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Abstract—The performance of a near–far-resistant, finite-complexity,
minimum mean squared error (MMSE) linear detector for demodulating
direct sequence (DS) code-division multiple access (CDMA) signals is
studied, assuming that the users are assigned random signature sequences.
We obtain tight upper and lower bounds on the expected near–far
resistance of the MMSE detector, averaged over signature sequences and
delays, as a function of the processing gain and the number of users.
Since the MMSE detector is optimally near–far-resistant, these bounds
apply to any multiuser detector that uses the same observation interval
and sampling rate. The lower bound on near–far resistance implies that,
even without power control, linear multiuser detection provides near–far-
resistant performance for a number of users that grows linearly with the
processing gain.

Index Terms—CDMA (code-division multiple access), direct sequence,
interference suppression, multiuser detection, random signature sequence,
spread spectrum.

I. INTRODUCTION

It has been recently shown that linear minimum mean squared error
(MMSE) receivers for direct sequence code-division multiple access
(DS-CDMA) signals do not suffer from the near–far problem or the
interference floor in performance exhibited by conventional matched
filter reception [11]. The use of the MMSE criterion for CDMA
receivers was first proposed in [26]. More recently, it was recognized
by several authors [1], [11], [13], [16] that, for CDMA systems
in which the signature sequences are short (i.e., the period of the
signature sequence equals the symbol period), linear MMSE receivers
can be implemented as adaptive tapped-delay lines with relatively low
complexity. Such implementations do not require explicit knowledge
of parameters such as the signature sequences and delays of the
interfering users, unlike centralized multiuser detectors (see [23] for
a survey of the latter). While previous performance studies of linear
MMSE detection were for specific choices of signature sequences,
in this correspondence, we attempt to characterize its performance
averaged over randomly chosen signature sequences and randomly
chosen delays. The detector considered in this correspondence is the
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N -tap MMSE detector proposed in [11] (N is the processing gain),
which consists of anN -tap linear filter followed by a threshold
device. The tap spacing is equal to the chip interval, and the taps
are selected to minimize the mean squared error (MSE) between the
transmitted symbol and the filter output.

We consider both synchronous and asynchronous CDMA systems.
Although most systems in practice are asynchronous, consideration
of a synchronous system facilitates exposition of the ideas behind
the proofs of our results. We derive tight upper and lower bounds on
the average near–far resistance of the MMSE detector. These bounds
apply to any optimally near–far-resistant multiuser detection scheme
(linear or nonlinear) that usesN -chip-spaced observations over a
single symbol interval to detect each symbol. This is because, for a
fixed observation interval and sampling rate, the MMSE detector, and
its zero-forcing (or decorrelating) analog, have maximum near–far
resistance [6], [7], [11]. The near–far resistance of theN -tap MMSE
detector considered here also provides a lower bound for that of
infinite-memory multiuser detectors such as the optimal (maximum-
likelihood) multiuser detector [21] and the decorrelating detector
[6], [7], with equality for synchronous CDMA. This leads to the
approximate rule that the maximum number of strong interferers that
theN -tap detector (and hence more complex multiuser detectors) can
effectively suppress growslinearly with the processing gainN: This
is in contrast to the matched-filter receiver, whose near–far resistance
is zero with high probability even fortwo simultaneous users.

The random signature sequence model considered has been used to
analyze the performance of the matched-filter receiver [14], [25], to
obtain performance limits for matched-filter-based timing acquisition
for DS-CDMA systems [12], and to derive timing acquisition schemes
for single-user DS systems [3]. When the signature sequences have
period much larger than the symbol interval (as in the current
IS-95 DS-CDMA air interface [17]), an average with respect to
signature sequences can be interpreted as an average over each user’s
symbol sequence, since the signature sequence restricted to each
symbol interval appears random [4]. In contrast, in a system with
short signature sequences (in which case the cyclostationarity of the
interference permits adaptive implementation of the MMSE detector),
averaging over signature sequences has the interpretation of averaging
over the set of active users. Our results on average near–far resistance
apply to both kinds of systems, as long aslinear modulation is used
(thus the results would not apply to the IS-95 mobile to base link,
which uses orthogonal modulation).

Section II summarizes the system model and the analysis for a fixed
set of signature sequences from [11]. Section III contains the bounds
on near–far resistance, together with numerical results demonstrating
their tightness. The derivation of these bounds is given in Section IV.
Our conclusions are given in Section V.

