERTRACK still performs very well, as shown in plot (b).

which we can exploit the temporal evolution of trajectories to get an accurate target
count, even if all targets do not separate out at any given time instant.

5.1.1. Impact of Variations in the System Parameters. In this subsection, we examine the
impact of variations in the system parameters on the performance of CLUSTERTRACK.

Variation in pR. We first consider the impact of varying p R, the number of sensors per
unit radius, while keeping the target locations % fixed. Assuming that all the targets
can be identified and tracked correctly, increasing the sensor density should provide
improved localization performance. This is because, by putting in additional sensors,
the size of each of the connected components comprising the feasible target space F
can only decrease. To see this, consider a point x that is not currently in F. It must be
in the coverage region of at least one off sensor, say S,. Even if we put in more sensors,
x will still belong to the coverage region of S,, so that the size of F' cannot increase
by adding more sensors. On the other hand, a point x that currently belongs to F' may
end up falling into the coverage region of an off sensor when we add more sensors, so
that F may shrink.

To quantify the effect of varying p R, we considered the same set of target trajecto-
ries as in Figure 4(a), and ran CLUSTERTRACK multiple times for each value of pR. In
each simulation run, we took the error in the estimation of a particular target’s trajec-
tory to be the mean (over all time instants) error from that estimated trajectory which
was nearest to the true trajectory of the target. The average estimation error was then
computed by averaging over all targets and all simulation runs. The performance im-
provement obtained by increasing the density in our simulation setting is depicted in
Figure 6(a).

Another minor effect of using a large sensor density that is worth a quick mention
is the emergence of spurious estimates such as the ones shown in Figure 6(b). These
estimates closely match other true estimates for the most part, but suddenly deviate
from them toward the end. An intuitive explanation for their emergence follows from
the preceding discussion. For large p R, the size of the feasible target space becomes
small, so that the clustering threshold D, would also be small. Thus two candidate
trajectories that are together for a long time but suddenly have a large separation
may not be clustered together. Of course, these spurious estimates have large cost
functions, and hence can be eliminated by inspection. Note also that these spurious
estimates may also arise at the intermediate stages of the algorithm (rather than just
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Fig. 6. Impact of change in sensor density. Plot (a) shows the localization error performance of CLUSTER-
TRACK versus the sensing density. Plot (b) shows the trajectories obtained in one particular setting, with the

sensor density pR = 0.125, in order to highlight spurious estimates that only deviate from good estimates
toward the end.
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Fig. 7. Impact of changing the target separation on the performance. If the target trajectories have signifi-
cant overlap, the algorithm may not be able to disambiguate them.

at the end), but due to the large cost function, they would automatically be pruned out
when the algorithm proceeds to the next time step.

Variation in %. We now investigate the impact of variations in the target locations %,
for fixed sensor density pR. Intuitively, scaling % up should improve performance,
since it should be easier to resolve widely separated targets, while if we scale down
% enough, we should become unable at some point to resolve all targets. To illustrate
this, we consider the same scenario as in Figure 4(a), but scale down the target loca-
tions to bring them closer. Figure 7 shows the performance degradation when we scale
down the separation by a factor of 4: the algorithm tracks some of the targets well,
but not all. Note however, that, in such scenarios (which can potentially be identified
on the basis of no conclusive evidence on the target count and their trajectories over
multiple simulation runs), if we let the target trajectories evolve further (hoping that
they may separate out later), then the algorithm may recover and eventually identify
and track all the targets.
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Fig. 8. The two radius nonideal sensing model.

Variation in H and m,R. We also simulated the effect of variation in the two base pa-
rameters H (maximum number of particles retained per cluster) and m, R (sampling
density per unit R). Increasing m, R implies we can sample the feasible space with
a greater resolution, while increasing H simply means that the set of trajectories we
retain is more dense. Intuitively, we thus expect that increasing either of these para-
meters would make it possible to find lower-cost trajectories propagating through the
feasible space. Indeed, we observed this to be true in our simulations, as the costs of
the estimated trajectories we obtained tended to be smaller when we increased m, R
and/or H. Note, however, that this does not necessarily reflect an improvement in
terms of the localization error, since there is no apparent correlation between the lo-
calization error and the cost function of the estimated trajectories. Our simulation
results were inconclusive as well, and did not show a consistent pattern in localization
error performance on changing m, R and H, and we leave further study of the impact
of m, and H as an open issue.

