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Abstract—Massive MIMO radars that utilize many transmit
and receive antennas can provide range extension and fine-
grained angular resolution in sensing. Current signal processing
strategies for MIMO radar impose a strict tradeoff between range
and angular field of view, preventing efficient scaling to massive
MIMO platforms. In this paper, we present a compressive signal
processing framework to sidestep this tradeoff. Relying on the
sparsity of the scene in angular domain, we take advantage of
compressive beam scanning to provide high resolution direction
estimates with a small number of beacons that scales logarith-
mically with array size. The proposed approach enables scaling
to massive MIMO frontends while maintaining a small, almost
constant frame interval, thereby facilitating high resolution
direction estimation and range extension without sacrificing the
field of view or imaging speed.

Index Terms—CWFM radar, MIMO radar, compressive esti-
mation, range extension, massive MIMO.

I. INTRODUCTION

Utilizing many transmit and/or receive antennas enables a
radar system to provide high-resolution direction information
in addition to range and doppler, which is immensely ben-
eficial to many applications such as environment awareness
for autonomous vehicles, target classification, and close-range
gesture recognition. Using a large number of transmit elements
can also provide power combining gains and expand the
sensing range and SNR. At mmWave and THz frequencies,
massive MIMO frontends with hundreds or thousands of
elements can fit on small platforms, and several prototypes
have been built for communication applications until now [1]–
[3]. By repurposing these frontends for sensing, the many
benefits of massive MIMO radar can be realized.

Unfortunately, current signal processing strategies for
MIMO radar impose a strict tradeoff between range and field
of view that prevents efficient scaling to massive MIMO
platforms. Conventional MIMO radar systems typically uti-
lize time-interleaved sensing (for digital transmit arrays) or
directional beam scanning (for digital or analog arrays) to
obtain direction estimates [4], [5]. The frame structure of
these two methods is depicted in Figure 1. In the former
approach, transmitters take turns broadcasting chirp sequences
and the received measurements are aggregated to emulate the
full MIMO response. Since only one transmitter is active
at any time, this method does not realize the full transmit
power combining gain and range extension of MIMO. This is
also true for the case of orthogonalizing transmitter signals in
domains other than time as proposed in [6]. Furthermore, since
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Fig. 1: Frame structure for (a) time-interleaved [4], (b) beam-
formed scanning [5] radar.

the number of chirp bursts in each frame scales proportionally
to array size, this strategy is not scalable to very large transmit
arrays due to the limited coherence time of the scene. The
beam scanning approach, on the other hand, utilizes the power
combining gain of the array, but it too scales poorly to large
arrays with narrow beams, as covering a large (fixed) field of
view with narrow beams requires a number of chirp sequence
transmissions that scales linearly with array size. Thus to allow
sufficiently fast scanning, one must limit either the transmit
array size (hence, range extension capacity) or the field of
view that is scanned in each frame.

In order to circumvent these limitations, we propose an
alternative approach that, relying on the angular sparsity of
the scene in each range-doppler bin, takes advantage of com-
pressive signal processing to provide high resolution direction
estimates with a small number of subframes (chirp bursts) that
scales logarithmically with array size. We borrow ideas from
the extensive literature on compressive channel estimation for
MIMO communication applications, and overlay compressive
estimation in the spatial domain with the conventional range
and Doppler estimation of continuous wave frequency mod-
ulated (CWFM) radar. Our numerical results show that with
as few as 10 compressive beacons, target directions can be
estimated with the full resolution of a 128-element transmit
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Fig. 2: Proposed frame structure for compressive radar.

aperture, providing an order of magnitude reduction in the
frame size compared to beamformed scanning.

A. Related work

The wireless channel, especially at higher frequencies where
massive MIMO frontends are feasible, consists of only a small
number of paths and is therefore sparse in the spatial frequency
domain. Thus, compressive channel estimation from a small
number of random projections has been employed in com-
munication applications for low-overhead channel tracking on
large phased arrays with RF beamforming [7], [8]. Since the
spatial frequency of each path lies on a continuum, conven-
tional techniques for sparse vector estimation are not suitable
for channel estimation. In [9], an algorithm is proposed for off-
grid compressive estimation using orthogonal matching pursuit
with Newton refinement of parameters between nullspace
projections. As massive MIMO frontends are deployed for
radar imaging, adapting the compressive signal processing
techniques developed in communication literature to sensing
platforms is increasingly of interest.

