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Abstract—The emergence of high-resolution millimeter-wave
(mmWave) multi-input multi-output (MIMO) radar can enable
a powerful framework for collaborative RF sensing with a radar
network. Each node can use its range, Doppler, and angle
information to track targets within its field of view (FOV), but
collaborative networked sensing with multiple such nodes can pro-
vide several new capabilities for multi-target tracking, including
“cellular-style” coverage of large areas, and robust performance
under FOV limitations and line-of-sight (LoS) obstructions for
individual nodes. However, collaborative target tracking and
track-level fusion in a radar network requires knowledge of the
radar nodes’ poses (i.e., positions and orientations) relative to
each other. In this paper, we propose an autocalibration strategy
based on joint target tracking and pose estimation by fusing
measurements corresponding to a moving target seen by multiple
radars. We provide an optimal algorithm with a closed-form
solution that enables any two nodes tracking a common target
to determine their relative poses by matching their estimated
tracks. Our preliminary results illustrate how this algorithm can
be used as a building block for multi-node calibration, and target
track association when tracking multiple targets.

Index Terms—mmWave radar retwork, self-calibration, radar
fusion

I. INTRODUCTION

Advances in low-cost silicon implementations of mmWave
MIMO radar in the 60 and 77 GHz bands are ushering in a
revolution in RF sensing, with enhanced range and Doppler
resolution due to the large operating bandwidths and high car-
rier frequency, and angular information obtained via multiple
transmit and receiver antennas. While much of the recent work
on integrated communication and sensing in cellular networks
has focused on reusing communication waveforms and hard-
ware for sensing, a complementary approach to developing
advanced sensing systems is to integrate existing MIMO radar
sensors into the cellular infrastructure, using communication
as a means of coordinating and fusing measurements from
these sensors.

Such “cellular radar” can provide robust, finely detailed
environmental awareness through collaborative RF sensing.
While radars can “see through” poor weather conditions
better than optical modalities such as cameras and LIDAR,
an individual radar node has limited range and FOV, and
reduced visibility in non-line-of-sight (NLoS) conditions, and
the angular resolution is far coarser than for optical sensing.
Collaborative sensing using a network of such nodes can
significantly alleviate these challenges, enabling sensing cov-

erage over large areas and robust, high-precision multi-target
tracking.

Fig. 1: Collaborative RF sensing using a cellular radar network

However, high-precision collaborative fusion requires ac-
curate calibration, in which the relative poses (positions and
orientations) of the radar nodes relative to each other are
known across the network. Fine-grained manual calibration
during deployment is typically impractical, especially for
orientation. Coarse locations may be known using various
position measurement technologies, such as Global Navigation
Satellite Systems (GNSS) outdoors and WiFi-based position-
ing indoors, but the resolution is far coarser than the range
resolution available with MIMO radars. Thus, self-calibration
of radar networks is essential for cost-effective deployment
and efficient operation.

We assume that neighboring radar nodes are coarsely syn-
chronized at the frame level and that each radar performs its
own range-Doppler-angle processing to obtain its “local” view
of the scene. For a calibrated network with large enough com-
munication bandwidth, neighboring nodes could potentially
exchange range-Doppler-angle information for high-resolution
fusion. However, for initial self-calibration, we consider fusion
at the next layer of processing. Neighboring radar nodes seeing
a common target each produce a track corresponding to their
view of the target, and learn their relative poses by “matching”
these tracks in a least squares sense.



