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Abstract— We consider noncoherent communication techniques with
large signal alphabets, where explicit (i.e. pilot symbol based) channel
estimates are not required by the receiver, and iterative soft information
exchange between noncoherent demodulator and channel decoder is em-
ployed for approaching Shannon-theoretic limits. Extrinsic Information
Transfer (EXIT) functions are used to characterize convergence of the
iterative receiver, enabling joint optimization of the inner modulation
code constellation and symbol mapping with an outer binary channel
code. We find that QAM constellations classically employed over the
AWGN channel are inferior to modified constellation shapes based on
aligned PSK rings with Gray-like amplitude/phase bit maps. EXIT anal-
ysis of turbo noncoherent communication further shows that standard
convolutional codes are near optimal in serial concatenation with a
unit-rate inner modulation code. The overall system is within 2.4 dB
of Shannon capacity for the block fading channel at 1.8 bits/channel
use, demonstrating that bandwidth-efficient noncoherent communication
systems with reasonable complexity are now within reach.

I. INTRODUCTION

We consider the problem of bandwidth-efficient communication
over time-varying channels with memory, such as those encountered
in high data rate outdoor wireless mobile communication. We explore
methods for the design and analysis of practical coded modulation
schemes which approach the information-theoretic limits for such
channels. Since it is unreasonable to assume that the receiver has
prior knowledge of a time-varying channel, we consider noncoher-
ent communication, in which the receiver must estimate both the
channel and the data. While the design techniques developed here
are quite general, we consider a block fading frequency-nonselective
channel model in our performance evaluations. This model allows for
low-complexity noncoherent block demodulation techniques which
implicitly estimate the channel gain and phase on each block, and
is amenable to information-theoretic computations with which to
compare the performance of practical coded modulation schemes.
More importantly, however, the nonselective block fading model is an
excellent approximation for existing and projected cellular systems.
The slow variation of the channel gain is valid for any system
in which the symbol rate is significantly larger than the Doppler
frequency or residual frequency offset. Frequency nonselectivity
applies, of course, to narrowband systems with bandwidth smaller
than the channel coherence bandwidth, but it also applies to each
subcarrier in wideband Orthogonal Frequency Division Multiplexed
(OFDM) systems. Thus, in a typical OFDM system, the channel gain
is well modeled as roughly constant over a time-frequency block
of symbols whose size depends on the channel coherence time and
coherence bandwidth.

The standard approach to transceiver design is to estimate the
channel using pilots, and then to employ coherent demodulation
assuming that the channel estimates are perfect. There are two main
drawbacks of this approach: the overhead required for pilots to
accurately track rapid channel variations is a significant fraction of the
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Fig. 1. Constellations based on aligned PSK rings with Gray-like symbol
transitions are found to be well-suited for turbo noncoherent communication.

available bandwidth; and channel estimates based solely on the pilots
are suboptimal, since they do not exploit the bulk of the transmitted
energy, which is in the data. A number of recent papers [1], [2],
[3], [4] consider the alternative of turbo noncoherent communication,
with iterative joint estimation of the channel and data. We adopt
the same basic transceiver architecture: an outer binary code, seri-
ally concatenated with a modulation code amenable to noncoherent
demodulation. Specifically, the modulation code considered in our
results is a simple generalization of standard differential modulation
to QAM alphabets. No pilot symbols are employed. Iterative decoding
with soft information exchange between the outer binary decoder and
inner noncoherent block demodulator is employed.

A direct approach to Maximum Likelihood (ML) or Maximum
A Posteriori (MAP) probability block noncoherent demodulation has
complexity exponential in the block length. While recent results [5]
have shown the surprising result that ML or MAP demodulation can
be achieved with polynomial complexity, the methods in [5] are still
too computationally demanding for typical applications, in contrast
to the linear complexity of coherent demodulation. One approach to
reducing the complexity is to implicitly estimate the channel gain
jointly with the data, on a block by block basis. In past work on
block noncoherent demodulation with PSK alphabets [4], [6], [7],
this is accomplished simply by quantizing the channel phase into
bins, in conjunction with a simple energy-based amplitude estimator.
For a coded system as in [4], parallel coherent MAP decoders can
be employed, one for each bin, followed by soft-combining of the
outputs. However, the simple amplitude estimator in [4] does not
work when the signal amplitude varies due to the use of Quadrature
Amplitude Modulation (QAM) constellations. Furthermore, maintain-
ing a large number of phase bins implies that the complexity of
block noncoherent demodulation is still significantly larger than that
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Fig. 2. 16-QAM constellations significantly improve the noncoherent mutual
information for large-SNR.

