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ABSTRACT

Machine learning models are vulnerable to adversarial
attacks that can often cause misclassification by introduc-
ing small but well designed perturbations. In this paper, we
explore, in the setting of classical composite hypothesis test-
ing, a defense strategy based on the generalized likelihood
ratio test (GLRT), which jointly estimates the class of inter-
est and the adversarial perturbation. We evaluate the GLRT
approach for the special case of binary hypothesis testing in
white Gaussian noise under `∞ norm-bounded adversarial
perturbations, a setting for which a minimax strategy opti-
mizing for the worst-case attack is known. We show that
the GLRT approach yields performance competitive with that
of the minimax approach under the worst-case attack, while
yielding a better robustness-accuracy trade-off under weaker
attacks. The GLRT defense is applicable in multi-class set-
tings and generalizes naturally to more complex models for
which optimal minimax classifiers are not known.

Index Terms— Adversarial machine learning, hypothesis
testing, robust classification

1. INTRODUCTION

Machine learning models such as deep neural networks and
regression methods have become pervasively deployed in
large-scale commercial applications that are safety-critical,
such as facial recognition for surveillance, autonomous driv-
ing and virtual assistants. It has been shown that an ad-
versary is often able to add small perturbations to signals
in an intelligent way to cause misclassification with high
confidence [1, 2]. In applications that demand robustness
in machine learning methods, adversarial attacks are funda-
mental threats. There have been several defense mechanisms
suggested, followed by proposal of stronger adversaries to
circumvent the defenses [3, 4]. A state-of-the-art defense [5]
against such attacks is to train with adversarial examples–this
is purely empirical and cannot provide robustness guarantees
or insights.

In this paper, we seek fundamental insight by investigat-
ing adversarial classification in the setting of classical hypoth-
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esis testing, in which the class-conditional distributions of the
data is known. We propose the well-known GLRT as a gen-
eral approach to defense, in which the desired class and the
action of the adversary (viewed as a nuisance parameter) are
estimated jointly. The GLRT approach is general, since it ap-
plies to any composite hypothesis testing problem [6], unlike
minimax strategies optimizing for worst-case attacks, which
are difficult to find. We compare the GLRT and minimax
approaches for a simple setting, binary Gaussian hypothesis
testing with `∞ bounded attacks, for which the minimax strat-
egy has been derived [7]. We show that the proposed GLRT
approach provides competitive robustness guarantees when
the attacker employs the full attack budget, while providing
better robustness-accuracy trade-off for weaker attacks.
Related Work: There is a growing body of research on com-
ing up with provable robustness guarantees against adversar-
ial attacks [8, 9, 10, 11, 12, 13, 14, 15, 16]. A recent paper
[17] addresses the problem of finding optimal robust classi-
fiers in a binary classification problem, with the class con-
ditional distributions possessing symmetric means and white
Gaussian noise. For the case when perturbations are `∞ norm
bounded, they restrict attention to the class of linear clas-
sifiers and then obtain optimum robust linear classifiers for
two and three-class classification problems. In general, find-
ing robust optimal classifiers for `∞ norm bounded adver-
sarial perturbations is not easily tractable. Analytical results
have been shown only for special cases, such as in [7], where
minimax optimal robust classifiers are characterized in binary
classification setting under Gaussian models with symmetric
means, same covariance matrices and uniform priors, using
ideas from optimal transport theory. Our proposed GLRT de-
fense can be applied to multi-class Gaussian hypothesis prob-
lems with generic means and priors. In addition, the minimax
classifier in [7] is pessimistic for weaker attacks, while the
GLRT scheme performs better in such regimes as it estimat-
ing the action of the attacker.

2. GLRT-BASED DEFENSE

Throughout the paper, we represent vectors in boldface let-
ters and scalars in regular letters. The norm || · || denotes `2
norm unless specified otherwise. Consider the following stan-
dard classification or hypothesis testing problem: Hk : X ∼
pk(x). The presence of an adversary increases the uncertainty
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about the class-conditional densities, which can be modeled
as a composite hypothesis testing problem:

Hk : X ∼ pθ(x), θ ∈ Θk,

where the size of the uncertainty sets Θk depends on the con-
straints on the adversary. The GLRT defense consists of joint
maximum likelihood estimation of the class and the adver-
sary’s parameter:

k̂ = arg max
k

max
θ∈Θk

pθ(x).