II. PRELIMINARIES

Consider a direct-sequence CDMA system withK simultaneous
antipodal users over an additive white Gaussian noise (AWGN)
real baseband channel. The received signal due to thekth user
(1 � k � K) is given by

r
(k)(t) =

1

n=�1

bk;nAksk(t� nT � �k) (1)
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whereT is thesymbol interval, bk;n 2 f�1; 1g is thenth symbol of
thekth user,Ak is its amplitude,�k is its relative delay with respect
to the receiver, andsk(t) is its spreading waveform, given by

sk(t) =

N�1

j=0

ak[j] (t� jTc): (2)

Here ak[j] 2 f�1; 1g is the jth element of the signature sequence
for the kth user, (t) is the chip waveform, Tc is the chip interval,
andN = T=Tc is the processing gain. Under the random signature
sequence model,ak[j], 1 � k � K, 0 � j � N�1, are independent
random variables taking the values+1 and�1 with equal probability.

The net received signal is given by

r(t) =

K

k=1

r(k)(t) + n(t) (3)

wheren(t) is additive white Gaussian noise (AWGN). Taking the
first user to be thedesireduser, our objective is to demodulate its
bit sequencefb1;ng:

The receiver is assumed to know the symbol and chip timing of
the desired user,1 so that we may set�1 = 0: The received signal is
passed through a chip matched filter and sampled at the chip rate. For
making a decision on thenth symbol of the desired user, we consider
theN samples obtained in the observation interval(nT; (n + 1)T ]
which form the received vector

rrrn = (r[nN ]; r[nN + 1]; � � � ; r[nN + 2N � 1])T :

For a rectangular chip waveform, thelth chip sample is obtained as

r[l] =
(l+1)T

lT

r(t)dt: (4)

We now expressrrrn in terms of the parameters of the asynchronous
CDMA model (1)–(3). Without loss of generality, let�k 2 [0; T ), and
write it as�k = (nk + �k)Tc, wherenk is an integer between0 and
N�1, and�k 2 [0; 1): Let aaak denote a vector of lengthN consisting
of the N elements of the spreading sequence of thekth user. Let
TTTL denote the acyclic left-shift operator, andTTTR denote the acyclic
right-shift operator, both operating on vectors of lengthN: Thus for a
vectorxxx = (x0; � � � ; xN�1)

T ; we haveTTTLxxx = (x1; � � � ; xN�1; 0)
T

andTTTRxxx = (0; x0; � � � ; xN�2)
T : Let TnL , TnR , denoten applications

of these operators, resulting in left and right shifts byn, respectively.
For each asynchronous user, two consecutive bit intervals overlap

with a given observation interval of lengthT: Furthermore, since the
system is chip-asynchronous, two adjacent chips contribute to each
chip sample. The contribution of thekth user to the received vector
rrrn 2 RN for the nth observation is, therefore, given by

rrr(k)n = bk;n�1Akvvv
�1
k + bk;nAkvvv

0
k (5)

where

vvv�1k =(1� �k)TTT
N�n

L aaak + �kTTT
N�n �1
L aaak

vvv0k =(1� �k)TTT
n

R aaak + �kTTT
n +1
R aaak: (6)

Remark 2.1: For general chip pulses, possibly of duration larger
thanTc (e.g., the bandlimited square root raised cosine pulse used in
the IS-95 standard), the received signal would be passed through a
chip matched filter with impulse response MF =  �(�t): Assuming
that the net chip response� =  � MF is Nyquist at the chip rate, and
that the receiver is synchronized to the desired user, the discrete-time
response for the desired user would be the same as for the rectangular

1MMSE interference suppression can also be used to incorporate timing
recovery into the receiver [8]–[10], [18].

pulse. For the interference, the preceding discrete-time model holds
approximatelyif �(t) decays sufficiently rapidly withjtj that a given
chip makes a significant contribution to at most two adjacent chip
spaced samples.

We consider the following cases.
Synchronous CDMA: For 1 � k � K, the delays�k = 0; so

that vvv�1k = 0 and vvv0k = aaak:
Asynchronous CDMA: The receiver is synchronized to the de-

sired user, so that we still have�1 = 0, andvvv�11 = 0 andvvv01 = aaa1:
However, the interferer delays�k, 2 � k � K, can take any value
in the interval[0; T ): For the averaged performance measures to be
considered in this correspondence, these delays are assumed to be
independent random variables, uniformly distributed over[0; T ):