In sensing literature, “compressive” or “sparse” MIMO
radar typically refers to one of two cases. In the first case,
target sparsity in the angle-Doppler-range space is exploited
to compress the received signal via a linear transformation, as
discussed in [6], [10], [11]. These methods require transmit
elements to transmit independent signals, and are therefore
incompatible with the large RF-beamformed arrays that we
propose to repurpose for sensing. The second case refers to
random undersampling of the spatial domain, i.e., sparsity in
terms of hardware realization wherein transmit and receive
array elements are placed at random so that a large aperture
is sampled compressively with fewer antenna elements [12].
In contrast, our focus here is on compressive sampling to take
advantage of the sparsity of the scene in the spatial frequency
domain, which allows us to observe the entire field of view
with fewer beams than would be required by beamformed
scanning. We note that the two concepts are complementary:
compressive sampling in spatial frequency domain using large
transmit arrays, as proposed here, can be combined with
randomly spaced receive antennas to efficiently synthesize
large apertures.

Transmitter Receiver

Transmitter Receiver

Fig. 3: Spatial undersampling provides aperture extension and
improves angular resolution.

II. SYSTEM MODEL

We consider a CWFM MIMO radar system which con-
sists of an Ntx-element phased array transmitter and an Nrx-
element, digital receiver, with the frame structure depicted in
Figure 2. For each chirp transmission, the return signal at the
receiver is mixed with the transmitted chirp and sampled at a
rate of B Hz, equivalent to a sampling period of Ts = 1/B.
The frame is divided into K subframes, each containing a se-
quence of n0 chirps. On each subframe, a different randomly-
generated beamforming weight vector is applied to form a
compressive beacon. We use a standard complex Gaussian
distribution to draw the beamforming weights, resulting in
radiation patterns that spray power randomly in the angular
domain, as shown in Figure 2. Thus, in each subframe, the
return signal from target t is multiplied by the complex
subframe beacon response to spatial frequency

ωtx
t =

2πdtx

λ
sin θt (1)

where θt is the direction of target t, dtx is the transmit array’s
inter-element spacing, and λ is the carrier wavelength. The
target’s spatial frequency on the fully digital receiver is derived
by taking a spatial FFT and satisfies

ωrx
t =

2πdrx

λ
sin θt. (2)

We assume here that all targets are sufficiently far away to
have AOD = AOA = θt.

A. Unambiguous bounds and resolution of parameters

In the system described above, Targets are separated into
range, Doppler (radial speed), and spatial frequency bins with
a nominal resolution equal to the corresponding FFT grid
length of each domain. In evaluating our algorithm, we regard
any estimate of range, Doppler, or spatial frequency that
lies within one nominal FFT grid length of the true value
as a “successful” detection, and any estimate outside this



span is considered incorrect. The nominal resolution of each
parameter is described as follows.
Range. The minimum and maximum unambiguously measur-
able range are defined by the receiver sampling rate, B (Hz),
and chirp frequency slope, α (Hz/s), as

Rmin = 0, Rmax =
Bc

2α

where c is the speed of light. The nominal range resolution is
determined by the length of the chirp. Assuming the system
produces L samples per chirp, the range-FFT grid size will be
grange = 2π/L equivalent to a nominal range resolution of

δR =
Rmax

L
=

Bc

2αL
=

c

2αTchirp

where Tchirp = LTs is the chirp duration in seconds.
Speed. Similarly, the minimum and maximum unambiguous
Doppler measurement is determined by the delay between
consecutive chirps. Assuming a duration of Tgap between the
end of one chirp and the start of the next, the largest Doppler
frequency is

π

Tchirp + Tgap
,

which translates to the radial speed measurement limits,

Vmax = −Vmin =
λ

4(Tchirp + Tgap)
.