of coherent demodulation. We provide an amplitude estimator that is
bootstrapped with conventional two-symbol differential detection [8].
The estimate is computed only once per block, incurring only 0.4 dB
loss compared to a genie-based system with perfectly known channel
amplitude. The bootstrap stage also yields initial soft decisions to
the outer decoder. As for the channel phase, we do quantize it as
in [4], [6], [7], and run parallel MAP decoders, but in contrast to
prior work, we employ a GLRT-based phase arbitration mechanism
based on feedback from the outer decoder to reduce the number of
phase bins to two after the first iteration. These simplifications are
crucial to enabling efficient noncoherent communication with large
QAM alphabets at complexity comparable to coherent systems.

Figure 2, computed using the techniques in [4], [9], shows
the mutual information versus SNR for 16-ary constellations and
QPSK. Evidently large constellations, and moreover, generalized
amplitude/phase constellations are required to approach capacity
at moderate to large SNR. The figure also reveals that mutual
information is relatively insensitive to constellation shape for QAM
constellations with a given number of signal points. For example, the
mutual information of the lattice 16-QAM constellation and 16-QAM
based on aligned PSK rings is approximately the same. We therefore
need a tool other than Shannon theory for constellation and bit map
design in coded noncoherent systems, and we turn to a modified form
of EXIT analysis for this purpose.

Extrinsic Information Transfer (EXIT) charts [10], [11] are a
popular means of obtaining insight into the behavior of systems
with a turbo structure, given that they incur far less computational
complexity than density evolution techniques [12]. A key tool for
simplifying EXIT computations is a Gaussian approximation [11] for
the information transferred back and forth between the decoder blocks
within a turbo-like structure. One possible intuitive justification is
the addition of many contributions in the log likelihood ratio (LLR)
domain for a code with a long block length. We have modified
this methodology to understand the behavior of noncoherent block
demodulation, with iterative information exchange with an outer
binary decoder. Since the demodulator has a relatively small block
length, its output is not well approximated as Gaussian, and is
therefore modeled in detail. However, the Gaussian approximation
does apply to the output of the outer binary decoder, which operates
on a large block length. The resulting EXIT technique allows us
to characterize the performance of noncoherent block demodulation
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Fig. 3. Aligned rings 16-QAM realizes its capacity advantage at 1.8
bits/channel use.

for a given signal constellation and bit map, independent of the
choice of the outer binary code. The results are employed to provide
recommendations for 8-ary and 16-ary QAM constellations that are
well matched to differential bit maps in phase and amplitude, depicted
in Figure 1, as well as for the choice of outer binary channel code.

Example of a coded system: To illustrate the analysis of coded
noncoherent communication with amplitude/phase constellations,
consider the performance of aligned rings 16-QAM with unit-rate
differential modulation and a rate-1/2 outer convolutional code,
Figure 3. First, we note that the capacity advantage for 16-ary
amplitude/phase constellations over 16-PSK at this rate is 1.6 dB.
Since 1.2 dB gain is realized in the performance comparison, 0.4 dB
may be attributed to increased sensitivity to amplitude distortion of
amplitude/phase signaling. The 2.4 dB gap to capacity is understood
with EXIT analysis, as follows: Derived from a folk theorem that
the area under an EXIT chart equals the outer code rate [13], the
modulation code bound (6) estimates the loss for employing unit-
rate modulation in a serially concatenated structure as 1 dB. We
further associate a 1 dB penalty for non-ideal channel coding by
comparing the convergence threshold of the given code combination
to the modulation code bound. Again, suboptimal demodulation
of amplitude/phase constellations accounts for a 0.4 dB loss, and
the conclusions of EXIT analysis are in agreement with simulation
results.

