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Blind Adaptive Interference Suppression
for the Near-Far Resistant Acquisition and

Demodulation of Direct-Sequence CDMA Signals
Upamanyu Madhow,Senior Member, IEEE

Abstract— Two key operations required of a receiver in
a direct-sequence (DS) code division multiple access (CDMA)
system are thetiming acquisition of transmissions that are start-
ing up or have lost synchronization, and thedemodulation of
transmissions that have been acquired. The reliability of both
these operations is limited by multiple-access interference, es-
pecially for conventional matched filter-based methods, whose
performance displays an interference floor and is vulnerable to
the near-far problem. Recent work has shown that, provided
timing information is available for a given transmission, it can
be demodulated reliably using blind or training-sequence-based
adaptive interference suppression techniques. These techniques
are near-far resistant, unlike the matched filter demodulator, and
do not require explicit knowledge of the interference parameters,
unlike nonadaptive multiuser detectors. In this paper, we present
a blind adaptive interference suppression technique forjoint
acquisition and demodulation, which has the unique feature that
the output of the acquisition process is not simply the timing of the
desired transmission, but a near-far resistant demodulator that
implicitly accounts for knowledge of the timing and amplitudes
of all transmissions to suppress the multiple-access interference.
The only knowledge required by the scheme is that of the desired
transmission’s signature sequence, so that it is amenable to a
decentralized implementation. On the other hand, it can be
efficiently implemented as a centralized scheme in which the
bulk of the computations for the adaptation are common to all
transmissions that need to be acquired or demodulated.

I. INTRODUCTION

T HE major limitation on the performance and capacity
of direct-sequence (DS) code division multiple access

(CDMA) is the multiple-access interference due to simulta-
neous transmissions. In particular, the conventional matched
filter demodulator, which ignores the structure of the in-
terference, suffers from aninterference floor(i.e., its error
probability does not go to zero as the background noise level
vanishes), and from thenear-far problem(i.e., its error proba-
bility can deteriorate significantly if an interfering transmission
has a much higher power than the desired transmission). In
recent work [1], [8], [10], [14], it has been shown that min-
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imum mean squared error (MMSE) receivers can be used to
suppress multiple-access interference. The MMSE receiver can
be implemented adaptively, e.g., by using a training sequence
of symbols for the desired transmission for initial adaptation,
followed by decision-directed adaptation. The MMSE detector
can also be implemented viablind adaptation [3], in which
knowledge of the desired transmission’s timing and spreading
waveform is used instead of a training sequence. The results
of [8] imply that the adaptive demodulators in [1], [8], [10],
[14], and in [3] do not exhibit an interference floor and
are near-far resistant. Further, these demodulators do not
require explicit knowledge of the interference parameters and
have relatively low complexity, unlike the near-far resistant
centralized multiuser detectors proposed in the past (see [17]
for a survey of the latter).

Demodulation of a CDMA signal must, however, be pre-
ceded byacquisition, in which the receiver acquires the timing
of a transmission that is starting up or has lost synchronization.
The adaptive demodulators in [1], [8], [10], [14], and in [3]
all assume that some form of timing information regarding
the desired transmission is available. While this information
could conceivably be obtained using conventional acquisition
techniques based on matched filters or correlators, the latter
techniques also suffer from the near-far problem, and are at
least as interference-limited [9] as conventional demodulation
methods.

In this paper, we use the blind adaptive demodulator in
[3] as a building block for a blind adaptive interference
suppression scheme forjoint acquisition and demodulation.
The only knowledge assumed by the receiver is a knowledge
of the spreading sequence of the desired transmission. The key
idea underlying joint acquisition and demodulation is to choose
an observation interval for demodulation that is large enough
so that one complete symbol of the desired transmission falls
into it, regardless of the timing uncertainty. For a system with
multipath spread that is small compared to the bit interval

, choosing an observation interval of suffices for this
purpose. We then quantize the timing uncertainty into a
finite set of hypotheses, run an adaptive demodulator under
each hypothesis, and pick the demodulator that performs the
best according to information derived from receiver statistics.
Thus, a unique feature of our method is that it results not
only in an explicit estimate of the desired signal’s timing,
but also in a near-far resistant receiver which automatically
accounts for the delays and amplitudes of the interfering
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transmissions. The latter can be directly used for subsequent
demodulation as well as for continuing blind or decision-
directed adaptation as proposed in [3] or [8]. Our approach is
different from more complexsimultaneoustiming estimation
and demodulation schemes such as [13], since demodulation
in our method occursafter a near-far resistant demodulator
has been computed based on the timing acquisition algorithm.