Next we consider tracking with nonideal sensing.

5.2. Tracking with Nonideal Sensing

For real-world deployments with imperfect and noisy sensors, it is necessary to extend
the ideal sensing model considered thus far. For instance, a sensor may fail to detect
a target within its nominal sensing range, or may sometimes detect targets outside
the range. We use a simple model for this nonideal behavior (Figure 8). A target
within the inner interval of radius R; is always detected, and a target outside the
outer interval of radius R, is never detected. The interval between R; and R, is a
region of uncertainty, and the algorithm that we consider does not require a specific
model for the sensor output when the target falls in this region. This is because we use
a worst-case interpretation of the model to generate the feasible target space from the
sensor data, assuming the maximum uncertainty consistent with the sensor readings.
An on-sensor tells us that the target is somewhere inside the outer interval of radius
R,, while an off-sensor indicates that there is no target inside the inner interval of
radius R;. Despite its simplicity, this is a fairly generic model for nonideal behavior,
since it arises naturally if sensors integrate noisy samples over a reasonable time scale
to make binary decisions regarding target presence or absence.

The setup for simulation is as before: a one-dimensional system with uniformly
placed sensors. We continue to express our results in terms of the scale-invariant pa-
rameters introduced earlier, with the two additional parameters o« < 1 and g > 1
specifying our nonideal sensing model in terms of the ideal sensing radius R: R; = « R,
and R, = # R. In order to simulate the sensor readings, we assumed that a target
falling in the region of uncertainty of a particular sensor is detected with probability
0.5 by that sensor. We evaluated the performance of CLUSTERTRACK for the same
scenario as in the simulation with ideal sensing (Figure 4(a)), with («, ) = (0.7, 1.3),
and (a, f) = (0.5, 1.5). We found that the algorithm was still able to resolve and track
all the targets well, although there was a more consistent emergence of spurious es-
timates as compared to ideal sensing. Figure 9 shows the results for one simulation
with (a, ) = (0.5, 1.5). We see that the algorithm generated eight trajectories, five of
which approximated the true paths well. Out of the three spurious estimates (marked
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Fig.9. Performance of CLUSTERTRACK with nonideal sensing, for the same example scenario as considered

for ideal sensing in Figure 4(a). The plot shows the results obtained in one simulation run, with R; = 0.5R
and R, = 1.5R.

by the special characters), two had relatively high cost functions and hence may be
eliminated by inspection. While the performance in terms of identifying the various
targets did not degrade in the face of reasonable levels of nonideality, there was some
degradation in the error in localizing the targets. For instance, with R; = 0.7 R, and
R, = 1.3 R, the mean localization error over multiple simulation runs was found to be
0.287R, as opposed to 0.238 R for ideal sensing (the data point in Figure 6(a) for p = 1).
With R; = 0.5 R, and R, = 1.5 R, the error increased to 0.377R .

Our results demonstrate that the particle filter approach was robust for nonideal
sensing. In Section 6, we test the performance of our approach on a lab-scale experi-
mental testbed with PIR sensors.

5.3. Two-Dimensional Simulation

Before proceeding to the experimental results, we illustrate the applicability of the
particle filter algorithm to a two-dimensional system. Our aim here is to provide a
quick simulation to demonstrate that the algorithm extends naturally to two dimen-
sions (note that the development of the algorithm in Section 4.2 is indeed general, and
not restricted to just one dimension), leaving more extensive analysis and performance
evaluation as a topic for future investigation. To this end, we considered a two-target
scenario, and tested the performance of a simple one-run version! of our algorithm.
The simulation setup was as follows: the sensors were placed on a uniform 2D grid,
with the separation between consecutive sensors in either dimension being R units
(so that pR? = 1); the maximum number of particles retained per cluster H = 50; and
the sampling density m, was such that m, R? = 50. (Note that, for a two-dimensional
system, the gerformance is characterized in terms of the normalized parameters:
{pR?, myR?, %}, with X = (X1, X3) denoting the 2D location of the targets.) Figure 10
shows the results obtained for an example simulation run, wherein the targets started
out well separated, approached each other, and then separated out, all the while
moving with near constant velocities. The solid (respectively, dashed) curves show the
true (respectively, estimated) trajectories of the two targets, while the corresponding

1One-run version simply means that we stop after the algorithm has been run once, without checking
whether all the lower bounds on the target count have been satisfied.
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Fig. 10. Example scenario to depict the performance of CLUSTERTRACK in a two-dimensional setting. Solid
(respectively, dashed) curves show the true (respectively, estimated) trajectories, and the corresponding time
instants are marked out on the curves.

time instants are marked out on the respective curves. We can see that the algorithm
succeeded in catching and tracking both targets.