In each case, we obtain the following genericequivalent syn-
chronous modelfor the net received vector:

rrrn = b0[n]uuu0 +

J

j=1

bj [n]uuuj +wwwn (7)

whereb0[n] is thedesired bitthat we wish to demodulate,uuu0 is the
vector modulating it, and, for1 � j � J , bj [n] are interfering bits due
to intersymbol interference and multiple-access interference,uuuj are
interference vectors modulating these bits, andwwwn is white Gaussian
noise with covariance�2III: The correspondence between the generic
model (7) and the original model (1)–(6) is as follows. The desired
bit b0[n] = b1;n, and the desired vectoruuu0 = A1vvv

0
1: For synchronous

CDMA, the number of interference vectorsJ = K � 1, with

uuuj = Aj+1vvv
0
j+1; j = 1; � � � ; J:

For asynchronous CDMA, the number of interference vectorsJ =
2(K � 1), with

uuu2l�1 = Al+1vvv
�1
l+1

uuu2l = Al+1vvv
0
l+1; l = 1; � � � ; J=2:

For much of our analysis, it is convenient to work with the generic
model (7), hiding the underlying structure of the signal vectorsfuuujg:

A. The Linear MMSE Detector

For the model (7), lettingh; i denote the standard inner product in
Euclidean space, a linear receiver produces a bit estimate

b̂0[n] = sgn (hccc; rrrni): (8)

The linear MMSE receiver is a correlatorccc that minimizes the MSE
Ef(hccc; rrrni � b0[n])

2g between the decision statistic and the desired
bit b0[n]: This receiver also maximizes the signal to interference (plus
noise) ratio (SINR) among all linear receivers.

B. Near–Far Resistance and the Zero-Forcing Receiver

Theasymptotic efficiency[22] of a multiuser detector measures the
exponential rate of convergence of its error probability to zero as the
noise variance�2 ! 0, relative to the rate in a single-user setting.
The worst case asymptotic efficiency over all possible interference
amplitudes is the near–far resistance [6], [7]. LetSI denote the sub-
space spanned by the interference vectorsuuu1; � � � ; uuuJ : Let P?S (uuu0)
denote the projection ofuuu0 orthogonal to the interference subspace. If
this projection is nonzero, then a linear correlator chosen along this
direction is a zero-forcing, or decorrelating, detector [6], [7], [11].
It was shown in [11] that, if the zero-forcing receiver exists (i.e.,
P?S (uuu0) 6= 0), then the MMSE detector tends to the zero-forcing
detector when�2 ! 0: Thus the asymptotic efficiency of the MMSE
detector is equal to that of the zero-forcing detector. Moreover, the
asymptotic efficiency of the zero-forcing detector is independent of



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 6, SEPTEMBER 1999 2041

interference amplitudes, and therefore equals its near–far resistance.
The near–far resistance and asymptotic efficiency of the MMSE and
zero-forcing detectors are both given by

� =
jjP?S (uuu0)jj2

jjuuu0jj2 : (9)

The near–far resistance therefore equals the fraction of the energy of
the desired signal vector that remains after projecting orthogonal to
the interference subspace.

C. Performance in Terms of Signal Crosscorrelations

The performance of the MMSE and zero-forcing detectors are
determined by the crosscorrelations between the signal vectorsfuuujg:
Denote theJ � 1 vector of normalized crosscorrelations between the
desired signal vector and the interference vectors as�I , with entries

�I(j) =
huuu0; uuuji
jjuuu0jjjjuuuj jj ; j = 1; � � � ; J:

Denote theJ�J matrix of normalized crosscorrelations between the
interference vectors byRRRI , with (i; j)th entry given by

RI(i; j) =
huuui; uuuji
jjuuuijjjjuuuj jj ; i; j = 1; � � � ; J:

It can be shown [11] that the near–far resistance of the MMSE and
zero-forcing (ZF) detectors is given by

� = 1� �TI RRR
y
I�I (10)

whereRRRyI is a generalized inverse [2] ofRRRI , i.e., any matrix satisfying
RRRIRRR

y

IRRRI = RRRI : Although the generalized inverseRRRyI is unique if and
only if RRRI is nonsingular, it can be shown that the near–far resistance
is uniquely specified regardless of the rank ofRRRI : Nonsingularity of
RRRI is equivalent to the linear independence of the set of interference
vectors.

