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Blind Adaptive Interference Suppression
for the Near-Far Resistant Acquisition and
Demodulation of Direct-Sequence CDMA Signals
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Abstract— Two key operations required of a receiver in imum mean squared error (MMSE) receivers can be used to
a direct-sequence (DS) code division multiple access (CDMA) suppress multiple-access interference. The MMSE receiver can
system are thetiming acquisition of transmissions that are start- o imolemented adaptively, e.g., by using a training sequence
ing up or have lost synchronization, and thedemodulation of f bols for the desi d,t D for initial adaptati
transmissions that have been acquired. The reliability of both or symbals for : ? es,'re ransm|SS|_on or iniial adaptation,
these operations is limited by multiple-access interference, es-followed by decision-directed adaptation. The MMSE detector
pecially for conventional matched filter-based methods, whose can also be implemented vialind adaptation [3], in which
performance displays an interference floor and is vulnerable to knowledge of the desired transmission’s timing and spreading
the near-far problem. Recent work has shown that, provided \yayeform is used instead of a training sequence. The results

timing information is available for a given transmission, it can - . .
be demodulated reliably using blind or training-sequence-based of [8] imply that the adaptive demodulators in [1], [8], [10],

adaptive interference suppression techniques. These techniques14], and in [3] do not exhibit an interference floor and
are near-far resistant, unlike the matched filter demodulator, and are near-far resistant. Further, these demodulators do not
do not require explicit knowledge of the interference parameters, require explicit knowledge of the interference parameters and
unlike nonadaptive multiuser detectors. In this paper, we present have relatively low complexity, unlike the near-far resistant

a blind adaptive interference suppression technique forjoint ) . .
acquisition and demodulation, which has the unique feature that C€Ntralized multiuser detectors proposed in the past (see [17]

the output of the acquisition process is not simply the timing of the for @ survey of the latter).
desired transmission, but a near-far resistant demodulator that Demodulation of a CDMA signal must, however, be pre-
implicitly accounts for knowledge of the timing and amplitudes  ceded byacquisition in which the receiver acquires the timing
of all transmissions to suppress the multiple-access interference. ¢ 4 transmission that is starting up or has lost synchronization.
The on!y k_nowle(_jge required by the scheme is that of the desired The adaptive demodulators in [1], [8], [10], [14], and in [3]
transmission’s signature sequence, so that it is amenable to a P b 1o) 1YL 124 :
decentralized implementation. On the other hand, it can be all assume that some form of timing information regarding
efficiently implemented as a centralized scheme in which the the desired transmission is available. While this information
bulk of the computations for the adaptation are common to all could conceivably be obtained using conventional acquisition
transmissions that need to be acquired or demodulated. techniques based on matched filters or correlators, the latter
techniques also suffer from the near-far problem, and are at
|. INTRODUCTION least as interference-limited [9] as conventional demodulation
methods.

T HE major limitation on the performance and capacity In this paper, we use the blind adaptive demodulator in

of d|_rect-sequence (DS) che division multiple .acceiﬁ] as a building block for a blind adaptive interference
(CDMA) is the multiple-access interference due to simultg- . . L )
suppression scheme fgoint acquisition and demodulation.

neous transmissions. In particular, the conventional matchF > onlv knowledae assumed by the receiver is a knowledae
filter demodulator, which ignores the structure of the in y 9 y 9

terference, suffers from amterference floor(i.e., its error of the spreading sequence of the desired transmission. The key

. . idea underlying joint acquisition and demodulation is to choose
probability does not go to zero as the background noise Ieve? yingJ q

. . ; an observation interval for demodulation that is large enough
vanishes), and from theear-far problem(i.e., its error proba- g g

- ) o . : ) .. so that one complete symbol of the desired transmission falls
bility can deteriorate significantly if an interfering transmission

. . . linto it, regardless of the timing uncertainty. For a system with
has a much higher power than the desired transmission). In . : o

: Z'multipath spread that is small compared to the bit interval
recent work [1], [8], [10], [14], it has been shown that min: : o , .

T, choosing an observation interval 8f" suffices for this
Manuscript received November 16, 1995; revised August 27, 1996. Ttﬁé".rpose' We then quantize the t|m|r)g uncertainty into a
work was supported by the Office of Naval Research under Grant N0OOTmite set of hypotheses, run an adaptive demodulator under
95-1-0647. This paper was presented in part at the 29th Annual Conferegggch hypothesis and piCk the demodulator that performs the

on Information Sciences and Systems, March 22-24, 1995, Baltimore, I\g@e di ' f . derived f . .
and at the IEEE Military Communications Conference, November 5-8, 1995, st accor _'ng to information derive ro_m rece“_ler statistics.
San Diego, CA. Thus, a unique feature of our method is that it results not

The author is with the Electrical and Computer Engineering Departme@h|y in an explicit estimate of the desired signal’s timing,

and the Coordinated Science Laboratory, University of lllinois, Urbana, Ib | . f . . hich icall
61801 USA (e-mail: madhow@uiuc.edu). ut also in a near-far resistant receiver whic autpmatlcg y
Publisher Item Identifier S 1053-587X(97)00540-0. accounts for the delays and amplitudes of the interfering

1053-587X/97$10.00] 1997 IEEE



MADHOW: DIRECT-SEQUENCE CDMA SIGNALS 125

transmissions. The latter can be directly used for subsequtré scheme. Numerical results are given in Section V, and
demodulation as well as for continuing blind or decisionSection VI contains our conclusions.
directed adaptation as proposed in [3] or [8]. Our approach is
different from more complexsimultaneougiming estimation
and demodulation schemes such as [13], since demodulation
in our method occursfter a near-far resistant demodulator
has been computed based on the timing acquisition algorithfh. ASynchronous CDMA

Near-far resistant estimation of the timing of the desired We consider an asynchronous DS CDMA system with
transmission using the eigendecomposition-based MUSIC simultaneous antipodal transmissions over an additive white
gorithm [11] has been proposed in [2], and [15]. HoweveGaussian noise (AWGN) real baseband channel. In principle,
since the observation interval used is of lengthand is the scheme proposed here extends trivially to a complex
not necessarily aligned with the bit interval for the desirebaseband model that encompasses two-dimensional signaling
transmission, this algorithm only yields the timing of the deand multipath fading. However, thgerformanceof adaptive
sired transmission, which is not sufficient for near-far resistanmtethods over time-varying complex baseband channels is an
demodulation. This method can be extended to obtain a neapen issue that is currently under study. The received signal
far resistant demodulator in the following two different waysdue to thekth transmission < k£ < K) is given by
(a) Use an observation interval of lendgth estimate the delays -
for all transmissions, and then compute a near-far resistant (K _
demodulator based on these estimates. Delay estimation for r )(t) N Z benArsilt =T =) @)
all transmissions would require knowledge of all the spreading
sequences in the method proposed in [2], [15]. (b) Apply thehere T is the bit interval,by ,, € {—1,1} is thenth bit of
MUSIC method with &7 observation interval, in which casethe kth transmission,A; is its amplitude,r; is its relative
computation of a near-far resistant demodulator based on tietay with respect to the receiver, asgl(t) is its spreading
estimated timing can be done exactly as in this paper (see (1®aveform, given by
Method (b) would therefore yield a blind joint acquisition
and demodulation scheme, albeit with a complexity that is ) )
somewhat higher than that of the scheme presented here. The su(t) = Z ax[]y(t = JLo). (2)
MUSIC algorithm as presented in [2] and [15] also requires i=0

knowledge of the number of users, although this requiremerqére, ar[j] € {=1,1} is the jth element of the spreading

could be removed by estimating the number of significaghqyence for théth transmissiony(t) is the chip waveform

users using a number of methods (e.g., see [18]). A detalil 9pica||y assumed to be of duraticfi), and N = T/T. is
comparison of suitably optimized versions of the MUSIGq processing gain.