Related work: There has been significant recent interest,
including experimental validation, in the concept of collab-
orative sensing with mmWave radar nodes. The authors of [5]
study a two-radar network to determine their relative position
and orientation using a straight-line walking trajectory of
a single moving person. The limitation of this method is
that it necessitates a controlled environment, and is therefore
unrealistic and inefficient. In [4], the authors utilize a multi-
radar system to detect the respiration of multiple sitting sub-
jects. By employing multiple radars, this approach overcomes
the shadowing problem encountered in single radar systems,
where the radar may not detect multiple people present in the
scene if some of them obstruct others. Although this method
addresses the multiple-target problem for self-calibration, it is
only applicable to stationary subjects. In [6], the authors ex-
plore target-based calibration using corner reflectors for radars
mounted on a vehicle. This approach addresses a point-set
registration problem, where target detections are aligned with
known locations in the vehicle coordinate system (VCS) to
estimate calibration parameters. However, this work assumes
that target locations are already known in the VCS, which is
impractical. Joint self-calibration and multi-target tracking in
indoor environments is considered in [1], [7], and robustness to
reduced fusion rate is evaluated. Joint ego-motion and sensor
orientation estimation has been investigated in [2] for radars
with non-overlapping FOVs mounted on a vehicle. Joint 3D
position and orientation estimation based on moving target
tracking has been studied in [3]. These research works on
collaborative sensing have explored the potential for self-
calibration and multi-target tracking. However, in our work,
we take a step back and develop a simplified abstraction that
yields a building block for joint self-calibration and multi-
target fusion based on an efficient, optimal algorithm.

II. BUILDING BLOCK: TWO RADAR NODES, ONE TARGET

Abstraction: We consider a 2D setting, and obtain an el-
egant mathematical framework by interpreting 2D positions
as complex numbers. As a building block, we consider two
nodes A and B synchronized at the frame level and tracking
a common target (the exact tracking mechanism is abstracted
out). The node positions with respect to an arbitrary, and
potentially unknown, global frame are pA = xA + jyA and
pB = xB + jyB , respectively. For a given target seen by
both nodes, Node A estimates (in its own coordinate frame)
its local track zA[k] = uA[k] + jvA[k], k = 1, ...,K while
Node B estimates its local track as zB [k] = uB [k] + jvB [k],
k = 1, ...,K, where k indexes successive radar frames. We
wish to obtain estimates for the relative position pBA (a
complex number) and the real-valued scalar θBA ∈ [0, 2π), the
rotation of the local coordinate frame of B relative to that of A.
See Figure 2. Note that this formulation enables us to model
the rotation of coordinate frames with a single scalar rather
than with a rotation matrix in the orthogonal group SO(2),
and enables us to provide an optimal solution in closed form
for a nonlinear least squares problem.

Fig. 2: Two nodes A and B seeing a common target can self-
calibrate based on their local tracks.

For relative position pBA and orientation θBA, the target
tracks seen by nodes A and B are related as follows:

zA[k]− pBA ≈ ejθBAzB [k] (1)

In order to find these parameters, therefore, we seek to
minimize the least squares error:

J(p, θ) =

K∑
k=1

∣∣zA[k]− p− ejθzB [k]
∣∣2 (2)

Thus, we wish to find

(p̂BA, θ̂BA) = arg min J(p, θ) (3)

This is a nonlinear least squares problem in p and θ for which
it is not a priori clear that a global optimum exists. However,
as we state in the following theorem, there is indeed a unique
global optimum, and we can provide a closed-form solution
for both the optimizing arguments and the corresponding
minimum value.

The geometry of the optimal solution is best expressed
by representing the tracks as complex-valued vectors zA =
(zA[1], ..., zA[K])T and zB = (zB [1], ..., zB [K])T . We define
the track centroids as

zA = 1
K

∑K
k=1 zA[k] =

1
K1T zA

zB = 1
K

∑K
k=1 zB [k] =

1
K1T zB

(4)

where 1 denotes the all-one vector. We define centered tracks
by subtracting out the centroids:

ẑA = (zA[1]− zA, ..., zA[K]− zA)
T = zA − zA1

ẑB = (zB [1]− zB , ..., zB [K]− zB)
T = zB − zB1

(5)

We use the standard notation xH = (x∗)T to denote the
conjugate transposed of a vector x. Note that yHx is the
complex-valued inner product between x and y, and we
denote by ||x||2 = xHx the energy, or square of the ℓ2
norm, of a vector x. We can now state the following theorem
characterizing the solution of (2)-(3).