III. RESULTS

We assume that the signature sequencesaaa1; � � � ; aaaK are indepen-
dent and identically distributed (i.i.d.) random vectors, each chosen
uniformly fromf�1;+1gN : The relative amplitudesAj are assumed
to be fixed, and the relative delays for asynchronous CDMA are
assumed to be uniformly distributed over a bit interval. Using this
random signature sequence model, averaging the expressions for the
performance measures given in the previous section leads to the
results given in this section. Proofs are postponed to the succeeding
section. Our results on the expected near–far resistance for the MMSE
and ZF detectors are stated in Lemma 1, and Theorems 1 and
2. The matched-filter receiver is not considered, since it has zero
near–far resistance with probability one for asynchronous CDMA
and for synchronous CDMA with oddN , and with probability close
to one for synchronous CDMA with evenN: In the latter case,
the probability of nonzero near–far resistance, (i.e., of the desired
signature sequence being orthogonal to all other signature sequences)
goes to zero exponentially fast withN:

Lemma 1: The conditional expectation of the near–far resistance,
conditioning on the interference subspaceSI (i.e., on the interfering
signature sequences and delays) and averaging over the desired
signature sequenceaaa1, is given by

E[�jSI ] = 1� dI=N (11)

wheredI denotes the dimension ofSI :
The dimensiondI is a random variable taking values from1 to

J , depending on the random signature sequences and delays of the

interfering users. Averaging over the latter, we obtain upper and lower
bounds on the expectation ofdI , which yields the bounds on expected
near–far resistance stated in the following theorem.

Theorem 1: The expected near–far resistance forsynchronous
CDMA satisfies

1� K � 1

N
� E[�] � 1� 1

N

K�1

n=1

nfK�1(n) (12)

where the functionfK�1 is computed via the following recursion:

fk(m) =
2m

2N
fk�1(m) + 1� 2m�1

2N
fk�1(m� 1);

1 � m � k (13)

with initial condition

f1(1) = 1 f1(0) = 0: (14)

Theorem 2: The expected near–far resistance forasynchronous
CDMA satisfies

1� 2(K � 1)

N
� E[�] � 1� 1

N

2(K�1)

n=1

ngK�1(n) (15)

wheregK�1 is given by the recursion

gk(m) =
2m

2N
gk�1(m) + 1:5

2m

2N
gk�1(m� 1)

+ 1� 2m�1

2N
gk�1(m� 2); 2 � m � 2k (16)

with initial condition

g1(2) = 1; g1(1) = g1(0) = 0: (17)

A. Numerical Results

We plot the preceding bounds for a system with processing gain
N = 31: Fig. 1 shows the upper and lower bounds on the expected
near–far resistance for synchronous and asynchronous CDMA as a
function of the number of usersK: In each case, the bounds are
tight, so that we can infer the following rule of thumb from the lower
bounds: for near–far resistant performance(Ef�g> 0) using theN -
tap MMSE detector or its zero-forcing version, the system design
should satisfyK�1<N for synchronous CDMA, andK�1<N=2
for asynchronous CDMA. This rule refers to the number of interferers
which arestrong relative to the desired signal.

IV. DERIVATION OF THE BOUNDS

Consider the generic model (7), and assume first that the interfer-
ence vectors are linearly independent, i.e., thatRRRI is invertible. From
(10), the near–far resistance is given by

� = 1� �TI RRR
�1
I �I :

According to the random signature sequence model, the interference
vectorsuuu1; � � � ; uuuJ are statistically independent of the desired vector
uuu0 = aaa1, for both synchronous and asynchronous CDMA. Lemma
1 is obtained by averaging overaaa1, conditioned on the interference
vectorsuuu1; � � � ; uuuJ : Since

�I(j) =
1p

N jjuuuj jj
N�1

m=0

a1[m]uj [m]; 1 � j � J

we obtain that

Ef�I(j)�I(k)jSIg =
1

N jjuuuj jj jjuuukjj
N�1

m=0

uj [m]uk[m]

= (1=N)RI(j; k) (18)
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Fig. 1. Bounds on average near–far resistance for MMSE and zero-forcing detectors for asynchronous CDMA(N = 31):

where we have used the fact thatEfa1[m]a1[n]g = �mn; and that
aaa1 is independent ofSI : We can now conclude that

Ef�TI RRR
�1

I �I jSIg =

J

j;k=1

Ef�I(k)�I(j)jSIgRRR
�1

I (j; k)

= (1=N)

J

j;k=1

RRRI(k; j)RRR
�1

I (j; k)

= (1=N) trace (RRR�1I RRRI) = J=N:

Thus if RRRI is invertible, we haveEf�jSIg = 1 � J=N:
In general,RRRI need not be invertible. However, denoting the

dimension of the interference spaceSI by dI , we can finddI linearly
independent interference vectors which spanSI : We observe that
no other interference vectors need be considered for computing the
near–far resistance, since the latter depends only on (the component
of uuu0 = aaa1 orthogonal to)SI : The preceding derivation is therefore
applicable ifJ is replaced bydI , which yields the desired expression
(11).