Our sample simulation results show that the particle filter algorithm can be applied
to 2D as well. However, there are a number of ways in which 2D is more complicated
than 1D. First, note that the algorithm relies on the availability of the feasible target
space F. In 1D, it is straightforward to specify F given the sensor reading: since F is
a union of intervals, we may simply specify the start and end points of each of these
intervals. For two (or more) dimensions, F is a union of multidimensional sets, and it
is not immediately evident how best to compute and specify these sets (in particular,
closed-form expressions for these sets appear to be elusive). A reasonably accurate
approximation for F, which we used for our 2D simulations, is to discretize the 2D
space into a (fine) grid, and to test each point in the grid separately as to whether it
belongs in . However, this approach does not specify the different disjoint compo-
nents comprising F, knowledge of which is needed in order to get a lower bound on
the target count, and to check if the algorithm needs to be rerun in case of any unused
components. For our 2D simulations, we used a single-run version of the algorithm,
and assumed that the maximum number of disjoint components (i.e., a lower bound on
the target count) was somehow available.

In short, while the particle filtering approach extends naturally to higher dimen-
sions, the preceding discussion shows that further investigation is needed into efficient
mechanisms that ensure that the algorithm catches all targets with high probability.

6. EXPERIMENTS

We used a small testbed with five PIR sensors placed uniformly along a line; see
Figure 11. Each sensor sent a measurement to the base station when it changed state,
and the base station was interfaced to a PC through a serial port. The data got time
stamped at the PC, so that each of the final set of measurements included: value,
position (mapped from node ID), and time. For the ground truth regarding target
trajectories, the (human) targets were provided with separate sensor nodes (equipped
with localization engines) with buttons, which they pressed as they passed by a set of
known locations on the way.

While each sensor in our experimental set up sent a measurement when it changed
state, our problem formulation in Section 4 is based on the assumption that all sensors
send their measurements at regular time instants. To apply our algorithm, therefore,
we sampled the collected data at regular time instants, and assumed that the reading
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Fig. 11. Experimental setup and sensor characterization: The figure on the left shows the experimental
setup, with the sensor modules placed uniformly along a line. The plot on the right shows the probability of
target detection versus distance for a particular sensor module.

of a particular sensor at any time was the same as the one after its last toggle. Another
implementation issue we faced was that, even when a target was detected as it entered
the field of a sensor, the sensor output became 0 immediately after the detection, and
kept toggling between 0 and 1 as the target moved toward the sensor. A probable
reason for this is that the modules we used are meant for triggering a relay that resets
after a certain amount of time, with the aim of minimizing false alarms, at the cost
of some missed detections. To deal with this issue, we simply decided to neglect every
1 — O transition that was immediately followed by another 0 — 1 transition.

6.1. Sensor Characterization

We first performed some experiments to characterize an individual sensor module.
The readings obtained were far from ideal. The probability of target detection with
distance is depicted in Figure 11. In order to fit the sensor behavior to our nonideal
model of Figure 8, we set R; =3 ft and R, = 7 ft.

6.2. Tracking Performance

In our experiments, we placed the sensors uniformly along a line, separated by 4 ft
(represented by the circles in Figure 12(a)). We considered two targets, which started
from opposite ends and crossed each other. The severe nonideal behavior of the
sensors was evident as one of the sensors, placed at the location of 16 ft (shown by an
asterisk * inside the circle) completely missed the presence of target 7. Despite the
missed detection, we found that, on running the algorithm multiple times, in about
65% of the runs the algorithm succeeded in catching and tracking both the targets
reasonably well (with an additional spurious estimate emerging in about every third
run). In about 30% of the runs, the algorithm caught one of the targets and generated
a spurious estimate. The remaining 5% of runs resulted in two spurious estimates.
The performance in one of the better runs is shown in Figure 12(a).