The nominal Doppler FFT grid size is thus equal to

2π

n0(Tchirp + Tgap)

corresponding to nominal radial speed resolution,

δV =
λ

2n0(Tchirp + Tgap)
=

λ

2Tsubframe
,

where Tsubframe is the total subframe duration.
Angle. Unambiguous spatial frequency measurements can be
made in the range of (−π, π) with a grid size of,

δω,tx =
2π

Ntx

on the transmitter (used for AOD estimation), and

δω,rx =
2π

Nrx

on the receiver (AOA estimation). These are translated to
angular resolution using (1) and (2), respectively as

δθ,tx/rx =
λ

2πdtx/rx cos θ
δω,tx/rx. (3)
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Fig. 4: Aggregated range-Doppler bin powers and compressive
direction estimation for a sample scenario.

B. Aperture extension with spatial subsampling

With an appropriate choice of element spacing in the
transmitter and receiver, the effective sensing aperture can be
increased up to NtxNrxλ/2. Let us assume that the transmitter
has half-wavelength spacing while the receiver is spatially
undersampled by a factor of Ntx (i.e., the inter-element spacing
at the receiver is Ntxλ/2). The translation of transmit spatial
frequency to angle is thus the one-to-one transform,

AOD = sin−1 ωtx

π
(4)

whereas the undersampled receiver will see “grating lobes”
equivalent to the one-to-Ntx mapping,

AOA = sin−1 ωrx + 2πn

Ntxπ
, ∃n ∈ {0, ..., Ntx − 1}. (5)

Since AOA = AOD = θ, the angle recovered in (4) can be
used to resolve n in (5). Note that the resolution provided by
(5) is higher than that of (4) by a factor of (approximately)
Nrx, meaning the overall direction resolution provided in this



way is equivalent to that of an NtxNrx-element array with half
wavelength spacing.

Figure 3 depicts this process of grating lobe resolution
from the radiation pattern point of view. Note that the same
effect can be achieved by deploying a half-wavelength-spaced
receiver and spatial undersampling at the transmitter by a
factor of Nrx (also shown in Figure 3).

III. ALGORITHM

Figure 4 shows a sketch of our proposed imaging process
for one frame. This process comprises the following steps.

A. Range-Doppler measurement
In this step, we first take a 2D FFT of each subframe’s

measurement matrix to arrive at a set of K range-Doppler
heatmaps, as shown in Figure 2. By adding up the power in
each range-Doppler bin across subframes, we arrive at the
“aggregate power heatmap”, an example of which is shown in
Figure 4. We find the strongest peak in this matrix, obtain an
off-grid estimate of its range and Doppler frequency, using a
super-resolution technique such as gradient descent, Newton
refinements, or local oversampling of the Fourier transform to
maximize the aggregate power cost function. We then subtract
its response from the measurement matrices of all subframes
and proceed to find the next strongest peak in the aggregate
power heatmap of the residual response. This process is
repeated until no strong peaks relative to the noise floor are
observed in the residual heatmap. We denote by Nbin the
number of extracted bins, and by r̂i and d̂ithe super-resolved
range and Doppler frequency estimate of bin i, respectively. In
principle, each extracted range-Doppler bin can contain one or
more targets, which may be separable in the angular domain.
However, when simulating point targets randomly dispersed in
the range-Doppler-angle space, this is highly unlikely.

B. Doppler correction and spatial frequency estimation
For each significant bin, we observe a set of K complex

amplitudes over the compressive subframes. We denote the
observation for bin i on subframe k by yki . In a static
setting, this complex amplitude is the sum of the response
of compressive beacon k to all the targets inside bin i,
and therefore the spatial frequencies of all targets in bin i
can be found by using conventional a off-grid compressive
estimation algorithm, such as NOPM [9], on the observation
vector yi = [y1i , ..., y

K
i ]T . For moving targets, however, the

phase of each beacon response is modulated by Doppler
drift across subframes, which must be corrected for each
subframe measurement to obtain the true compressive spatial
projections. For bin i with Doppler frequency di, the Doppler
phase drift encountered by subframe k is equal to (k−1)n0di.
We use our estimate d̂i to undo this phase offset, and obtain
the corrected compressive measurements as

ỹki = yki e
−j(k−1)n0d̂i , k = 1, ...,K.