Removing the conditioning ondI in (11), we obtain

Ef�g = 1�EfdIg=N: (19)

A lower bound onEf�g follows immediately upon noting that the
number of interference vectors,J , is an upper bound ondI , so that
Ef�g � 1 � J=N: SinceJ = K � 1 for synchronous CDMA, and
J = 2(K � 1) for asynchronous CDMA, the lower bounds on the
expected value of the near–far resistance in (12) and (15) are now
immediate. The derivation of the upper bounds involves finding lower
bounds onEfdIg using stochastic domination arguments.

A. Upper Bound onEf�g for Synchronous CDMA

Since the near–far resistance depends on the directions and not the
magnitudes of the signal vectors, we may set the relative amplitudes
Aj = 1: We therefore have that the interference vectorsuuuj = aaaj+1;
1 � j � J = K � 1; are simply random signature sequences chosen
uniformly from f�1;+1gN : Let SSSk denote the subspace generated

by the firstk interfering users, i.e.,SSSk is spanned byaaa2; � � � ; aaak+1;
and letDk denote its dimension, so thatSI = SSSK�1 and dI =
DK�1: In the following, we construct a sequence of random variables
Fk such that for each1 � k � K � 1, Fk is stochastically smaller
[19] thanDk: SinceEfFK�1g � EfDK�1g = EfdIg, this yields
the desired upper bound onEf�g:

Let �k = Dk � Dk�1 be the increase in dimension due to the
kth interferer, so thatDk = k

j=1
�j for 1 � k � K � 1; and

�1 = D1 = 1 with probability one. For2 � k � K � 1

�k =
0; aaak+1 2 SSSk�1
1; else.

Define the conditional probability

pk(0jd) = P [�k = 0jDk�1 = d]:

In the following, we find an upper boundp(0jd) on pk(0jd) which
is independent ofk: We use this bound to construct iteratively a
sequence of random variablesFk as follows. LetF1 = D1 = 1 with
probability one. Fork � 2, assuming thatFk�1 has been obtained,
define the distribution ofFk by

Fk =
Fk�1 with probability p(0jFk�1)
Fk�1 + 1 with probability [1� p(0jFk�1)]:

This construction translates to the following recursion (ink) for
ffk(n); 1 � n � kg, the probability mass function ofFk:

fk(m) = p(0jm)fk�1(m)+ [1� p(0jm� 1)]fk�1(m� 1);

1 � m � k (20)

with initial condition

f1(1) = 1; f1(0) = 0: (21)

We now show thatFk is stochastically dominated byDk for
eachk: This is true fork=1, and we assume it is true up tok�1: We
must now show that for any monotone nondecreasing functionf , we
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haveEff(Dk)g � Eff(Fk)g: Let U(d) denote a Bernoulli random
variable which takes value0 with probability p(0jd): Then

Eff(Dk)g =Eff(Dk�1 + �k(Dk�1))g

�Eff(Dk�1 + U(Dk�1))g

=Ef ~f(Dk�1)g (22)

where we define~f(d) = Eff(d+ U(d))g: The function ~f inherits
the monotonicity off , because

d+ U(d) � d+ 1 � d+ 1 + U(d+ 1)

with probability one. Using the inductive hypothesis

Ef ~f(Dk�1)g �Ef ~f(Fk�1)g

=Eff(Fk�1 + U(Fk�1))g

=Eff(Fk)g: (23)

Combining (22) and (23) gives the desired result that

Eff(Dk)g � Eff(Fk)g:

The upper boundp(0jd) is given by the following proposition,
which is proved in Appendix A.

Proposition 1: LetSSS be a subspace ofRN of dimensiond, and let
aaa be a random vector independent ofSSS which is uniformly distributed
over f�1;+1gN : Then

P [aaa 2 SSS] � p(0jd) =
2d

2N
:

Clearly, the hypotheses of the proposition are satisfied byaaa = aaak+1
andSSS = SSSk�1: Proposition 1 thus gives the desired upper bound for
pk(0jd): UsingEfFJg as a lower bound fordI , we obtain (12)–(14)
from (19)–(21). The numerical results in Section III demonstrate that
the bounds onEf�g are tight.

A corollary of Proposition 1 is an upper bound on the probability
that the near–far resistance is zero, i.e., the probability that the desired
signal vector lies in the interference space

P [� = 0] � E
2d

2N
�

2K�1

2N
:

B. Upper Bound onEf�g for Asynchronous CDMA

As before, letSSSk denote the subspace generated by the firstk
interfering users, letDk denote its dimension, and let�k = Dk �
Dk�1: Analogous to the procedure used for synchronous CDMA, we
find a sequence of random variablesGk such thatGk is stochastically
smaller thanDk, and substituteEfGK�1g for EfdIg in (19).