Theorem 1: The global minimum of the least squares problem
(2)-(3) is attained by

θ̂BA = − ẑHA ẑB

p̂BA = zA − ejθ̂BAzB

(6)

Furthermore, the minimum cost attained by this solution is
given by

Jmin(B,A) = ||ẑA||2 + ||ẑB ||2 − 2
∣∣ẑHA ẑB

∣∣ (7)

Proof: The cost function (2) can be written compactly as

J(p, θ) =
(
zA − p1− ejθzB

)H (
zA − p1− ejθzB

)
(8)

For fixed θ, J(p, θ) is a quadratic function of the complex
variable p that can be minimized by setting the derivative
∂J
∂p∗ = 0. This is easily seen to yield the optimal solution
(as a function of θ)

p̂(θ) = zA − ejθzB (9)

Plugging this into (8), we obtain upon simplification that

J(p̂(θ), θ) =
(
ẑA − ejθẑB

)H (
ẑA − ejθẑB

)
(10)

which further simplifies to

J(p̂(θ), θ) = ||ẑA||2 + ||ẑB ||2 − 2Re
(
ejθẑHA ẑB

)
(11)

Writing the complex inner product ẑHA ẑB = Rejϕ (in polar
form), the third term on the right-hand side can be written as

−2Re
(
ejθẑHA ẑB

)
= −2Re

(
ejθRejϕ

)
= −2R cos(ϕ+ θ)

which is minimized for θ = −ϕ = − ẑHA ẑB . This, together
with (9), completes the computation of the optimal solution
(6). Plugging into (11), we obtain the minimum cost (7).
Remarks:
(1) The solution (6) has an intuitively pleasing geometric
interpretation. The coordinate frame rotation θ̂BA geometri-
cally aligns centered versions of the local tracks at the two
radar nodes. The position translation p̂BA is then given by the
difference of the centroids of the local tracks after bringing
them both to the same frame of reference.
(2) In the next section, we provide numerical results showing
how the pairwise solution provided by the preceding theorem
can be used as a building block to calibrate multiple radar
nodes tracking the same target.
(3) The value of the minimum cost (7) can be leveraged
for track association: attempted calibration using local tracks
corresponding to different targets would lead to larger cost
than if the local tracks correspond to the same target.
(4) While our calibration framework is quite general, operating
at a track-level abstraction, the parameters being calibrated
(position and orientation) would be relevant for fusing mea-
surements from MIMO radars providing range, Doppler and
angle measurements.

Fig. 3: Calibrating multiple nodes

III. CALIBRATING MULTIPLE NODES

Now, consider N stationary radar nodes with overlapping
FOVs, as depicted in Figure 3. For a target visible to all nodes,
enforcing least squares consistency among local tracks for all
pairs decomposes into N(N − 1)/2 instances of the problem
solved in Theorem 1 due to the additive nature of the least
squares cost. Thus, we obtain estimates of relative position
p̂ik and relative orientation θ̂ik for each distinct pair 0 ≤ i <
k ≤ N − 1. These can be merged, for example, by choosing
one of the nodes as anchor: this provides a common frame
for expressing the results of collaborative sensing even if we
do not know the anchor’s position and orientation in a global
frame. For example, if node 0 is the reference, we may set
p0 = 0 + 0j, and estimate the position of the ith node as

p̂i =
1

N − 1

∑
k ̸=i

(p̂ike
jθ̂k0 + p̂k0) , 1 ≤ i ≤ N − 1 (12)

where p̂0 = p̂00 = 0 + 0i. For each node i, the kth term in
(12) is the vector sum of its estimated position relative to k
(expressed in k’s coordinate frame) and the relative position
of k from the anchor node 0.

The orientation of node i’s coordinate frame with respect
to node 0’s can be estimated by similar averaging:

θ̂i =
1

N − 1

∑
k ̸=i

(θ̂ik + θ̂k0) , 1 ≤ i ≤ N − 1 (13)

While we have a guarantee of optimality for two-node cal-
ibration in Theorem 1, we do not have similar assurances for
the preceding merging procedure, since the estimates obtained
from pairwise calibration are not independent. Thus, while our
initial experiments show the efficacy of this procedure, it may
be possible to improve upon it.