Gaussian hypothesis testing: We now apply this framework
to Gaussian hypothesis testing with an adversary which can
add an `∞-bounded perturbation e: ||e||∞ ≤ ε, where we
term ε the “attack budget” or “adversarial budget”.

Hk : X = µk + e + N,

where X ∈ Rd, N ∼ N (0, σ2Id) is white Gaussian noise.
We assume that the adversary has access to the true hypothesis
and knows the distributions under each of these hypotheses.

Conditioned on the hypothesis k and the perturbation e,
the negative log likelihood is a standard quadratic expression.
Applying GLRT, we first estimate e under each hypothesis:

êk = arg min
e:||e||∞≤ε

||X− µk − e||2.

and then plug in to obtain the cost function to be minimized
over k:

Ck = ||X− µk − êk||2 (1)

This yields intuitively pleasing answers in terms of the
function gε(x) , sign(x)max (0, |x| − ε), which we term as
the “double-sided ReLU” and its “complement,” fε(x) = x−
gε(x). The estimated perturbation under hypothesis k is ob-
tained as êk = fε (X− µk), where the non-linearity is ap-
plied coordinate-wise. Substituting into (1), we obtain

Ck = ||gε (X− µk) ||2 (2)

where gε(.) is applied coordinate-wise. Thus, the GLRT de-
tector

k̂ = arg min
k
Ck

is a modified version of the standard minimum distance rule
where the coordinate-wise differences between the observa-
tion and template are passed through the double-sided ReLU.

Minimax formulation: An alternative to the GLRT defense,
which treats adversarial perturbation as a “nuisance parame-
ter,” is a game-theoretic formulation. Let H denote the true
hypothesis and Ĥ be a classifier. The adversary attempts to
maximize the probability of error by choosing a suitable per-
turbation, while the defender tries to choose a classifier such

that the expected probability of error is minimized. We con-
sider the perturbations e : ||e||∞ ≤ ε. Thus the optimum
adversarial risk is:

R∗ = min
Ĥ

E
[

sup
e:||e||∞≤ε

1(Ĥ 6= H)
]
.

Clearly, this is the best possible approach for defending
against worst-case attacks. Unfortunately, such minimax
games are difficult to solve, unlike the more generally appli-
cable GLRT approach. Furthermore, the optimal minimax
solution may be overly conservative, unnecessarily compro-
mising performance against attacks that are weaker than, or
different from, the worst-case attack. In such scenarios, we
expect the GLRT approach, which estimates the attack pa-
rameters, to provide an advantage. In order to compare the
minimax and GLRT approaches, for the remainder of this
paper, we specialize to a setting where the minimax solution
is known: binary Gaussian hypothesis testing with symmetric
means and equal priors.

3. BINARY GAUSSIAN HYPOTHESIS TESTING

We now focus on the binary hypothesis testing problem with
equal priors for which the minimax rule is known [7]:

H0 : X = µ + e + N

H1 : X = −µ + e + N

where e is chosen by an `∞ bounded adversary, with adver-
sarial budget ε, who knows the true hypothesis. In the ab-
sence of attack, the optimal rule is a minimum distance rule,
which can be alternatively written as a linear detector with
Ĥ = H0 if wT

cleanX > 0 and Ĥ = H1 otherwise, where
wclean = µ or any positive scalar multiple of it. It is shown
in [7] that the minimax decision rule is also a linear detector,
with wminimax = gε (µ). One of the possible worst-case at-
tacks for the minimax classifier that achieves its worst-case
error, is e = −ε.sign(µ) under H0 and e = ε.sign(µ) under
H1. Our numerical experiments suggest that the same attack
achieves the worst performance under the GLRT scheme.

Under this attack, it is easy to see that the “defenseless”
linear detector wclean makes errors with probability at least
half whenever the attack budget satisfies ε > ||µ||2/||µ||1.
Thus, the system is less vulnerable (i.e., the adversary needs
a large attack budget) when the `1 norm of µ is small relative
to the `2 norm. That is, signal sparsity helps in robustness, as
has been observed before [18, 16].