method and 'Fhe scheme presented_here,_ especially re_cursivphe net received signal is given by

versions for time-varying channels, is an important topic for

further investigation. K

A simpler approach to acquisition, based on MMSE adap- r(t) = ZT(’“)(t) +n(t) (3)

tation using an all-one training sequence, has been proposed k=1

n [12]. Agaln, since the observ_anor_l mterva_l is of '.e’.‘g”‘ where n(t) is AWGN. The bits{b; ,} are assumed to be

in [12], this method does not yield information sufficient to R ) ey
: e uncorrelated for alk andn. Taking the first transmission to

compute a near-far resistant demodulator. Modification of the

method to use 87" observation interval removes this problempe the desiredtransmission, our objective is to demodulate

However, the use of an all-one training sequence means tl%s bit sequence(by}. The only knowledge assumed is that
. ’ . . e, g seq . .oﬂhe desired signature sequence. The delays and amplitudes
different transmissions in acquisition mode cannot be dIStIﬂ)—r all transmissions are unknown, as are the signature se-

guished in a near-far resistant manner. If the timing uncertain Y . . o .
2 . quences for thé( — 1 interfering transmissions. The adaptive
is finite, this second problem can be addressed by usfﬂ

. g w i a%orithm for joint acquisition and demodulation will result in

different, and “sufficiently random” training sequences for =. ; T
. : 2 . -a _linear receiver that implicitly accounts for these unknown

different users in acquisition mode, and by running adaptive

demodulators for each of a finite number of timing hypothes&?rameters'

as in this paper. Since our purpose in this paper is to develop ] . .

and understand the blind method in detail, we refer the read®rTne Equivalent Synchronous Discrete Time Model

to [7] for a training based method for joint acquisition and Since the digital signal processing required for interference

demodulation that incorporates the preceding modificatiorssjppression occurs in discrete time, we restrict attention to an

and to [6] for a numerical comparison of early versions of owquivalent synchronous discrete tirmodel obtained by chip

blind and training based schemes. matched filtering the received signal, sampling at a multiple
Section Il contains background material, including the sysf the chip rate, and limiting attention to a finite observation

tem model and a review of the blind demodulator. Section limterval for each bit decision. All results in this paper are

provides a description of our joint acquisition and demodder a rectangular chip waveform and chip rate sampling.

lation scheme. Section IV contains performance analysis GEneralizations to other chip waveforms and sampling rates

Il. BACKGROUND

n=—0o0

N-1
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is straightforward. The length of the observation interval isThus, the contribution due to thgh transmission consists of
chosen to b&T’, which is the minimum length such that onahree signal vectors, each modulating a different bit. Each of
complete bit of the desired transmission falls in the intervéthese signal vectors are linear combinations of two adjacent
regardless of the relative delay.”> The latter property is shifts of the signature sequence for thtl transmission. The
crucial to the design of our acquisition algorithm. If moraet received vector is given by

than one transmission is being acquired or demodulated by K

the receiver, this property also engblgs the use of common r, = ngk) +w, (6)
observation intervals for all transmissions. For least squares =1

or recursive least squares (RLS) adaptation, this will imp

that the computation of the inverse of the empirical cros Ki q dulate bit . based he ob X
correlation matrix can be used for all transmissions, so t IS to demodulate bl ,, based on the observation vector

an efficient centralized implementation of the decentralizé‘t‘:?',The observation vegtorﬁrn} are identically d|st'r|buted,
adaptive method proposed here is possible. which means that adaptlye mechanisms Fhat exploit the struc-
The Ith discrete time sample can be written as ture of r,, for demodulation can be devised. Note that the
observation vectors are not independent, since a given bit
/'(“’I)T“ appears in three consecutive observation intervals, and since
l

[ i . . . . .
g&_herewn is white Gaussian noise with covariangéL. Our

T r(t)dt. (4) the first N noise samples for,; are the same as the last

N noise samples of,,. This is irrelevant in determining the
structure of the adaptive algorithm, however.

Since the model (5)—(6) is notationally cumbersome, it
is convenient to consider the followingeneric equivalent
synchronous model:

r[l] =

Each observation interval correspond218 samples, and the
vector of received samples for theh observation interval
is r, = (r[pN],7[nN + 1],---,7[nN + 2N — 1))T. The
number of samples used for each bit decisior28, where
N is theprocessing gainor the number of chips per bit, and

we may henceforth consider aquivalent synchronous system J
with received vector,, € R2YN of 2N samples for theith r, = bo[n]uo + ij [n]u; +wp, (7)
observation interval. J=1

We will now express the observation vectoy in terms of wherebg[n] is thedesired bitthat we wish to demodulate,
the parameters of the asynchronous CDMA model (1)-(33 the vector modulating it, and, far < j < J, b;[n] are
Without loss of generality, let,, denote the bit of the interfering bits due to intersymbol interference and multiple-
kth transmission that falls completely in theh observation access interference, ang are interference vectors modulating
interval, and letr;, denote the delay of this bit relative to thethese bits. Recalling that the first transmission is the desired
left edge of thenth observation interval. Since, € [0,7)) transmission, the correspondence between (7) and (5)—(6) is
we may write it as a multiple of the chip intervdl, as as follows: bo[n] = b1, the desired signal vectary = v,
follows: 74, = (nx + &)1, Whereny, is an integer between and the interfering vector§u;,1 < j < J} are the set
0and N — 1, and §;, € [0,1). Let a; denote a vector of of vectors {v;17v27vi72 < k < K} due to multiple-
length 2V consisting of the/N elements of the signatureaccess interference together with the Vect{)ﬂ§_17v%} due
sequence of thésth transmission followed byN zeroes, to intersymbol interference. Thus, the number of interference
i, ap = (ag[0], -+, ax[N = 1],0,---,0)". Let T, denote vectors is given by/ = 3(K —1)+2, three for each interfering
the acyclic left shift operator, an@’r denote the acyclic transmission and two for the adjacent bits of the desired
right shift operator, both operating on vectors of len@fi. transmission. The interfering bits;[n] are simply the bits
Thus, for a vectorx = (zo, -+, z2n-1)%, we haveT x = modulating the interfering vectors, as specified in (5). The bits
(z1,+,an—1,0)T and Trx = (0,0, -, z2n—2)"" b;[n],0 < j < J are uncorrelated by virtue of our assumption

For each asynchronous transmission, three consecutivethit a given bit is uncorrelated with different bits of the same
intervals overlap with a given observation interval of lengtfransmission, as well as with bits of other transmissions.
27 Furthermore, since the system is chip-asynchronous, twoFor the remainder of this paper, we find it notationally con-
adjacent chips contribute to each chip sample. The contributigenient to hide the fine structure of the equivalent synchronous
of the kth transmission to the received vectgr € R*Y of model and work with (7).
2N samples for thexth observation is therefore given by