II. NONCOHERENT TRANSCEIVER PROCESSING

In this section, we describe the channel model and turbo non-
coherent communication with amplitude/phase constellations with
complexity reducing techniques.
Channel model: A binary information sequence, U, is mapped to
codeword C of the channel code, C, and pseudo-randomly permuted
to the code-bit symbol sequence eC. The cardinality of the modulation
alphabet, A, is M . Codewords in the modulation code, M, belong in
the T -fold product of the symbol alphabet, AT . In the block fading
model, the channel is assumed to be constant over disjoint blocks of
T symbol intervals, where T is the coherence length. Channel gains
for different blocks are modeled as i.i.d. Thus, letting X denote a
block of T transmitted symbols, the block Y of received symbols is
given by

Y = hX + W, (1)



where the channel gain h , aejθ is a zero-mean, unit-variance proper
complex Gaussian, written h ∼ CN (0, 1). This is a classical Rayleigh
fading model, with channel amplitude a Rayleigh, channel phase θ
uniform over [0, 2π], and a and θ independent. The additive noise
vector, W, is complex Gaussian, CN (0, 2σ2IT ), where IT stands for
the T × T identity matrix.
Turbo noncoherent demodulation and decoding: The data, U,
and channel, {h}, are estimated jointly with turbo-like iterative
demodulation and decoding of the received symbol sequence, {Y}.
Block-wise APP demodulation of differentially modulated channel
data minimizes the uncoded symbol error rate. This is then used to
compute extrinsic information regarding the outer code-bits to be
passed back to the decoder. In practice, direct computation of the
posterior probabilities of the transmitted symbols is infeasible, with
complexity O(MT ), scaling exponentially in the coherence interval.
Following [4], [2], we consider an approximate MAP demodulator
with channel amplitude estimation, and phase quantization with
parallel coherent BCJR processing, details in [8]. The complexity
is polynomial in M .

The noncoherent demodulator is comprised of parallel coherent
demodulators, one for each quantized phase bin over the significant
range of channel rotation (as defined by the rotationally invariant
modulation code), and a channel amplitude estimator. The demodu-
lator computes extrinsic a posteriori probabilities (APPs), ΛM, of
the transmitted symbol sequence, based on the observed symbol
sequence, {Y}, and prior probabilities on the transmitted symbols,
ΠM. The channel decoder computes extrinsic code-bit probabilities,
ΛC , with de-interleaved bit-wise APPs from the demodulator as
priors, ΠC . Decoder APPs are then re-interleaved and converted back
to symbol priors for the next round of noncoherent demodulation.
Random code-bit permutation justifies the independence of prior
probabilities assumption of belief propagation decoding of concate-
nated codes. Demodulation and decoding are thus performed until a
decoding success or satisfaction of complexity constraints.

Classical two-symbol maximum likelihood detection of differen-
tially modulated data does not require channel knowledge and serves
to bootstrap the receiver, providing (i) initial soft decisions to the
outer channel decoder and (ii) symbol amplitude level probabilities
to the channel amplitude estimator [8]. In our proposed reduced-
complexity receiver, decoder computes extrinsic APPs based on boot-
strap probabilities and sends them to the demodulator as priors. Next,
noncoherent demodulation is performed with all phase branches,
yielding conditional code symbol APPs for each phase branch. The
GLRT criterion, described next, is then used to select the two phase
branches producing the highest quality of soft information per block.
Thus, only the first iteration of noncoherent demodulation considers
all quantized phase bins, while subsequent iterations demodulate
only the two selected phase bins. With these complexity reducing
techniques the receiver requires approximately only twice as many
demodulation computations as an idealized turbo-coded coherent
system.
Phase selection: The method of phase quantization exhibits near
capacity performance on the noncoherent block fading channel,
yet each phase branch requires its own BCJR computation per
iteration. We thus consider a criterion for ranking and pruning
parallel phase branches as iterative demodulation and decoding are
performed. We propose a Generalized Likelihood Ratio Test (GLRT)
for phase branch selection, where the observation is the received
signal and extrinsic information from the decoder, and the parameters
to be estimated are the channel, h, and the transmitted data, X.
The GLRT operates with the joint likelihood function, gx,q(γ) ,

fΓ|X,h(γ|x, â exp(φq/Q)), of the “observation” Γ , {Y, Π}, given
h and X. GLRT based phase estimation involves maximization of the
likelihood function first over transmitted symbol vectors and then over
the quantized channel phase (2), viewed as joint maximum likelihood
estimation of θ and X based on the observation Γ,