Given the significant variation in performance over different runs, it can be useful
to plot the results obtained over multiple runs simultaneously in one figure. Such a
figure can be used for a quick visual inference about the number of targets and their
trajectories. Figure 12(b) shows these results. We plot the results obtained over 100
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Fig. 12. Performance of CLUSTERTRACK in an experiment in which one sensor completely missed a target.
Plot (a) shows the performance in one of the good simulation runs, while plot (b) shows the trajectories
obtained over multiple simulation runs.

simulation runs, without including the trajectories which had a significantly high cost
function (greater than 10 time the lowest cost trajectory). Based on the plots, we may
conclude (with high probability) that there were two targets. In general, a systematic
procedure to estimate the number of targets, using the results obtained over multiple
simulation runs, could be to perform another clustering operation on the trajectories
generated in these multiple runs, and to use the number of clusters thus obtained as
an estimate for the target count. This estimate can further be biased based on the
number of trajectories obtained in each of these clusters. We leave this as an open
issue for further exploration.

The mean localization error for the preceding experimental results was found to be
0.7162R, with R being (R; + R,)/2 = 5 ft.2 While the localization errors for ideal sens-
ing plotted in Figure 6(a) were for a different setting (different number of targets with
different trajectories), an error of 0.7162R is still significantly larger than the values
we obtained there. (The sensing density for our experiments was pR = 1.25). Clearly,
the missed detection of target T; by one of the sensors led to this jump in the localiza-
tion error. A trivial method to capture such severe nonideality (i.e., missed detection),
while still working with our two-radius model for nonideal sensing, is to pick R; = 0.
However, a small choice of R;, while guarding against missed detections, also has the
obvious drawback that when the off-sensors are actually reliable, they provide us no
useful information, leaving us with a large feasible target space. It is an open issue
as to how best to trade off these conflicting objectives. One possible approach worth
investigation might be to pick a small R;, but to penalize those particles that traverse
the off-sensors’ ranges.

7. CONCLUSIONS

The promising results obtained here, as well as prior results in Kim et al. [2005]
and Shrivastava et al. [2006, 2009] for the same sensing model, indicate that binary

2To compute the mean localization error, we need to know the ground truth at all time instants. The actual
ground truth data was available only for a subset of the instants: the targets pressed the buttons only as
they passed some known locations, and even some of these messages were not received at the base station.
To obtain the ground truth at all times, we simply interpolated the collected ground truth data.
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proximity sensors, can form the basis for a robust architecture for wide area surveil-
lance and tracking. Our target counting results show that interesting conclusions can
be drawn regarding the number of targets and the feasible target space even with-
out any model for the target paths. On the other hand, when the target paths are
smooth and reasonably well separated over time, our CLUSTERTRACK particle filter
algorithm gives excellent performance in terms of identifying and tracking different
target trajectories.

A host of questions remain to be investigated in future work, of which we provide a
partial list as follows. We employ our combinatorial results on target counting in order
to obtain rules of thumb for the various parameters in our particle filter algorithm.
However, is there a more direct way of combining these two techniques to enhance the
performance even further? How broadly does our particle filter algorithm apply, in
terms of robustness to different models for the targets’ trajectories? When precisely
does it break down? How does the tracking performance depend on the dimension of
the space we operate in? (Note that we already presented sample simulations to show
that the algorithm works in two dimensions; see also Bathula et al. [2009] for an ap-
plication of the algorithm for tracking a single target in two dimensions.) How can the
algorithm be adapted to provision for appearance of new targets, or disappearance of
existing targets? Finally, the algorithm currently works in a post hoc manner: a batch
of data is first collected, and then processed. While the sampling and cost computa-
tions can be performed in real time (since they depend only on data collected up to the
present time instant), we do perform a global analysis of the data up front to obtain
a good estimate of the target count, which is needed to pick the various parameters.
Can this restriction be relaxed? What are its possible implications?

From a sampling theory perspective, it would be interesting to investigate the de-
pendence of the particle filter algorithm’s performance on the rate at which the sensors
gather the data. Clearly, too low a sampling rate may be insufficient to capture all the
required information, as mandated by the frequency content of the different targets’
trajectories. On the other hand, too high a sampling rate can reduce the effectiveness
of our cost function, which penalizes the instantaneous velocity variations in order
to rule out the spurious estimates that jump from one true path to another. A high
sampling rate could make the cost of jumping from one path to another less signifi-
cant, thereby encouraging the emergence of such spurious estimates. This issue can
perhaps also be investigated in terms of finding a suitable cost function which can
guarantee an improvement in the performance with an increase in the sampling rate.