C. Blind Demodulation

In this section, we supply background material adapted from

k —1 0 1
1‘51 ) = bkn—1Vy ™ + bk Vi + D1 Vi

where ) ) [3] together with some additional definitions and formulas that
Vil = Ap[(1 = ) T7 ™ + §T7 ™ tay] will be required in our acquisition algorithm. Letting, >
V) = Ai[(1 - 6) T ay, + 6. T Tay] (5) denote inner product, the blind minimum output energy (MOE)
vi= Ax[(1 = &) Tt ay, + 6, TR Tay). demodulator [3] for the equivalent synchronous system (7)

Iwhile sampling at twice the chip rate would preserve most of thgorreSpondS to an estlmat@[n] - sgn(< CMOE, I'n >)'

information in the continuous-time signal, it would also lead to a larger numb¥¢here the correlatoe,;or is chosen to minimize the output

of adaptive taps for a fixed observation interval. energyE{(< cayor,rn >)?}, subject to the constraint
2Longer observation intervals result in receivers with better steady state

performance, but with higher complexity and slower adaptation speed. < cpyog, g >=1. (8)
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Here Gy is a nominal signal vectgrwhich is the receiver's resulting MOE is given by
estimate of thalirection of the desired signal vectar,. We

will assume that|iy|| = 1 without loss of generality. ¢ = E[< c r, 2 = c'Re
The norm squared oty or will be referred to as the <c,ig> " <l >2
detector energy3, and is a measure of the amount of noise (R + vI)'R(R + vI)~ iy
enhancement at the output. @f; has a nonzero component = @I (R + vI)~lag 2 (13)
pr orthogonal to the spacé&; spanned by the interference
vectorsuy, - - -, uy, complete cancellation of the interferencesimilar, the detector energg for the appropriately scaled
is obtained by setting = c; = aypr, Whereay is chosen to MOE solution is given by
satisfy (8), and the resulting choice ofsatisfies
5 llel?  do(R+vD) 20y (14)
Br = lled? = 1/118:11* = 1/nr ©) P = et >? = @R+ o) Tag?
wheren; = ||p;s||* is the energy of the component of the Recalling that the bit$;[n] in (7) are uncorrelated, the

nominal orthogonal to the interference space (this equals t@relation matrixR. is given by
relative energy of the orthogonal component by virtue of the J
ization! .12 =
normalization||tg||* = 1). Smalle_r values ofy; correspond to R = Z uju]T g (15)
larger3; and, hence, to more noise enhancement at the output

of the detector. - o
Mismatchbetween the nominal, and the signal vecton, From (12) and (15), itis clear that the Lagrange multiphiéor

can occur due to errors in the timing estimate or due to tH€ constraint onlc||® plays the same role as additional noise

presence of multipath components not accounted for in tM@riance in determining the MOE solution. We will henceforth

nominal. This can result in signal loss. In particular, complefeéll » thefictitious noise variancel.argev leads to less signal

signal cancellation is possible by settieg= cy = aopo, Ioss,_and hence to greater _tolerance to mismatch at the cost of

wherep, denotes the projection of the nominiaj orthogonal [€ss interference suppression. . _

to the space spanned by the desired signal vegipand where ~ Our acquisition scheme coarsely quantizes the delay into

a is chosen to satisfy (8). The resulting choiceco$atisfies @ number of hypotheses, computes the MOE solution for
each corresponding nominal, and attempts to choose the best

fo = lleoll* = 1/I[Bol* = 1/1m0; (10) hypothesis based on the resuling MOE’s. If all shifts of
the desired spreading sequence have reasonably low cross
where 7y is the energy of the component of the nomingforrelations with the interference, the amount of interference
orthogonal to the space spanned by the signal vagjpi.e., Suppression under different hypotheses should be comparable.
no is the near-far resistance of a hypothetical system in whi€tpwever, it should be harder to suppress the desired signal for
the nominal is the desired signal vector and the interferen@@minals that are close to the direction of the desired signal
consists solely of the desired signal vectoy: vector. For the same value of detector enefyjytherefore,
Equations (9) and (10) imply that, if the nomirj is closer ©ne would expect a larger MOE for the better hypotheses.
to the space spanned by the desired signal vegiohan to the However, constrainings to be the same under different
interference subspac® (i.e., if o = ||Po||? < |[Pr]|? = n1), hypothes_es_ requires, in_ general, that different_valuas a_lfe
then interference suppression can be achieved while avoidkiggd- This is computationally cumbersome, since the inverse
excessive signal cancellation by constraining the norm 8f R-+»Imustbe computed for each In order to avoid this,
c, i.e., by constraining the detector energy Ideally, the We assume that the same fictitious noise varianteused for
constraint should be such that= ||c||? is allowed to exceed finding the MOE solutions under all delay hypotheses. We
#; but not . Using Lagrange multipliers to reflect the nornfhen compare the MOE in (13) for different hypotheses, and

constraint and (8), the cost function to be minimized becomggoose the one that is the largest. _
The MOE ¢ computed in (13) is normalized such that

E{(< c,rp >)?}+ A <c, > +v||c||% (11) < ¢ U >= 1. A different normalization that will be useful
in our acquisition algorithm ig|c||> = 1, which yields the
While A must be chosen to satisfy (8), it is convenierfformalized MOES defined by
to define anunscaled MOE solutionwhich corresponds to c <’Re
A = —2 as follows? {=E[< el ™™ >% = Tl
_ Uo(R+ vD'R(R +vI)~ g
B ol (R + vI)—2ig )
whereR = E{r,r;} is the statistical correlation matrix for The utility of the normalized MOE is as follows: Once a
the observation vector. This solution must be scaled dowBarse estimate of the delay has been obtained, a local search
by < ¢, 9 > in order to satisfy the constraint (8), and thgor refining this estimate can be performed by maximizing

SNote that demodulation performance does not depend on scaling fo;l'.QIS 'S_because’ if there is a nommal with no mismatch, the
constant modulus constellation. signal is not suppressed, leading to a large output enérgy

=0

c=(R+vD) tig (12) (16)
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Further, in the absence of mismatch, the detector engrigy nals corresponding to the two closest hypotheses are (scalar
expended only on suppressing interference, so fhahould multiples of) iy = T'a; andty = T’}g*lal, respectively.
be smaller at the correct delay. Thys—= % should be large To obtain a rough idea of the number of delay hypotheses
at the true delay. We will use this idea to interpolate betweereded, it suffices to assume that these two nominals are
two coarse delay hypotheses to estimate the true delay. orthogonal, since shifts of typical signature sequences are
The reason that the MOE is not used to interpolate nearly orthogonal, in practice. We then obtain that the near-far
between delay hypotheses is that maximizing it locally i®sistances of these nominals relative to the signal vagjor
difficult. On the other hand, the normalized MQEis not in (17) are, respectively,
used for deciding among the coarse delay hypotheses because, 52
in the presence of mismatch, the detector engigynder the 77(()1) = 2712 (18)
good delay hypotheses can be large at low noise levels (since 0 +(1=461)
the MOE criterion is trying to take advantage of the mismatch
to suppress the signal as well as the interference, especially @  (1- 61)? (19)
when the interference is weak). Thus, even thogds larger o 62 4+ (1—61)%
for the good hypotheses, so /s which may causé = (/3 W @ o
to be smaller than for some incorrect delay hypothesis. Thii€r é1 = 0.5, we haven;’ = 7y~ = 0.5, which is comparable
testing the hypotheses basedé{hbreaks down in a low noise, to typical values of the near-far resistangerelative to the
single-user regime, where we would like to obtain the bektterference space. Thus, if the delay hypotheses are spaced
performance. This phenomenon has been verified numerically, the chip interval, the amount of signal loss could be large
although we do not include those results here. Note that tBgen under the closest hypothesis.
problem occurs due to the mismatch due to coarse delayconsider now an intermediate delay hypothesis with nomi-
quantization, and is not an issue when we are trying to chod®d (a scalar multiple offip = 3(Tp'a; + T T*ay), which
among a set of nominals such that one corresponds to the @&esponds to a hypothesized delayf + 3)7.. The near-
delay. We will therefore use the MOE for the coarse delay far resistance of this nominal relative to the signal space can
estimate and the normalized MQFor refining the estimate. be€ shown to be
(3) _ 1
L BN NG 20
In the acquisition phase, the receiver does not know either ofror a givens,, the best hypothesis is the one with the
the parametera, or 6, specifying the delay; = (n1 +61)T.  smallest value ofj,. From (18)—(20), it can be shown that
for the first transmission, and therefore does not know thge worst-case value of, for the best hypothesis i%—gg ~
desired signal vectono. However, we do know thaty is @ 146, The value ofy; should therefore be larger than this
linear c_omblnatlon of tvyo shifts of the desired transmission\syjue for near-far resistant timing acquisition. In contrast,
spreading sequence, given by when the delay is perfectly known, the value of is, in
wo =vY = A[(1 - 5) T ay + 61T’}§1+1a1]. (17) theory, only_ required to be nonzero. The penalty in terms of
near-far resistance for not knowing the delay can be reduced by
We must now determine the level of delay discretizationsing a finer delay discretization, which in turn implies a larger
needed to translate the uncertaintyrip and é; into a finite number of delay hypotheses and thus greater complexity.
number of hypotheses.