θ̂GLRT (γ) = arg max
q∈Q

max
x∈M

gx,q(γ). (2)

The inner maximization, referred to as the MLSE statistic, gX̂,q ,

maxx∈M gx,q , represents the weight of the Maximum Likelihood
Sequence Estimate (MLSE) of the transmitted symbol vector on the
qth phase branch trellis. The MLSE statistic, typically computed with
the Viterbi algorithm, is also computed by the forward recursion
within the BCJR algorithm and is a natural choice for measuring the
reliability of soft decisions output by each phase branch. Moreover,
when used to choose the best two phase branches after the first
receiver iteration, this metric yields a close approximation to the
receiver that of averages over all phase bins for all iterations, as
shown in Figure 3.

III. EXIT FUNCTIONS OF NONCOHERENT CODES

We study the convergence behavior of iterative noncoherent de-
modulation and decoding via Extrinsic Information Transfer (EXIT)
functions [10], [11]. The EXIT chart of a noncoherent code is
a graphical description of iterative noncoherent demodulation and
decoding, relating the mutual information of decoder messages
communicated and code-bits estimated, as evolved through turbo-
processing. Consider first the inner modulation code, M, that maps
code bits, eC , {Cn}, to channel symbols, X. The noncoherent
demodulator computes a posteriori probabilities, ΛM = {Λn}
defined with respect to the code-bits as LLRs,

Λn = log
Pr(Cn = 0|ΠM, {Y})

Pr(Cn = 1|ΠM, {Y})
− Πn, (3)

where ΠM = {Πn} denotes code-bit priors, Πn = log Pr(Cn=0)
Pr(Cn=1)

.
The EXIT function, A, for M describes the mutual information of
the code-bits and APPs, aout , I(eC; ΛM), as a function of the input
mutual information of the code bits and priors, ain , I(eC; ΠM),
and channel SNR according to aout = A(ain, SNR). Conditional
probability density functions of decoder priors are often well-modeled
as i.i.d., with a single-parameter family of Gaussian densities [11],

Πn ∼ N (±2γ, 4γ), γ ∈ [0,∞), (4)

which has the interpretation of BPSK transmission of eC over an
AWGN channel at SNR γ. In this case, ain has a simplified form,
computed with an averaging estimate (5), see [11],

ain(γ) = 1 − E
ˆ
log

`
1 − exp(Πn)

´
|Cn = 0

˜
. (5)

With M discrete, we have A : [0, 1] → [0, 1], and the parameter γ
is varied to generate ain over the support of A. The output mutual
information, aout, is computed by measuring conditional probability
density functions of Λn that are generated by the decoder fed with
ΠM as in (4).

We next consider the EXIT function, B, of the outer channel code,
C. The APP decoder for C computes its a posteriori probabilities
of the code-bits, ΛC , with the priors ΠC = perm−1(ΛM) (per-
muted extrinsics from the demodulator). Letting bin , I(C, ΠC)
and bout , I(C, ΛC) denote input and output decoder mutual
information, respectively, the decoder EXIT function is given by
bout = B(bin). In many cases, log-APPs produced by the outer
channel decoder, e.g. convolutional decoder, are well modeled as



0 0.2 0.4 0.6 0.8 1

0.3

0.4

0.5

0.6

0.7

0.8

ain,  bout

aou
t ,  

bin

Code convergence
 bound: 7.2 dB        

7.5 dB 16−QAM
Rate−1/

2
 conv. code

7.5 dB Sample path
A(0,SNR) & B(A(0,SNR))

B−1

A

Fig. 4. EXIT chart of aligned rings 16-QAM (A) with convolutional outer
code (B).