APPENDIXES

APPENDIX A: PROOFS FOR GEOMETRIC ARGUMENTS IN TWO DIMENSIONS

PROOF. Computing the minimum set of targets T consistent with F' in two dimen-
sions is at least as hard as the hitting set problem for unit-radius disks, which has the
following formulation:

Given a set D of n unit-radius disks in the plane, and an integer %, does there exist
a set H of k£ points (chosen anywhere in the plane) that intersect all the disks? In other
words, each disk of D hits at least one point of H.

This problem is known to be NP-complete [Fowler et al. 1981]. To show that com-
puting 7' is also hard, we can reduce the hitting set problem to our problem, as follows.
Given an instance D of the hitting set problem, we identify each disk of D with the
sensing range of a sensor. All of these sensors are set to be on, and there are no off-
sensors. Then the feasible space target space F' is simply the union of these disks, and
the smallest number of point targets consistent with F is & if only if the set of disks
can be hit with & points. Therefore, computing 7" is NP-complete.
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Similarly, the maximum number of positively independent sensors S can be shown
to be NP-complete using a reduction from the maximum independent set problem for
unit-disk graphs.

A collection of n unit-radius disks define a unit-disk graph G as follows. Each disk
corresponds to a node of G, and there is an edge between two nodes of G if the disks
corresponding to those nodes overlap. The maximum independent set of G is the max-
imum number of nodes in G no two of which are joined by an edge. The maximum
independent set problem is known to be NP-complete even for unit-disk graphs, as
shown in Clark et al. [1990].

To reduce this problem to the problem of computing S, we take each disk of the
unit-disk graph as the sensing range of a sensor, and set all sensors to be on. Then the
maximum number of independent nodes in G equals the maximum number of sensors
whose ranges are pairwise disjoint. Therefore, computing Sis also NP-complete.

Finally, to show that |S| <= |T, it is easy to see that the size of the hitting set |T|
has to be at least as large as the number of pairwise disjoint disks, namely, S, because
no two disks of S can be hit by the same point. O

APPENDIX B: RERUN OF THE ALGORITHM TO SATISFY THE LOWER BOUNDS

Once the CLUSTERTRACK algorithm has been run, we verify whether the generated
trajectories satisfy the lower bounds on the target count, for each of the connected
components, over all time instants. In case the lower bound is not satisfied for some
component(s) (i.e., there are some underutilized components), we run the algorithm
again to generate new trajectories, over and above the ones already obtained, and keep
repeating the procedure until all the lower bounds are satisfied. Each time this rerun
is performed, we constrain the algorithm to ensure that the new trajectories traverse
one of the underutilized components, as explained next.

Let {1,..., T} be the set of time instants. We scan the different time instants to see
if there are any underutilized components. Let ¢, be a time instant at which we find
an underutilized component, say ¢,. We now rerun the algorithm, with the feasible
target space being the original space for all time instants, except ¢,, for which the
feasible space consists solely of the component ¢,. The estimate for @, the number
of new trajectories we are looking to generate, is taken to be difference between the
lower bound for the component ¢,, and the actual number of trajectories that already
pass through it. Once new trajectories have been generated, we scan the different time
instants again to see if there are still any underutilized components, and the process
is repeated till all the lower bounds are satisfied.

Two final points that need a mention: first, the scan to look for underutilized compo-
nents is done in the following order of time instants: {1, 7,2, T—1,3,T -2, ...} (rather
than as {1,2,3,...,T}), and, if the time ¢, > %, then before rerunning the algorithm,
the time order of the collected data is inverted. This is just done to enhance the likeli-
hood that the new trajectories we get are smooth. For instance, assume that the only
unused component ¢, is at time #, = T'. In this case, if we run the algorithm as usual,
progressing from time 1 to time 7', till time 7' — 1, we would not be accounting for the
fact that the unused component is at time 7. When progressing from time 7' — 1 to
T, we would suddenly force the trajectories to pass through c,, which can lead to a
sudden fluctuation. Rather, if we begin at time 7', and proceed backward, we are more
likely to obtain a smooth estimate. Second, a new trajectory generated by the rerun
of the algorithm may actually be similar to one of the trajectories we already have, in
which case it is no use retaining it. Hence, we perform this check once a new trajectory
has been obtained, and retain it only if it can not be clustered with any of the already
obtained trajectories. The clustering criterion is exactly the same as the one employed
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during the course of running the algorithm. If however, we exceed a certain number of
reruns (10 for our simulations) in this process, then this check is not imposed, and all
the new trajectories generated from that point onward are retained.
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