As in Section IV-A, set the relative amplitudes of all users to one.
Recall that each asynchronous user generatestwo linearly independent
interference vectors. The subspaceSSSk is therefore generated by the
collection of vectorsfvvv�1

l
; vvv0l ; 2 � l � k + 1g, and

�k =
0; vvv�1

k+1 2 SSSk�1 andvvv0k+1 2 SSSk�1
2; vvv�1

k+1 62 SSSk�1 andvvv0k+1 62 SSSk�1
1; else.

For i = 0; 1; 2; let qk(ijd) be the probability that�(k) = i;
conditioned onDk�1 = d: We find an upper boundq(0jd) for
qk(0jd), and a lower boundq(2jd) for qk(2jd): Using these bounds,
we construct the random variablesGk as follows. Under our delay
model, with probability one, the relative delay of each interfering
user is nonzero, so that each such user gives rise to two linearly

independent interference vectors. Thus we setG1 = D1 = 2 with
probability one. Fork � 2, let

Gk =

Gk�1; with probability q(0jGk�1)
Gk�1 + 2; with probability q(2jGk�1)
Gk�1 + 1; with probability

[1� q(0jGk�1)� q(2jGk�1)]:

The corresponding recursion (ink) for fgk(n); 1 � n � 2kg, the
probability mass function ofGk is as follows:

gk(m) = q(0jm)gk�1(m)+ [1� q(0jm� 1)� q(2jm� 1)] �

gk�1(m� 1) + q(2jm� 2)gk�1(m� 2); 2 � m � 2k

(24)

with initial condition

g1(2) = 1 g1(1) = g1(0) = 0: (25)

The proof thatGk is stochastically smaller thanDk for eachk is
omitted, since it is similar to the analogous proof for synchronous
CDMA. The desired upper bound on the average near–far resistance
given by the right-hand side of (15) is now given by

Ef�g � 1� EfGJg=N = 1� (1=N)

2J

n=1

ngJ (n):

It remains to compute the boundsq and q: Writing the relative
delay � for a given asynchronous user as(n + �)Tc, recall that the
assumption that� is a random variable which is uniformly distributed
over [0; T ] implies thatn is a random variable that takes on each
integer value in the interval[0; N � 1] with probability 1=N , and
that� is a real-valued random variable which is uniformly distributed
over the interval[0; 1): The two interference vectors, sayvvv0 andvvv�1,
due to such a user are random variables depending on its random
signature sequenceaaa and its random delay parametersn and �, as
described in Section II. We can now state the following proposition.

Proposition 2: Let SSS be a subspace ofRN of dimensiond: For
vvv0 andvvv�1 as described above, corresponding to a random signature
sequence and delay independent ofSSS, we have

P [vvv0 2 SSS; vvv�1 2 SSS] � q(0jd) =
2d

2N

P [vvv0 62 SSS; vvv�1 62 SSS] � q(2jd) = 1�
2d+1

2N
:

TakingSSS = SSSk�1; vvv
0 = vvv0k+1; andvvv�1 = vvv�1

k+1 gives the desired
bounds onqk(0jd) and qk(2jd):

For the proof of Proposition 2, we first show that it suffices to
consider chip-synchronous CDMA(� = 0) in order to bound the
probabilities of interest. We then find the required bounds conditioned
on the integer part of the delayn, using techniques similar to those
used to prove Proposition 1, and find that the bounds are independent
of n: The details are given in Appendix B.

A corollary is an upper bound on the probability that the near–far
resistance is zero

P [� = 0] � E
2d

2N
�

22(K�1)

2N
:

V. CONCLUSIONS

Averaging over random signature sequences enables us to char-
acterize the average near–far resistance of the MMSE detector as a
function of the processing gain and the number of users alone. An
important insight gained is that the number of simultaneous users
that can be sustained without power control grows linearly with the
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processing gainN when either MMSE or zero-forcing detection is
used, where the rate of growth depends on the required value of
average near–far resistance. Of course, our results depend on our
modeling assumptions, namely, a stationary user population and the
absence of channel variations.