I1l. BLIND ACQUISITION AND DEMODULATION

B. Acquisition Algorithm

A. Number of Delay Hypotheses Needed Fori = 0,1,---,N — 1, the delay hypotheses and the

The delay discretization should be such that the mismat@uorresponding nominals are given by: Hypothe&is: Delay
and hence the signal cancellation, for the best hypothesis& — i7;, Nominal 4§’ = T%a,/||T%a;|| Hypothesis
not excessive, regardless of the true detay This is true Hoiy1: Delay Tl(i) = (i+ %)Tc, Nominal ﬁ(()i) = (Thay +
(see the previous section) if, for eaep € [0,7), there is Ti+1al)/||TiRal +T§rla1”. All nominals are normalized to

a hypothesis for which the distance of the nominal from trl‘?rﬁt energy to enable a fair comparison of the MOE'$or
signal space is smaller than its distance from the interferenggerent hypotheses.

space, i.e., ifnp < ny, where the inequality is preferably Step 1: Main Computations

satisfied by a wide margin. For signature sequences with goott, theth hypothesis; = 0,1, --,2N —
cross correlation properties, any given shift of the desirggop solution, as follows, as in (12):
signature sequence will have a nonzero component orthogonal ‘

to the interference space, so that the near-far resistapce W = (R+1/I)_1ﬁ§f) (21)

of the nominal corresponding to each delay hypothesis can be . .

expected to satisfy some designed lower bound, gzgz 0.5. and the MOE and normalized MOE as in (13) and (16),

1, compute the

For the best hypothesis, must be smaller than this lower €SPectively, as follows:
bound. O Re®
Consideng given by (17). Suppose the hypothesized delays (= ———r— (22)

- T (2
are integer multiples of the chip interval, so that the nomi- (c® 11(()))2
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c@TRc® In practice, an RLS implementation might be preferred in

W (23)  order to track time variations. It is also possible to use a

o stochastic gradient algorithm, but the convergence of such
Step 2: Finding the Best Hypotheses algorithms for blind adaptation has been found to be slow [3].
Letimaz denote the index of the hypothesis with the largegt; thermore, the complexity of runnirzgV stochastic gradient

MOE, i.e., algorithms corresponding to ti#V hypotheses is comparable

to that of 2V RLS algorithms that share the most significant

part of the computation, i.e., the recursive computation of the

Similarly, let i,.,, denote the index of the best adjacenihverse of the empirical crosscorrelation matrix.

hypothesis, i.e., Choice of v: The fictitious noise variancer must be

G R N A _chosen to optimize pgrformance: a small yalue allows more

tneat fmaw T L) Smas interference suppression, but also more signal loss. Numer-

except fori,.. = 2N — 1, for which we set,,.,; = 2N —2, ical results in [3] and [5] indicate that fctitious SNR of

and ,,4, = 0, for which é,.,; = 1. This is because it is ||uol|?/(¢? + v) of 10 dB appears to work well over most

assumed (without loss of generality) that the detay [0,7]. ranges of relative amplitudésHowever, since such a choice

P

Cimpay = MAT;G;.

Step 3: Combining Rule of  cannot be implemented without knowing the amplitude of

Define theinterpolated nominal the desired transmission, we consider a more practical choice
. (imman) - (imeont) of v, which scales according to the net power in the received
Uo(A) = Aty ™™ + (1= )iy "™ (24)  signal, estimated as trad®). Thus, we sets = atracdR).

As discussed in Section V, the performance is sensitive
to the choice ofe. While one fairly complex method for
automatically choosing is provided in Appendix B, finding
fnore satisfactory solutions is left as an open problem.

where0 < A < 1, and leté()\) denote the normalized MOE
corresponding to this nominal. Leét,,., = argmax{&(\) :

0 £ A £ 1} denote the value ok € [0, 1] that maximizes the
normalized MOE. As shown in Appendix A, the computatio
of Amaz IS Simple, involving solution of a quadratic equation

for A and comparison of(1) =¢;, .. and&(0) =¢&;, .., with IV. PERFORMANCE ANALYSIS

the va_llues of(\) evaluated at the solutions to the quadratic Steady state benchmarks for the performance of the al-

equation. gorithm are established by running the algorithm using the
Step 4: Algorithm Outputs statistical cross correlation matrRR. The error probabilityP,
_The demodulator produced by the acquisition algorithm {§, the resulting demodulatoe,.., and the cosines of the

given by angle betweer,,; and the ideal MMSE solutiorg v se =

Cout :)\mwc(imw)+(1_)\maw)c(inm) (25) R tug, are cc_)mputea.Thel error probability P, y;r for
the matched filterc = wug is computed as a benchmark
which is the (unscaled) MOE solution for thmaximizing that any adaptive scheme should be able to beat when the
interpolated nominal interference powers are significant. This comparison is biased
in favor of the matched filter, since we assume a perfect
delay estimate in this case. The latter would require a separate

. . N ﬂﬁ.@ (26) acquisition scheme in practice. The steady state performance
For the delay estimate, applying the definitions of and - measures are compared with corresponding results obtained

using (24), the maximizing interpolated nominal is rewritten 3, each simulation run of a least squares implementation.

Wo(Amax) = aThay + bTh ay The bias and variance of the delay estimateare other
performance measures of interest associated with the least
where n, a and b have a straightforward dependence oBquares implementation.

Amazs imaz @Ninc,: (S€€ Appendix A). Referring to (5), the |n addition to the preceding, a key performance measure

ﬁ(()nmx) = ﬁO()\rnaa;) = )\rnaacﬁ(()imaw) + (1 - )\rnaac)ﬁ(()inem)-

delay estimate is given by is the acquisition error probability, defined as the event that
. the best delay hypothesis is not one of the two selected
L= (n+ a+b)Tc' (27) by an adaptive implementation (in particular, by the least

o ) ) ) squares implementation considered here). The best hypothesis
We will illustrate the operation of our algorithm via a leasy qefined to be the one with the largest normalized MOE

squares implementation, which follows the steps 1 throughid steady state, provided that the delay it corresponds to is
despnbed previously, excepF _that the cross cor_relanon matiiXhin T./2 (the delay quantization used) of the true delay.