The minimax rule derived in [7] applies the double-sided
ReLU to the “signal template” µ. Thus, it simply ignores sig-
nal coordinates whose sign could be flipped using the worst-
case attack budget, and shrinks the remaining coordinates to
provide an optimal rule assuming that the worst-case attack
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has been applied. Comparing with the GLRT rule

C1 = ||gε (X + µ) ||2
H0

>
<
H1

C0 = ||gε (X− µ) ||2 (3)

we see that the GLRT defense applies the (coordinate-wise)
double-sided ReLU to the difference between the observation
and signal templates, and hence should be better able to adapt
to the attack level (as long as it is smaller than the budget
ε). The analysis below for GLRT scheme applies, without
loss of generality, to asymmetric means (say µ0 and µ1), by
shifting of coordinates equivalently, leading to the attack of
e = −ε.sign(µ0 − µ1) underH0.

3.1. Analysis

Since the GLRT rule is nonlinear, its performance is more
difficult to characterize than that of a linear detector. How-
ever, we are able to provide insight via a central limit theorem
(CLT) based approximation (which holds for large dimension
d). By the symmetry of the observation model and the result-
ing symmetry induced on the attack model, we may condition
on H0 and the corresponding attack e = −ε.sign(µ), and
consider X = µ− εsign(µ) + N. The costs are:

C0 =

d∑
i=1

(gε(−εsign(µ[i]) + N[i]))2

C1 =

d∑
i=1

(gε(2µ[i]− εsign(µ[i]) + N[i]))2.

and the error probability of interest is Pe = Pe|0 = P [C =
C1 − C0 < 0|H0].

We now perform a coordinate-wise analysis of the cost
difference C[i] = C1[i] − C0[i], where Ck[i] indicates the
contribution in cost Ck from coordinate i. Let the mean and
variance ofC[i] be denoted bymi and ρ2

i respectively. Apply-
ing CLT on the sum across coordinates, the error probability
is then estimated as:

Pe = Pe|0 = P
( d∑
i=1

C[i] < 0
)
≈ Q

 ∑d
i=1mi√∑d
i=1 ρ

2
i

 . (4)

The approximate equality in (4) can be formalized to exact
equality in the limit under the mild assumption of satisfying
Lindeberg’s condition for CLT to hold for independent, but
not necessarily identically distributed random variables.

Consider a particular coordinate i, set C = C[i], and let
µ[i] = µ. Assume µ > 0 without loss of generality: we sim-
ply replace µ by |µ| after performing our analysis, since the
analysis is entirely analogous for µ < 0, given the symmetry
of the noise and the attack. We can numerically compute the
mean and variance of the cost difference for the coordinate,
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Fig. 1: Comparison of empirical mean and variance of C[i]
with the mean and variance of lower bounding variable Yi.

C = (gε(2µ+N − ε))2 − (gε(N − ε))2, but the following
lower bound yields insight:

C ≥ Y , 1{N≥−t}(t+N)2 −N2 (5)

where t = 2(µ − ε). Note that t > 0 (|µ| > ε) corresponds
to coordinates that the minimax detector would retain. The
high-SNR (t/σ large) behavior is interesting. For t > 0, we
can show that Y ≈ t2 + 2Nt; these coordinates exhibit be-
havior similar to the minimax detector. On the other hand, for
t < 0, Y ≈ −N2; these coordinates, which would have been
deleted by the minimax detector, contribute noise in favor
of the incorrect hypothesis (this becomes negligible at high
SNR). These observations can be used to show that, at high
SNR, the performance of the GLRT detector approaches that
of the minimax detector under worst-case attack.

Without loss of generality, let us redefine t = 2(|µ| − ε).
The mean and variance of Y , irrespective of sign(µ), can be
computed in closed form as follows:

mY = Q
(−t
σ

)
(t2 + σ2)− σ2 + σtN

( t
σ

; 0, 1
)

(6)

ρ2
Y = 3σ4 +Q

(−t
σ

)
(t4 + 4t2σ2 − 3σ4)

+σtN(t/σ; 0, 1)(t2 + 3σ2)−m2
Y (7)

where N(.; 0, 1) denotes the density of standard Gaussian
(zero-mean, unit-variance) random variable, and Q(.) its
complementary CDF. Figure 1 shows the empirical mean and
empirical variance of C[i], i.e., mi and ρ2

i , in comparison
with mY and ρ2

Y obtained through (6) and (7). Here, the
adversarial budget is set to ε = 1 and noise variance σ2 = 1.