The corrected measurement vector ỹi = [ỹ1i , ..., ỹ
K
i ]T is used

for compressive estimation of the spatial frequencies of targets
inside bin i.

Note that, for successful phase correction, the Doppler fre-
quency estimate must be accurate enough to extrapolate well
over K subframes, which is why off-grid Doppler estimation
in the previous step is crucial for the success of the algorithm.

C. Doppler refinement (optional)

Once a target’s direction (spatial frequency) is identified,
its compressive beacon response on the K subframes can
be calculated. By undoing this spatial beacon response on
all subframes, we arrive at an effectively Kn0-chirp-long
subframe that can be used to produce a more accurate off-grid
Doppler estimate for that target. This time, instead of using
the (noncoherently combined) aggregate power cost function,
we can combine likelihoods coherently across subframes and
achieve higher estimation accuracy relative to our initial esti-
mate.

IV. NUMERICAL RESULTS

In this section, we present simulation results for a MIMO
radar system with an Ntx = 128 element phased array trans-
mitter with half-wavelength element spacing, and a single-
element receiver (Nrx = 1). Each frame contains K subframes
where K is varied between 5 and 15. Spatial beamforming
weights for each subframe are drawn independently from
a standard complex Gaussian distribution. Each subframe
consists of n0 = 32 chirps, and each chirp of L = 256
samples. The distance, radial speed, and direction of targets are
drawn randomly such that their corresponding range, Doppler,
and spatial frequencies are uniformly distributed over the un-
ambiguous range, save for a single FFT-grid-length gap at each
end to prevent wrap-around ambiguity. In each realization, we
model 10 targets with 10 dB dynamic range in target signal
strengths. Variations in the strength of target responses arises
from differences in radar cross section and distance, both of
which are modeled in our simulations. The simulation code is
available at https://github.com/MaryamRasekh/MIMORadar.

Figure 5 shows the estimation success rate for each pa-
rameter as a function of the per-symbol beamformed SNR
(which is a factor of Ntx higher than the effective SNR for a
single-element transmitter) for different values of K. As noted
in section II, successful estimation of a parameter implies an
absolute estimation error smaller than the nominal FFT grid
size. These results are averaged on a per-target basis over 10
realizations, or 100 targets in total. We see that success rate
approaches 1 at around -15 dB beamformed SNR, and even
with 10 subframes, or 320 chirps per frame, target directions
are accurately recovered with the full resolution of a 128-
element aperture.

By generating point targets randomly, we are all but guaran-
teeing that each range-Doppler bin contains at most 1 target,
and mutli-target bins are very unlikely to occur. This is likely
to be true in real-word systems in all but the zero-Doppler bins
where a lot of static clutter is present (assuming, of course,
that the radar platform is also static). As a higher number of
targets are present in one bin, the number of beacons required
to accurately estimate their spatial frequencies will increase
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Fig. 5: Success rate of range, Doppler, and angle estimates as a function of SNR and number of subframes K.

proportionally. This is perhaps best managed by generating
a new set of compressive beacons for each frame (instead
of repeating the same predefined set) so that, by combining
several frames, the number of subframe measurements can be
adapted to the scene coherence time, and even to the radial
speed and number of targets on a per-target or per-bin basis.

V. CONCLUSIONS

In this paper, we present a compressive signal processing
framework to sidestep the tradeoff between range and field of
view that plagues conventional MIMO radar systems. Relying
on the angular sparsity of each range-Doppler coordinate of
the scene, we take advantage of compressive beam scanning
to provide high resolution direction estimates with a small
number of beacons that scales logarithmically with array size.
The proposed approach enables scaling to massive MIMO
frontends while maintaining a small, almost constant frame
size, thereby facilitating high resolution direction estimation
and range extension without sacrificing the field of view or
agility of the imaging system.

Numerical results were presented for simulated point tar-
gets on a CWFM radar system with 128 RF-beamformed
transmit elements and a single receiver, showing accurate
direction estimates are obtained with as few as 10 compressive
beacons. In future work, we will investigate the potential
for the application of this approach to extended targets with
complicated micro-Doppler signatures, and implications for
object classification and gesture recognition.
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