R is replaced by the empirical crosscorrelation malX ohenyise, it is defined as the hypothesis that corresponds to
computed ovetM s bit intervals a delay closest to the true delay. In the latter instance, the

Mrs
. 4 ) . 5, o . .
_ T In this case, if||ug||*/o* is smaller than 10 dB, then the noise level is
R= (1/ML5) Z InTy (28) high enough that no fictitious noise would be needed, so:that 0 would
n=1 suffice.

. . 2 5For the model 7, the error probability for any linear receiver is computed
The MOE corresponding to hypothests; is denoted byc;, analytically by averaging over the bitgh;[»]} modulating the signal and

in order to distinguish it from its steady state equivalent. interference vectors; see [8], for instance.
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algorithm would choose an incorrect hypothesis even in steaitign kept fixed. Two different values of the delay of the first
state, so that acquisition with an adaptive implementatiddesired) transmission are considered:= 3.57,. (which is
would necessarily be unreliable. In most cases of intereperfectly matched to hypothesi#;), andr; = 3.257.. (which

as the number of least squares iterations increases, the falls in the “middle” of hypotheseds and H~, so that there
quisition error probability quickly becomes too small to bé&s mismatch under either of these hypotheses).

estimated directly by simulation. On the other hand, an exactThe SNR for the equivalent synchronous model (7) is
analytical estimate of the acquisition error probability for thgu||?/o2. Since this depends on the chip delay we define
least squares implementation appears intractable. We theref8NR to be that corresponding to a chip-synchronous system

develop a simple approximation as follows. (6, = 0), so that SNR: 521\ The numerator,A2N, is

_ Let i,,4, denote the index of the best hypothesis. Lefimply the bit energyE,, and 6> = Ny/2, so that SNR

G denote the estimated MOE under hypothe#ls for a (dB)= £:(dB) + 3. We fix the amplitude of the desired
least squares implementation. We will approximate {48  transmission, and assume treach interfering transmission

as jointly Gaussian. Under this approximation, the randofas powetP; relative to that of the desired transmission. Three
variable ¢; ... — G, 7 # imae, IS Gaussian. Denoting its different values of’; are considered: 20 dB (to check for near-
mean byy; and its variance by?, we obtain the following far resistance), 0 dB (to examine the performance with perfect
approximation for the probability of choosingl; over the power control), and-20 dB (to check that signal cancellation
correct hypothesid;,,,. (this would be exact if the jointly is not excessive, and that the performance is not degraded too

Gaussian assumption were exact): much relative to the matched filter receiver). The least squares
) N N i implementation is run for a value of fictitious noise variance
q(0) = Plé,... <Gl= Q(;). (29) } = atracdR), wherea = .0001 unless specified otherwise.

T

Analytical computation ofu; and s? is difficult; hence, we A. Steady State Benchmarks

simply estimate these using the empirical statistics of@he ] o
over multiple simulation runs. We consider two values df, /Ny, 7 dB (which is moderate

Assuming that (29) provides an accurate estimate of tffy Single-user applications, but low for linear multiuser de-
probabilitiesg(i), we can obtain a union bound on the probtection, WhIF:h causes noise enhancement) and 17 dB (which
ability of acquisition error as follows. Let,a, and ines; 'S high for single-user systems, but not uncommon for CDMA

index the best hypothesis and the best adjacent hypothedfStems whose performance is limited by multiple-access
in steady state. Acquisition error occurs H; is not Interference). These values correspond to (chip-synchronous)

chosen by the adaptive implementation of the algorithm. §VR'S of 10 dB and 20 dB, respectively.
H; . is chosen but;, _, is not, this is not considered an W& G€fiN€(uas 400 10 e the largest MOE among the
acquisition error. This is becausef___. is truly a significant iMing hypotheses within at most./2 of the true delay, and

hypothesis, the probability of this event is very small, whilémaz.bad t0 b€ the largest MOE among all other hypotheses.

if H. is not significant, then it does not matter if thel he difference between these two quantities is a measure of
Tneaxt )

wrong adjacent hypothesis is chosen, since the combining r@W Well the algorithm can distinguish between good and
would give a low weight to whichever adjacent hypothes?dd hypotheses (the bias and variance in estimates of these
is chosen. While it is possible, using the jointly Gaussidf @ !east squares implementation will ultimately determine
approximation, to carry out a detailed analysis of the Choi@é:qwgl_non perfo_rmance)._These and other relevant steady state
of adjacent hypothesis taking into account the combining ruféU@ntities are displayed in Tables | and II. _

little additional insight would be gained by doing so. For £, /N, of 17 dB, the delay estimates based on interpo-

The event that neitheid: nor H. is chosen lies in the 'ating between good hypotheses are excellent, and the cosine
tmax tnex .
union of the events{é < CA‘} for i 72 i i ens. ON the of the angle between the resulting demodulator and the MMSE
Tomax 03 mazxy ‘next:

other hand. it is chosen, the event thaf, is not the solution is close to one. The demodulator is near-far resistant,
1 T 1

next max

best adjacent hypothesis also lies in the preceding union. TH3ad Performs much better than the matched filter even with

the probability that acquisition error occurs is bounded by Pefect power control; = 0 dB). The separation between
Cmaz,good @NA (axbaq 1S SUbstantial, so that the scheme is

Ge,acq < Z q(4). (30) expected to be robust to least squares estimation errors. For a
iR irnan sinent smaller £, /Ny of 7 dB, the acquisition scheme can go wrong
for high interference levels (see the entry fBy = 20dB
V. NUMERICAL RESULTS in Table Il) in the presence of mismatéhn every other

We consider a svmbol- and chin-asvnchronous svstem wiSe fork, /Ng of 7 dB, the acquisition algorithm selects the
y p-asy Y correct hypotheses and the demodulator and delay estimate

Er:(;?; Srlr?q[ %a:g d:e %g gnt?r;};;ntbheer:;tt:)af\r;sin;:;sl:(:gie: g'encbassed on interpolating the hypotheses is again very close to
P P 9 q .t%e’ MMSE solution. However, in this low SNR regime, the

so that all numerical results are for a fixed, but random, choice : ) .
. erformance gains over the matched filter receiver are not as
of the set of K signature sequences. Steady state analySIS

and simulations for other choices of signature sequences yiel§ matic. The separation betweghaz,good AN (mas bad 1S