Gaussian. Then aout is accurate when computed empirically from
demodulator APPs, ΛM, resulting from the priors (4). However, we
find that the extrinsic information, ΛM, produced by the demodulator
is non-Gaussian, so that estimates of B based on Gaussian priors
at the decoder do not accurately model density evolution for turbo
noncoherent processing.

Since decoder priors are de-interleaved extrinsics from the demod-
ulator, ΠC = perm−1(ΛM), we propose the following approach for
measuring decoder output mutual information, bout. First, Gaussian
code-bit priors are noncoherently demodulated; demodulator input
mutual information, ain(γ), is computed with (5) and output mutual
information, aout, is estimated empirically. The resulting extrinsic
code-bit APPs are then de-interleaved and sent to the decoder as
priors, ΠC , now accurately modeling the priors observed in nonco-
herent processing. Decoder output mutual information is computed
empirically from the resulting decoder extrinsics ΛC .

Figure 4 is an EXIT chart of rate-1/2 convolutional code with
aligned rings 16-QAM at an SNR of 7.5 dB (near the SNR thresh-
old for this code combination) generated with the modified EXIT
analysis. The inverse decoder transfer function, B−1, is plotted since
bin = aout. A sample path, corresponding to one channel realization
and the resulting mutual information sequences, {aout

k }, {bout
k }, that

arise from iterative noncoherent demodulation and decoding of a
transmitted codeword is depicted.

We note some properties of EXIT charts and their implications:
Property 1: A given code combination is said to converge when

limk→∞ bout
k = 1, if and only if the information Bit Error Rate

(BER) approaches zero. An equivalent condition for code conver-
gence is that B−1 < A. In practice, we do not require the final
decoder output mutual information to exactly equal one. In general,
we have B−1(1) = 1, and it may only be possible to arbitrarily
approximate the convergence condition. However, a final decoder
output mutual information less than one will give rise to an error
floor.

Property 2: Channel SNR induces an ordering on demodulator
EXIT functions such that if A and A′ are measured at SNRs τ and
τ ′, with τ < τ ′, then A ≤ A′. The convergence threshold of a code
is the SNR threshold, τ , for which the code converges if and only if
SNR > τ .

Property 3 (Conjecture): The area property of trellis decoders:R 1

0
B−1 = rC , where rC denotes rate of the outer code. This

property, proved only for erasures channels [13], has consistently
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Fig. 5. Coded performance of various QAM constellations at 1.35
bits/channel use.

been observed in the literature, and in our own study, for a wide
variety of channels. We show later that this property, if true, would
imply that convolutional outer codes are near-optimal when the inner
code is unit rate differential modulation.

As an empirical rule of thumb, average SNR does not affect the
shape of the demodulator transfer function, B, but rather its offset.
Since the channel decoder does not directly observe channel output,
its transfer function is unaffected by SNR. These properties result in
a quantitative framework for choosing or optimizing the modulation
and channel codes and for developing reduced complexity receivers.

IV. CONSTELLATION DESIGN FOR NONCOHERENT

COMMUNICATION

Gaussian input distributions, which are known to achieve un-
constrained noncoherent capacity of the block fading channel [9],
are more closely approximated by QAM constellations than PSK,
especially for a large number of points. We first investigate non-
coherent communication with lattice-based QAM constellations with
differential Gray-like bit maps [8]. However, in simulations of a coded
noncoherent system, we find that such lattice QAM constellations
perform poorly, not delivering on the promised gains over PSK. We
therefore consider an alternative class of QAM constellations, in the
form of aligned PSK rings. These constellations, along with Gray-like
bit maps for encoding data in the amplitude and phase transitions, are
depicted in Figure 1. The ratio of ring radii and alignment angle are
chosen to optimize noncoherent capacity. As discussed below, these
constellations are found to perform much better than lattice-based
QAM. We first observe that the noncoherent capacity is virtually
identical for aligned rings and lattice QAM, and then turn to EXIT
analysis for providing more precise guidance on constellation and bit
map choice.