IV. RESULTS AND DISCUSSION

Target tracking information for each radar is forwarded to a
central fusion node (which may be located at one of the radar
nodes) for calibration and fusion. We assume that all radars



-20 -10 0 10 20 30 40 50 60

X-Axis

-50

-40

-30

-20

-10

0

10

20

30

40

50
Y

-A
x
is

Actual Ground Truth Data

Radar 1 Radar 2

Radar 3Radar 4

Overlapping FOV

Target Trajectory

Target Trajectory

Radar
i
 position

Radar
i
 orientation

(a)

-20 0 20 40 60 80 100

X-Axis

-60

-40

-20

0

20

40

60

80

Y
-A

x
is

Relative Averaged Calibration Data for Ref Radar 

3

Radar 1

Radar 2

Radar 3

Radar 4

Target Trajectory Estimate wrt Ref Radar

Averaged Radar
i
 Optimal Relative Position wrt Ref Radar

Radar
i
 Actual Relative Position wrt Ref Radar

Radar
i
 Actual Relative Orientation wrt Ref Radar

Averaged Radar
i
 Optimal Relative Orientation wrt Ref Radar

(b)

Fig. 4: (a) Ground truth calibration data for Scenario 1 with
N = 4 radars and one moving target in their overlapping
FOV, shown by the red lines. (b) Averaged relative calibration
results for Radar3 as reference. The target trajectory estimate
relative to Radar3 is shown here.

have already estimated target trajectories in local Cartesian
coordinates (x, y), with i.i.d. noise across each axis for each
time sample of each local track. In our numerical results, we
assume that the noise samples are distributed as N (0, 4). In
practice, noise covariances could be obtained as the output of
a tracker, which requires extension of our framework to non-
white, time-varying noise covariances that are different for the
different radars.

Fig. 4a shows simulation results for Scenario 1: N = 4 radar
nodes with one moving target visible to all nodes. The efficacy
of our self-calibration algorithm is confirmed by comparing the
results to ground truth relative poses (Fig. 4b).

Scenario 2 (depicted in Fig. 5a) illustrates that the closed-
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Fig. 5: (a) Ground truth calibration data for Scenario 2 with
N = 2 radars and two moving targets. Target 1 is in the FOV
of Radar 1 and Target 2 is in the FOV of Radar 2. (b) Relative
calibration results for Radar1 as reference. The target 1 and
2 trajectories w.r.t. Radar1 after calibration (denoted by the
green and blue lines respectively) indicate that they are not
the same target.

form solution in Theorem 1 also provides a simple criterion
for track association: when two radar nodes see two different
targets but try to solve the least squares problem in Theorem
1, the minimum cost attained will be large, indicating that
the tracks are not the same (incorrect target-track association).
Fig. 5a shows two targets and two radar nodes: each target
is in the FOV of one radar and out of the FOV of the other.
Applying our self-calibration algorithm with the corresponding
local tracks and referring the local tracks to the coordinate
frame of radar 1, we see that the tracks do not match (Fig.
5b), which provides a pictorial illustration of the potential of



using the minimum value Jmin in Theorem 1 as a criterion
for track association in a radar network.

Scenario 3 (depicted in Fig. 6a) shows two radar nodes
and five moving targets, three of which are in the overlapping
FOV of both radars, while the other two are visible only to
one radar each. Fig. 6b shows the relative calibration result for
correctly associated tracks, while Fig. 6c shows the result for
incorrect track association. From this we can conclude that
correct target-track association is necessary for precise self-
calibration in presence of multiple targets. As part of our future
work, we aim to achieve joint self-calibration and target-track
association for a multi-target scenario.

V. CONCLUSION

We propose a “cellular radar” approach to integrated com-
munication and sensing that leverages existing radar tech-
nology within the cellular infrastructure. Networked self-
calibration as considered here enables opportunistic deploy-
ment with minimal measurement requirements. We provide a
simplified closed-form solution for self-calibration in a two-
radar network, and extend it to multiple nodes. We also show
that the minimum value of the residual obtained as a part of
the closed-form solution can be leveraged for track association
in multiple-target scenarios.
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Fig. 6: (a) Ground truth calibration data for Scenario 3 with
N = 2 radars and five moving targets. Three targets are in
the overlapping FOV of the radars, while the other two are
only visible to one radar. (b) Relative calibration results w.r.t
Radar1 for correct track association. (c) Relative calibration
results w.r.t Radar1 for incorrectly associated tracks.