gua“tat_wely S'm"?r 'results. The delays, of the_ K -1 6In this case, increasingZ,/No by a further 2 dB leads to correct
interfering transmissions are chosen randomliy{GrZ’) and acquisition in steady state.
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STEADY STATE BENCHMARKS FOR THE PERFORMANCE -chAFBTILEBILlND AcQuisITIoON ALGORITHM (Case 1: 71 = 3.57,)
Pr/Ey/No (dB) | Cmazgood/CGmazpad | 7+ | = P, P. MMsE Pemr
20/17 .53/.12 35 |.998 | 1.3x107% | 4.9x 1078 45
20/7 75/.67 3.509 | .998 .078 077 .45
0/17 .52/.07 3.501 ] .997 | 6.4x 1077 | 6.1 x 10~7 .043
0/7 .65/.37 3.505 | .999 .035 .035 .091
-20/17 .51/.02 3.500 | 1.0 | 1.2x 1071 1 1.2x 1071 | 7.6 x 10-11
-20/7 .60/.13 3.500 | 1.0 .013 .013 014
TABLE 1l
STEADY STATE BENCHMARKS FOR THE PERFORMANCE OF THEBLIND AcCQUISITION ALGORITHM (CASE 2: 71 = 3.257%)
Pr/Ey/No (dB) | Cmaz.good/Cmazbed | 73 K Pe Pe MMSE PeMF
20/17 31/.11 3.253 | .997 | 1.1x107% | 4.1x 107° 44
20/7 65/.71 1.343 | -.303 71 .033 44
0/17 .15/.07 3.252 | .996 | 7.7 x 10710 | 6.8 x 10™1C 012
0/7 .51/.38 3.258 | .997 .017 .017 .06
-20/17 .10/.02 3.250 | .998 | 2.3 x 10714 | 23 x 10714 | 9.2 x 10~
-20/7 45/.13 3.250 | 1.0 | 6.6 x107% | 6.6x 1072 | 6.7x 1073

also smaller here, implying that a large number of least squasstimate the acquisition probability in each case considered,
iterations might be required to provide reliable acquisitiorand compare it with the analytical approximation (29)—(30)
For the remainder of the paper, therefore, we restrict attentiobtained using the jointly Gaussian assumption for the output
to an interference-limited regime more typical of CDMAenergieﬁi obtained over the simulation runs (the second-order
applications, takingF, /Ny = 17 dB. statistics of the{@} can be well estimated using many fewer

While o« = 0.0001 is used for the preceding results, it isuns than required to estimate the acquisition error probability
important to chooser according to signal and interferenceaccurately).
powers for rapid acquisition using a least squares implemen-The {@} over independent runs will be identically dis-
tation. See Section V-B, where we illustrate the advantagéouted only if the value ofy used for the runs is the
of choosing largerx when P; is smaller. Conversely, if we same. Since the empirical crosscorrelation maRixdiffers
increasel’r to 50 dB while keepingy = 0.0001, acquisition over different runs, so does the value of the fictitious noise
error occurs in steady state even fby/Ny of 17 dB. This variancer = atrac€R). However, for all the simulation runs
is because, for fixed, tracgR), and hence, increases with considered, trad¢d®) (which is a rapidly converging estimate
Py, permitting less interference suppression. Using a small§f the average received power) is close to the statistical
« = 0.00001 restores reliable steady state performance in thigerage trag®). Thus, from the point of view of analyzing
setting. acquisition performance, it suffices to consider a fixed value

Finally, it is worth noting that even for very weak in-for the fictitious noise variance, = atracéR). For this value
terference, the error probability performance for all thregs;, 1000 simulation runs of the least squares implementation
demodulators considered is substantially worse than the stgfthe acquisition algorithm are used to compute the empirical
dard error probability formul&)(/2E;/Ny) for binary phase mean and variance ofi . — (i # imag. This is used
shift keying (BPSK). This occurs because the receiver is ngf estimate the probability(s) of choosing a given wrong
chip-synchronous with the desired transmission, causing befiyothesisH; via (29), and then to compute the union bound
SNR loss and intersymbol interference. (30) on the probabilityg qe,.

In comparing the results of the analysis with direct estimates

B. Acquisition Error Probability of the acquisition error probability, we list the following

In view of the poor performance even in steady state f@antities.
E,/No of 7 dB, we restrict attention td,/N, of 17 dB 1) The acquisition error probability;. .., Obtained via
in order to evaluate the performance of the least squares 10000 simulation runs and the (simulation-aided) an-
implementation of the algorithm in an interference-limited alytical approximation.
regime. Our objective is to explore the dependence of the2) Let i* = argmax{q(é) : ¢ # tmaz,tmar £ 1} denote
acquisition error probability on the numbé ;s of least the index of the incorrect hypothesis with the largest
squares iterations used. We use 10000 simulation runs to probability of being chosen over the best hypothesis
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TABLE 11l

ACQUISITION PERFORMANCE AS A FUNCTION OF THE RELATIVE INTERFERENCEPOWER Py, THE NUMBER

M7 s OF LEAST SQUARES ITERATIONS, AND o = v/tracéR) (r1 = 3.5T., E;/No = 17 dB)

Pr (dB}/Mps/o Ge,acq q(i*) Bias | Standard Dev.
(Sim./Anal.) (Sim./Anal.}
20/30/.0001 1.3x1073/2.5 x 1072 | 1.1 x 1073/8 x 1072 | .004 .07
20/40/.0001 0/2.3x 10~* 0/1.6 x 1074 .003 .02
0/40/.0001 0/6.3 x 1072 0/2.6 x 1073 -.01 .1
0/100/.0001 0/6.8 x 10718 0/6.7 x 10718 .002 .01
0/30/.001 4x107%/6.3x 1072 | 4x107%/6.2x 1073 | .003 .05
0/40/.001 0/6.5 x 107* 0/ 3.9 x 107° -.004 .02
0/40/.01 0/1.8x 107° 0/1.7x107° .005 .02
-20/30/.0001 8.7 x 1073/2.76 1.8x1073/.1 .03 .52
-20/100/.0001 0/4.9 x 1072 0/4.3 x 107 .0002 .01
-20/30/.001 0/.30 0/1.1 x 1072 -.0007 a1
-20/30/.01 0/1.1x 10°° 0/5.5x 1077 .0006 .02
TABLE IV

ACQUISITION PERFORMANCE AS A FUNCTION OF THE RELATIVE INTERFERENCEPOWER P;, THE NUMBER
M/ s OF LEAST SQUARES ITERATIONS, AND o = v/trac€R) (11 = 3.25T., E;,/No = 17 DB)

Py (dB)/Mrs/o Ge,acq q(i*) Bias | Standard Dev.
(Sim./Anal.) (Sim./Anal.)

20/30/.0001 | 2.3x1072/4.3x 1077 | 1.9 x 1072/2.6 x 1072 | .003 14
20/40/.0001 8 x 1074/2 x 1073 8 x 1074/1.7 x 1073 .005 .04
20/60,/.0001 0/3.8 x 1076 0/3.8 x 107 .004 .02
0/40/.0001 1.3%x 1072/.36 2.2 x 1073/2 x 1072 .06 76
0/100/.0001 0/4.3 x 1078 0/4.4 x 1077 .0007 .02
0/40/.001 2.4x1072/6.6x 1072 | 2.3 x 1072/ 3.5x 1072 | -.03 .25
0/60/.001 3.4x1073/8.1x 1073 | 3.4x 1073/ 7.2 x 10~* | -.003 11
0/40/.01 6.1x1073/7.2%x 1072 | 6.1x1073/7.1x 1073 | .005 .08
0/60/.01 0/7.5x 107% 0/3.9x10° .03 .02
-20/30/.0001 .21/3.8 6.5 x 1072/.16 .54 2.4
-20/100/.0001 0/2.4x 1078 0/5x 1077 .0002 .02
-20/30/.001 1.6 x 1072/.9 6x 1073/4.4x 1072 | .0004 .59
-20/60/.001 0/4.7 x 1073 0/4.4 x 1074 - .0003 .02
-20/30/.01 0/3.7x 1073 0/3 x 1071 -.0001 .02
-20/60/.01 0/1.5x 1076 0/2.7 x 1077 .0001 .01

H; .., as estimated by simulations. In order to evaluate on the performance of the least squares implementation.
the performance of the jointly Gaussian approximatiofables Ill and IV list the preceding performance measures as
for the ¢(¢) with simulations, we compare(i*) ob- a function of the relative interference powgy, the number
tained using the two methods, rather than listing all thef iterations M, and «.