Figure 5 compares the simulated information BER of aligned PSK
rings with lattice 16-QAM and (lattice-like) offset rings 8-QAM.
Standard convolutional codes are employed for an overall data rate of
1.35 bits/channel symbol. The figure demonstrates the gain in using
aligned rings over rectangular lattices: 2 dB for 16-ary constellations,
and a less drastic 0.2 dB for 8-ary constellations. It also displays
the advantage of constellation expansion with heavier coding: for
the same information rate, 16-QAM aligned rings outperform 8-
QAM aligned rings by 0.5 dB. Of course, this advantage is not
realized for poor constellation and bit map choices: the lattice 16-
QAM performs significantly worse than the 8-ary constellations at



the same information rate. EXIT charts explain this result: since
the transfer function of the aligned rings constellation lies strictly
above that of the corresponding lattice constellation, the convergence
threshold with any outer code will be strictly larger for the lattice
constellations.

Unit-rate rotationally-invariant differential modulation codes are
well-suited to block noncoherent processing for their low-complexity
demodulation and bootstrap functionality. We now quantify the
performance penalty associated with this restriction (e.g., as opposed
to using more sophisticated trellis-based modulation codes) for a
serially concatenated system with an outer binary code. To this end,
we invoke the conjectured area property, which states that the rate
of the outer decoder equals the area under its exit curve, B−1. The
best possible (typically unrealizable) choice of outer code is when
the decoder curve perfectly matches the inner demodulator curve
at the convergence threshold. Thus, the highest possible rate of the
outer code for convergence at a given SNR is the area under the
demodulator curve at that SNR. This provides the following upper
bound on the achievable rate (with serial concatenation) as a function
of SNR for a given inner modulation code, as a function of its exit
curve A:

IM(SNR) = log2(M)
T − 1

T

Z
A(u, SNR)du. (6)

We term this bound the modulation code bound. Figure 11 com-
pares the noncoherent capacity for aligned rings 16-QAM with
the preceding upper bound on the achievable rate, using the same
constellation, when restricted to using serial concatenation with a unit
rate differentially modulated inner code with Gray-like bit maps.

V. CHANNEL CODING FOR NONCOHERENT MODULATION

We finally address the choice of outer channel codes, given a
particular inner modulation code. In order to estimate the gap to the
modulation code bound, IM, a lower bound on the SNR convergence
threshold of a given channel code is obtained by appealing to the
waterfall behavior of concatenated codes and considering the first
iteration of demodulation and decoding as a function of channel SNR.
By Property 1, a necessary condition for code convergence is that the
first iteration produces a net increase in demodulator output mutual
information, i.e. aout

0 < aout
1 . The code convergence bound (CCB)

is defined as the smallest SNR for which this condition holds. Note
that if the demodulator fails to yield a net increase in output mutual
information in any one iteration, then the turbo demodulation and
decoding algorithm has reached a fixed point solution, and no further
increase (or decrease) in mutual information is possible. In general,
the CCB will be tight, given the waterfall characteristic of turbo-
processing. In Figure 4, the CCB corresponds to the SNR at which
the dotted curves, A(0, SNR) (upper) and B(A(0, SNR)) (lower,
inverse plotted), diverge. For the standard rate-1/2 convolutional code
employed, the bound is 7.2 dB.

In general we find that the EXIT function of a standard convo-
lutional code is well-matched to unit-rate aligned-rings modulation
codes. Optimization of the degree sequence of an irregular LDPC
code for the specific context of noncoherent communication in block
fading can potentially close the gap to the modulation code bound. On
the other hand, we claim that standard convolutional codes are near-
optimal for noncoherent differential amplitude/phase modulation.
Taking the CCB as the threshold for the code combination in Figure
4 and comparing to IM, Figure 6, idealized channel coding could
improve the convergence threshold by at most 1 dB. Since achieving
the modulation code bound requires infinitely many demodulation
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and decoding iterations (by definition the decoder transfer function
is perfectly matched and coincident with the demodulator function),
we conjecture that only 0.5 dB is gained by optimizing the channel
code. Thus, we conclude that standard convolutional coding is near-
optimal for a unit-rate differential modulation code.
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