The error probability in (4) can also be bounded by apply-
ing CLT on the lower bounding terms Yi ≤ C[i] as follows:

P
( d∑
i=1

C[i] < 0
)
≤ P

( d∑
i=1

Yi < 0
)
≈ Q

 ∑d
i=1mYi√∑d
i=1 ρ

2
Yi

 .

Bounding the probability of error in this fashion helps
in yielding the following insight. Under low noise limit
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(σ2 → 0), the variance ρ2
Yi

= 0,∀i; and the mean is given
by mYi = t2, if |µ[i]| > ε, otherwise it is zero. Thus as long
as ∃i such that |µ[i]| > ε, we have Pe = 0. Also note that
since each of the means and variances are O(1) terms, we
have Pe ≤ k1e

−k2d, where k1, k2 are positive constants.

4. EXAMPLES AND DISCUSSION

Let a fraction p of the coordinates have means µ = aεdes and
a fraction (1− p) have µ = bεdes, where a > 1 and 0 ≤ b ≤
1. Let the designed adversarial budget be εdes and the actual
attack be e = ∓εsign(µ), where ε = kεdes, (k ≤ 1). The
effective signal-to-noise ratio (SNR) is:

SNRminimax = (a− k)2dp
(εdes
σ

)2

SNRGLRT u d
(pma + (1− p)mb)

2

pρ2
a + (1− p)ρ2

b

wherema andmb are means, ρ2
a and ρ2

b are variances of a sin-
gle component of C[i] contributed by terms with component
means aεdes and bεdes respectively. The probability of error
is given by Q(

√
SNR). Note that for the GLRT detector, it is

only an approximation as convergence is slow at high SNR,
and we need to rely on simulations for true error probabilities.

We consider binary classification problems with symmet-
ric means and uniform priors to draw a comparison with the
minimax optimal scheme, and also a naive minimum distance
classifier that is optimal under zero attack. The GLRT de-
tector performs better than minimax for weaker attacks, and
it has a significant advantage over minimax in settings where
the class mean µ has components which are smaller than εdes,
but larger than the actual attack. GLRT utilizes signal energy
from these components while for minimax, such components
are nulled. Figure 2 depicts the performance advantage of
GLRT under weaker attacks, for a problem with parameters
εdes = 1, d = 20, p = 0.1, a = 1.1, b = 0.9 and noise
variance σ2 = 1.

The naive minimum distance classifier does poorly un-
der a large attack, specifically in settings where µ has a large
number of small components. Under strong attacks, these
smaller components contribute to costs in such a way that the
wrong class is favored by the naive detector. Consider a prob-
lem with parameters d = 10, p = 0.1, εdes = 1, a = 2,
b = 0.5 and σ2 = 0.25. The comparison of all three detectors
under this setting is plotted in Figure 2, which clearly indi-
cates the failure of naive scheme at high attacks, emphasizing
the need for a robust detector. Figure 3 shows the variation
of the error probability as a function of (εdes/σ)2, under four
different values of actual attack, for the same problem setting.

5. CONCLUSION

The GLRT approach to robust hypothesis testing explored in
this paper can be generalized to complex models, in contrast
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Fig. 2: Robustness v/s accuracy trade-off as the actual attack
is varied, while the designed adversarial budget is fixed to
εdes = 1.
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Fig. 3: Probability of error as a function of (εdes/σ)2 for dif-
ferent values of actual attack (with εdes = 1, a = 2, b = 0.5).

to the difficulty of finding optimal minimax classifiers. For
the simple model considered here, for which the minimax de-
tector is known, we show that the GLRT detector has the same
asymptotic performance as the minimax detector at high SNR
for `∞ bounded adversarial perturbations at a designated at-
tack level. For attack levels lower than this designated level,
the GLRT detector can provide better performance, depend-
ing on the specific values of the signal components relative to
the attack budget. Contrary to minimax, GLRT is a generic
multi-class detector that can work with any priors.

An interesting direction for future research is to apply the
GLRT approach to more complex data and attack models. It
is also of interest to explore the minimax formulation in such
settings: even if it is difficult to find the optimal minimax
rule, a combination of insights from the minimax and GLRT
formulations for simpler models might be useful.
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