{q(?),% # 4maz, tmaz £ 1} (if the latter are all zero as  For high SNR,« = .0001 is small enough to permit
estimated from simulations, we list the largest of thessuppression of very strong interferencg; (= 20 dB), and
values according to our analytical approximation). gives good performance faP; = 0 dB as well, especially
The bias and standard deviation of the delay estimaiéen there is no mismatch under the best hypothesis, as in
71/ Te. Table Ill. Recall that the steady state results in Tables | and

While all the results from the steady state analysis in Sectitinshow thate = .0001 gives acceptable performance for all
V-A are fora = 0.0001, here we illustrate the effect of varyingvalues ofP; considered. For the least squares implementation,



MADHOW: DIRECT-SEQUENCE CDMA SIGNALS 133

TABLE V TABLE VI
ERROR PROBABILITY PERFORMANCE OVER100 SMULATION RUNS OF ERROR PROBABILITY PERFORMANCE OVER100 SMULATION RUNS OF
THE LEAST SQUARES IMPLEMENTATION OF THE BLIND ACQUISITION THE LEAST SQUARES IMPLEMENTATION OF THE BLIND ACQUISITION
ALGORITHM (Ep/No = 17 &, 71 = 3.5Tc, M1 s = 40) ALGORITHM (Ep/No = 17 &8, 71 = 3.25T¢, My s = 40)
Pr (dB)/« P, K Pr (dB)/« P, K
range (median) range (mean) range (median) range (mean)
20/.0001 | 1.2 x 107%-4.7 x 10~° .906-.998 20/.0001 | 8.2x 107%-1.2x 1075 .807-.998
(1.3 x 107%) (.984) (1.3 x 107%) (-965)
0/.001 7x1077-7.9 x 1072 .203-.996 0/.001 | 7.7x10710-25x107% | .283-.998
(1.6 x 107%) (.785) (2.5 x 1077) (.809)
0/.01 1.4 x 107%-2.5 x 1074 .769-.996 0/.01 2 x 1078-1.9 x 107° .849-.972
(2.2 x 107%) .915 (5.4 x 1078) .915
-20/.001 1.1 x 1071143 012-1.0 -20/.001 2.5 x 1071438 .020-.998
(9.3x107%) (.541) (1.8 x 107%) (.541)
-20/.01 | 1.2x1071-2.0x 107% 42-.997 -20/.01 | 22x107142.7x107% | .536-.996
(5.9 x 10710) (.856) (2.4 x 10719 (.872)

however, Tables Il and IV show that, for smallét;, the performance quickly improves ak/;s increases, especially
acquisition error probability and the delay bias and standdial values of« that are well matched t@;.

deviation are better for larger values @f such as .001 and The analytical prediction based on the jointly Gaussian
.01. This might be because, for a fixed number of least squagggproximation is seen to be always larger than the acquisition
iterations, decreasing; makes the empirical cross correlatiorerror probability directly estimated from simulations. The
matrix R more ill conditioned. Further, for fixed, decreasing match is better for; = 3.257... Form, = 3.51,, the analytical

Pr amounts to decreasing Thus, the noise enhancement duestimate is sometimes larger by several orders of magnitude.
to inverting R + I for small M5 appears to be excessiveHowever, even in this case, because the acquisition error
for o = 0.0001. If the least squares implementation is run f@robability decreases so rapidly with/;s, the analytical
long enough withoe = .0001, reliable acquisition is attainedapproximation is still a good tool for conservative design;
for all values of P; (see the entries foM s = 100), which e.g., forP; = 20 dB, & = .0001, and a desireg} .., of 1072,

is consistent with the steady state analysis. However, largdmulations show that/; s ~ 30 should suffice (see Table Ill),
values ofa of .001 and .01 produce reliable acquisition muckhile the analytical approximation would lead id;s ~ 35.
more quickly for P; of 0 and —20 dB. Of course, these Of course, if very low acquisition error probabilities are
values of« are not universally good either, since they caflesired, then the analytical approximation provides the only
be shown to cause acquisition errors even in steady state Bessible design approach, since direct simulations would be
Py of 20 dB. If o is chosen appropriately, reliable acquisitiofo0 time consuming.

is obtained withinM ;s = 40 iterations forr; = 3.57,. and
within Mrs = 60 for 7, = 3.257... C. Error Probability Performance

Comparing Tables XIll and IX in Appendix B with Tables The preceding results show that, for high SNR and an
llland 1V, it is interesting to note that the automatic choice oippropriate choice of, our method quickly provides a good
« via the algorithm presented in Appendix B does eliminaigelay estimate. We now evaluate the average error probability
values ofc that provide poor performance for a given valug, of the demodulator,,; produced by the algorithm after
of P;. However, because of the bias of the algorithm towargl; ¢ least squares iterations. The error probability is evaluated
smaller values ofa (in order to permit more interferenceanalytically after each simulation run. For each run, we also
suppression), it need not select the value:dfiat provides the evaluate the cosing of the angle betweean,,; andcyarse.
best performance for a giveH;, especially for small or mod- The range and median &%, (the mean would be weighted too
erate Py (which requires a large: to optimize performance). heavily by outliers), and the range and meanr @fre presented
Thus, we see from Table IV that = .01 works better for in Tables V and VI, which should be compared with the steady
Pr =0 dB, but the results in Table IX show that=.001 is state results in Section V-A. As in the previous section, we
selected much more often in this case. restrict attention toE, /Ny of 17 dB, and varyP;, keeping

Comparing Tables Il and IV, note that, for the same numbe@r; s = 40. For each value ofP;, we choose the values
of least squares iterations, the fact that there is mismatch ew#nn determined by results in the previous subsection (and
under the best hypothesis for = 3.257. leads to a larger automatically chosen by the algorithm described in Appendix
acquisition error probability and to a larger bias and standaB) to give better acquisition performance. Fewer (100) simu-
deviation for the delay estimate, even though the steady stitgon runs are used here, due to the complexity of the error
performance for this delay is better (see Tables | and II). Tipeobability computation.
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TABLE VI TABLE IX
ERROR PROBABILITY PERFORMANCE FORSELECTED SETTINGS, COMPUTED FRACTION OF TIMES EACH VALUE OF o Is CHOSEN BY THE MODIFIED
UsING 100 SMULATION RUNS OF THE LEAST SQUARES IMPLEMENTATION OF ALGORITHM (B, /No = 17 &8, 11 = 3.25T,., M s = 40)
THE BLIND ACQUISITION ALGORITHM (Es/No = 17 &, M1 s = 80)
Pr@B)y|fi] 2 | f5 | fa
Pr (dB T, P,
r (dB)/a/mi/Te e K 20 1] 0] 0o
di e
range (median) range (mean) 0 o | 058 | 042 | 0
0/.001/3.5 7x1077-5.6 x 1074 .628-.996 .
-20 0 |.052].948| 0
(2.2x 1079) (-910)
0/.001/3.25 7.7%x 1071015 x 1074 .636-.998
(1.4 % 10°%) (.909) mission. The performance of the scheme is illustrated via
- ; a steady state analysis and simulations of a least squares
-20/.001/3.5 | 1.1x1077-1.7 x 10 -307-1.000 implementation. Based on our numerical results, we make the
(3.9 x 1078) (.752) following observations.
-20/.001/3.25 2.2 x 10717 x 1073 .347-1.000 1) Given thatw, and hence the fictitious noise variance
(1.6 x 10-%) (.725) v, is chosen appropriately, the algorithm chooses the
5 correct timing hypotheses with a fairly small number of
iterations for a wide range of interference powers. The
TABLE VIl acquisition algorithm is near-far resistant, so that it can
FRACTION OF TIMES EACH VALUE OF o Is CHOSEN BY THE MODIFIED operate In situations in which conventional acquisition
ALGORITHM (E, /Ny = 17 &8, 71 = 3.5T.., M1 s = 40) methods are useless.