Since this manuscript was submitted, several results on perfor-
mance analysis for CDMA with random spreading have appeared.
Simulation results regarding the variations in SINR and near–far
resistance for the model considered in this correspondence appeared
in [5]. If the signature sequences consist of independent and identi-
cally distributed Gaussian random variables (rather than symmetric
Bernoulli random variables as assumed here), then thedistributionof
the near–far resistance (rather than just the expectation, as considered
here) can be evaluated explicitly [15] for a synchronous CDMA
system. In [20], the asymptotic SINR of the MMSE and zero-
forcing detectors asN ! 1 with K=N fixed is characterized
for a synchronous CDMA system under the general assumption
of signature sequences with independent and identically distributed
elements (with zero mean and finite variance). Finally, in [24], the
information-theoretic capacity of synchronous CDMA with random
spreading is evaluated using different detectors (including the MMSE
detector) at the front end.

APPENDIX A
PROOF OF PROPOSITION 1

Form anN � d matrix XXX with columnsxxx1; � � � ; xxxd; where these
vectors form a basis for the givend-dimensional subspace, where
d<N: The row rank of this matrix equals its column rankd:
Choosed independent rows. For notational convenience, reorder the
coordinates of thexxxi so that these rows are numbered from0 through
d� 1, and letwwwi = (xi[0]; � � � ; xi[d � 1])T ; where1 � i � d: The
d-dimensional vectorswwwi form the columns of ad � d matrix WWW
obtained by deleting the lastN � d rows ofUUU: By construction, the
row rank, and hence the column rank, ofWWW equalsd, so that the
vectorswwwi are linearly independent. LettingM denote the number of
vectors inf�1;+1gN in SSS, the probability that a randomly selected
vector inf�1;+1gN lies in SSS is M=2N : An upper bound onM is
derived as follows.

Since thexxxi are linearly independent, we have

M=card (�1; � � � ; �d):

d

i=1

�ixi[l]2f�1;+1g; l=0; � � � ; N�1 :

(26)

Sincexxxi andwwwi agree in their firstd coordinates, an upper bound
for M is given by

Md = card (�1; � � � ; �d):

d

i=1

�ixi[l] =

d

i=1

�iwi[l] 2 f�1;+1g;

l = 0; � � � ; d� 1 (27)

since, compared to (26), fewer constraints are used to define the
set on the right-hand side of (27). Using the linear independence
of thewwwi, distinct (�1; � � � ; �d) give rise to distinct vectors, so that
Md is bounded by the number of distinct vectors inf�1;+1gd:
Thus M � Md � 2d, which yields the desired upper bound
p(0jd) = 2d=2N :

APPENDIX B
PROOF OF PROPOSITION 2

Conditioning on the delay parametersn and �, and the signature
sequenceaaa of the asynchronous user of interest, recall from (6) that

the vectors corresponding to the user are given by

vvv�1 =(1� �)TTTN�nL aaa+ �TTTN�n�1L aaa

vvv0 =(1� �)TTTnRaaa+ �TTTn+1
R

aaa: (28)

We now show that we can restrict attention to chip-synchronous
CDMA. The latter is easier to analyze because, for givenn, vvv�1 and
vvv0 are linearly independent (since they are orthogonal) as well as
statistically independent (since the chipsa[l] are independent random
variables). The following lemma enables us to restrict attention to
such a system.

Lemma 2: Fix the signature sequenceaaa and the integer part of
the delayn: Then

i) vvv�1 2 SSS for a set of� 2 [0; 1] of nonzero measure if and only
TTTN�n
L

aaa 2 SSS and TTTN�n�1
L

aaa 2 SSS:
ii) vvv0 2 SSS for a set of� 2 [0; 1] of nonzero measure if and only

if TTTnRaaa 2 SSS and TTTn+1
R

aaa 2 SSS:

Proof: We prove i), since the proof of ii) is entirely analogous.
The “if” part of the statement is clear from (28). For the reverse
implication, suppose that there is more than one value of� such that
vvv�1 2 SSS: Using two distinct values of� in (28) then gives two
linearly independent simultaneous equations, each withTTTN�n

L
aaa and

TTTN�n�1
L

aaa as unknowns on the right-hand side, and vectors inSSS

on the left-hand side. Solving these equations, we obtain that both
TTTN�n
L

aaa andTTTN�n�1
L

aaa lie in SSS:

As a straightforward corollary of the lemma, we obtain, condition-
ing on n and averaging over�, that

P [vvv�1 62 SSS; vvv0 62 SSSjn] �P [TTTN�nL aaa 62 SSS;TTTnRaaa 62 SSS] (29)

P [vvv�1 62 SSS; vvv0 62 SSSjn] �P [TTTN�n�1L aaa 62 SSS;TTTn+1R aaa 62 SSS]: (30)

The inequality (29) is used forn � 1, while (30) is used forn = 0
(sinceTTTN�n

L
aaa = 0 for n = 0).