PR AN S | S | T 2) If the correct (coarsely quantized) delay hypotheses are
20 |1 070760 chosen, the combining rule for interpolating between
0 0].861[.139] 0 these hypotheses produces an excellent delay estimate,
20 ol o 1 o which eliminates the need for “pull-in” using a code

tracking loop. The interpolation also produces a near-far

resistant demodulator which is close to the MMSE so-

) lution, and outperforms the conventional matched filter

~ The results forP; of 0 dB and —20 dB show that it (which assumes perfect knowledge of timing) when the

is important to choose large enough to prevent excessive  jnterference levels are significant, including the situation

signal suppression and noise enhancement in these situations. s perfect power control.

In particular, the largest bit error probability far=.001 and 3) A Gaussian approximation used to estimate the ac-

Pr = —20 dB is unacceptable. Even whenis chosen to quisition error probability is found to be consistently
opt|m|zg .performan(.:e, there is a large variation in bit error  onservative in regimes where acquisition error prob-
probabilities over different runs. Nevertheless, 8 of at abilities are large enough to be directly estimated by

least 0 dB (which is of most interest in a CDMA system, where  gjmy|ation. Application of this approximation shows that
there are at least a few interferers with strength comparable to e acquisition error probability drops rapidly with the

that of the desired transmission), the scheme quickly providesa  humber of least squares iterations when the SNR is high
detector with performance far superior to that of the matched enough. For low SNR'’s and high relative interference

filter. , powers, noise enhancement due to linear interference
For Py of 0 dB and—20 dB, since the performance for= suppression causes acquisition errors regardless of the

001 is unsatisfactory for = 0.001, we have tried a larger number of iterations. These errors can be predicted using

number of least squares iteratiodd; s = 80, in these cases. the steady state analysis.

The results are shown in Table VII. While the performance 4) The piggest disadvantage of the algorithm presented here

for Py = 0 dB improves significantly, the performance for s jts sensitivity to the choice of. One possible method

Pr = —20 dB remains poor. Running the algorithm for  ¢or gutomatically choosing is given, but it is not

selectlng_a in this settmg, we have found that the likelihood completely satisfactory because of its high complexity.

of choosinga = 0.001 is small (a few percent) but nonzero.  ap analogous training based method for joint acquisition

One possibility fqr rectifying this (if some estimate _of receiv.ed and demodulation [6], [7] does not suffer from such
power level relative to background noise were available) might sensitivity to the choice of algorithm parameters.

be to bias the algorithm for choosingtoward higher values

. : In future work, it is of interest to seek lower complexity
when the received power level is lower.

methods for automating the choice:ofExtending the range of
operation of the algorithm to lower SNR’s is another problem
VI. CONCLUSIONS that needs to be addressed. Finally, while there are now a
We have presented a blind interference suppression schemamber of low-complexity methods for interference suppres-
for joint acquisition and demodulation, which requires knowkion in CDMA systems, extensive performance evaluation of
edge only of the spreading sequence of the desired tratiteese schemes in a typical time-varying wireless environment
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is required to quantify the trade-offs involved in designing significant when the interference is weak and the detector
functioning system based on these ideas. energy is expended mainly in suppressing the desired signal.
Since the detector energy required to suppress the interference
should be of the order ofiy = 1/nr (see Section II-C),
near-far resistance should still be obtained if the maximum

. - . .allowable value off3 is of the order of3;. This leads to the
We supply here the details of obtaining the best mterpOIat'.?gllowing modification to the algorithm in Section III-B, based

between the nominals for the best two hypotheses. SimplifynagI constraining the maximum detector energy to be at most

E:r:)?]g%t:rtlgz"g?(:rSIgleart(tev(\jI%?)?nmrgiﬁ :)\Xl_a;duo :1 XQ)\’ and Bmaz, Wheref,,... is chosen large enough to allow adequate
! Interp ! 2(A) = Ax1+(L-NX2, niarference suppression.

where A € [0,1]. The normalized MOE for this nominal is For each value ofv = a,, 1 < p < m, compute the

given by correlatorse(® using (21). Fora = ay, define g™ =
) <C|(|7_c>(72§|;lf>2 as the largest detector energy among all
hypotheses. Choose = «* to be thesmallesta,, such that
where R denotes the statistical correlation matrix, and igl()maw) < Bmaz (S€ta* = maz,a, if the latter condition
replaced byR for a least squares implementation. We want tgoes not hold for any). Now follow Steps 1 through 4 of the
maximize {(A) over A € [0, 1]. algorithm using the correlators?) obtained fora = o*.

The numerator and denominator&f) are quadratics in,  |n an RLS implementation, it might be possible to use a
whose coefficients already need to be evaluated when runnjg"||,g;;g|e value of instead of runningrn parallel RLS algorithms,
the acquisition algorithm. Differentiating with respect toA  and to adapt this value based on the detector energies produced
and simplifying, we find that the unconstrained extrema @fy the algorithm. We leave the study of such modifications
&()\) solve a quadratic equation. Denoting By and A2 the  or future work.
solutions to the quadratic equation, choosg,.. to be the  \hjle we did not perform extensive simulations with this
value that maximizeg(A) over A = 0,1 and either ofA;, A modified algorithm due to its complexity, its effectiveness is
that fall in[0, 1]. Thus, evaluating,... involves a comparison jjjystrated by the following example. Considet = 4, with
of at most four real numbers. The demodulatgg; can then . = 0.0001, a» = 0.001, a3 = 0.01, and ay = .1. For
be obtained using (25). Mps = 40 and 8,4 = 10 (corresponding to 10 dB noise

Obtaining the delay estimate requires expressing the norghhancement), we present in Tables Vil and IX the fracfipn
nalsx; andx; as linear combinations of shifts of the spreadingf 1000 simulation runs in which,, is chosen, as a function of
sequence. Suppose, without loss of generality, that=  p, Note that the values af chosen decrease with increasing

APPENDIX A
COMBINING RULE FORINTERPOLATING BETWEENHYPOTHESES

<

R4+ vD)'R(R+ D)7z

max;

zTz

n 7 ntl
H?’?—:H and xo = % Then the interpolated F;, as they should. Referring back to Tables V and VI, we see
R r1Tig 1 .
nominal is written ass(Amas) = alla; + ng:I:lal’ where that th_e values oft chosen for a given yalue df; are the ones
that give good performance for that interference power level.
_ Amar 1= Anax _ 1= Amax When the algorithm for choosing is applied in steady state,
[Thay|| * ||TRay + ThFtay||”  ||Thay + Th*lay||  however, the choice is = a; = .0001 for all values ofP;.

It appears, therefore, that least squares estimation errors cause

and the delay estimate is given by a larger value of detector energythan would be obtained in

S b steady state, causing larger valuesaofo be chosen by the
. "Tatb algorithm.
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