Similarly, we obtain

P [vvv�1 2 SSS; vvv0 2 SSSjn] � P [TTTN�nL aaa 2 SSS;TTTnRaaa 2 SSS]

= P [TTTN�nL aaa 2 SSS]P [TTTnRaaa 2 SSS] (31)

P [vvv�1 2 SSS; vvv0 2 SSSjn] � P [TTTN�n�1L aaa 2 SSS;TTTn+1R aaa 2 SSS]

= P [TTTN�n�1L aaa 2 SSS]P [TTTn+1R aaa 2 SSS] (32)

where, as before, (31) is used forn � 1, and (32) forn = 0: The
second equality in each of (31) and (32) follows from the statistical
independence of the two vectors due to a chip-synchronous interferer.

Now, TTTN�n
L

aaa andTTTnRaaa span the same subspace as

~aaa = TTTN�nL aaa+ TTTnRaaa

and

âaa = TTTN�nL aaa� TTTnRaaa

so that

P [TTTN�nL aaa 62 SSS;TTTnRaaa 62 SSS] = P [~aaa 62 SSS; âaa 62 SSS]

= 1� P [~aaa 2 SSS or âaa 2 SSS]

� 1� P [~aaa 2 SSS]� P [âaa 2 SSS] (33)

where a union bound has been used for the last inequality. Note,
however, that sum vector~aaa and difference vector̂aaa are each random
spreading sequences inf�1; 1gN independent of the subspaceSSS
(though not independent of each other). Proposition 1 for synchronous
CDMA can now be applied to obtain

P [~aaa 62 SSS] �
2d

2N
P [âaa 62 SSS] �

2d

2N
:



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 6, SEPTEMBER 1999 2045

Plugging into (33), we obtain that, forn � 1

P [TTTN�nL aaa 62 SSS;TTT
n

Raaa 62 SSS] � 1�
2d+1

2N

which is independent ofn: Substituting in (29) and (30) and averaging
the left-hand side overn gives the desired lower bound on the
probability that the dimension of the interference subspace increases
by two

P [vvv�1 62 SSS; vvv
0 62 SSS] � 1�

2d+1

2N
= q(2jd): (34)

It remains to obtain an upper bound on the probability that the
dimension increase is zero, starting with (31) and (32). Givenn,
TTT
N�n

L
aaa 2 SSS(�1; n) andTTTn

Raaa 2 SSS(0; n), where

SSS(�1; n) = fzzz 2 RN : z[l] 2 f�1;+1g; 0 � l � n� 1 and

z[l] = 0; n � l � N � 1g

SSS(0; n) = fzzz 2 RN : z[l] = 0; 0 � l � n� 1; and

z[l] 2 f�1;+1g; n � l � N � 1g

are orthogonal subsets ofRN : Let M(�1; n) andM(0; n) be the
number of vectors inSSS(�1; n) andSSS(0; n), respectively, which lie
in SSS: We then have

P [TTTN�nL aaa 2 SSS] =
M(�1; n)

2n

P [TTTn

Raaa 2 SSS] =
M(0; n)

2N�n
: (35)

Upper bounds onM(�1; n) and M(0; n) therefore yield upper
bounds on the preceding probabilities.

As in the proof of Proposition 1, consider theN � d matrix XXX
with d basis vectors forSSS as columns. Letj1<j2< � � � <jd denote
d independent rows. Assume thatd1 of these row basis vectors occur
among the firstn rows, andd2 among the lastN � n rows, so that

0 � d1 � n; 0 � d2 � N � n; d1 + d2 = d:

Reasoning as in the proof of Proposition 1, we have

M(�1; n) � card (�1; � � � ; �d):

d

i=1

�ixi[jl] 2 f�1;+1g;

1 � l � d1 and
d

i=1

�ixi[jl] = 0;

d1 + 1 � l � d1 + d2 = d � 2d (36)

and

M(0; n) � card (�1; � � � ; �d):

d

i=1

�ixi[jl] = 0;

1 � l � d1 and
d

i=1

�ixi[jl] 2 f�1;+1g;

d1 + 1 � l � d1 + d2 = d � 2d : (37)

Using (31), (32), and (35), we have

P [TTTN�nL aaa 2 SSS;TTT
n

Raaa 2 SSS] �
2d +d

2N
=

2d

2N
: (38)

Noting that the right-hand side of (38) is independent ofn, we
substitute into (31) and (32) and average overn to obtain the desired
upper bound

P [vvv�1 2 SSS; vvv
0 2 SSS] �

2d

2N
= q(0jd):
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