Near-far resistant estimation of the timing of the desired
transmission using the eigendecomposition-based MUSIC al-
gorithm [11] has been proposed in [2], and [15]. However,
since the observation interval used is of lengthand is
not necessarily aligned with the bit interval for the desired
transmission, this algorithm only yields the timing of the de-
sired transmission, which is not sufficient for near-far resistant
demodulation. This method can be extended to obtain a near-
far resistant demodulator in the following two different ways.
(a) Use an observation interval of length, estimate the delays
for all transmissions, and then compute a near-far resistant
demodulator based on these estimates. Delay estimation for
all transmissions would require knowledge of all the spreading
sequences in the method proposed in [2], [15]. (b) Apply the
MUSIC method with a observation interval, in which case
computation of a near-far resistant demodulator based on the
estimated timing can be done exactly as in this paper (see (12)).
Method (b) would therefore yield a blind joint acquisition
and demodulation scheme, albeit with a complexity that is
somewhat higher than that of the scheme presented here. The
MUSIC algorithm as presented in [2] and [15] also requires
knowledge of the number of users, although this requirement
could be removed by estimating the number of significant
users using a number of methods (e.g., see [18]). A detailed
comparison of suitably optimized versions of the MUSIC
method and the scheme presented here, especially recursive
versions for time-varying channels, is an important topic for
further investigation.

A simpler approach to acquisition, based on MMSE adap-
tation using an all-one training sequence, has been proposed
in [12]. Again, since the observation interval is of length
in [12], this method does not yield information sufficient to
compute a near-far resistant demodulator. Modification of the
method to use a observation interval removes this problem.
However, the use of an all-one training sequence means that
different transmissions in acquisition mode cannot be distin-
guished in a near-far resistant manner. If the timing uncertainty
is finite, this second problem can be addressed by using
different, and “sufficiently random” training sequences for
different users in acquisition mode, and by running adaptive
demodulators for each of a finite number of timing hypotheses,
as in this paper. Since our purpose in this paper is to develop
and understand the blind method in detail, we refer the reader
to [7] for a training based method for joint acquisition and
demodulation that incorporates the preceding modifications,
and to [6] for a numerical comparison of early versions of our
blind and training based schemes.

Section II contains background material, including the sys-
tem model and a review of the blind demodulator. Section III
provides a description of our joint acquisition and demodu-
lation scheme. Section IV contains performance analysis of

the scheme. Numerical results are given in Section V, and
Section VI contains our conclusions.

II. BACKGROUND

A. Asynchronous CDMA

We consider an asynchronous DS CDMA system with
simultaneous antipodal transmissions over an additive white
Gaussian noise (AWGN) real baseband channel. In principle,
the scheme proposed here extends trivially to a complex
baseband model that encompasses two-dimensional signaling
and multipath fading. However, theperformanceof adaptive
methods over time-varying complex baseband channels is an
open issue that is currently under study. The received signal
due to the th transmission ( ) is given by

(1)

where is the bit interval, is the th bit of
the th transmission, is its amplitude, is its relative
delay with respect to the receiver, and is its spreading
waveform, given by

(2)

Here, is the th element of the spreading
sequence for theth transmission, is the chip waveform
(typically assumed to be of duration ), and is
the processing gain.

The net received signal is given by

(3)

where is AWGN. The bits are assumed to be
uncorrelated for all and . Taking the first transmission to
be thedesired transmission, our objective is to demodulate
its bit sequence . The only knowledge assumed is that
of the desired signature sequence. The delays and amplitudes
for all transmissions are unknown, as are the signature se-
quences for the interfering transmissions. The adaptive
algorithm for joint acquisition and demodulation will result in
a linear receiver that implicitly accounts for these unknown
parameters.

B. The Equivalent Synchronous Discrete Time Model

Since the digital signal processing required for interference
suppression occurs in discrete time, we restrict attention to an
equivalent synchronous discrete timemodel obtained by chip
matched filtering the received signal, sampling at a multiple
of the chip rate, and limiting attention to a finite observation
interval for each bit decision. All results in this paper are
for a rectangular chip waveform and chip rate sampling.
Generalizations to other chip waveforms and sampling rates
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is straightforward.1 The length of the observation interval is
chosen to be , which is the minimum length such that one
complete bit of the desired transmission falls in the interval
regardless of the relative delay .2 The latter property is
crucial to the design of our acquisition algorithm. If more
than one transmission is being acquired or demodulated by
the receiver, this property also enables the use of common
observation intervals for all transmissions. For least squares
or recursive least squares (RLS) adaptation, this will imply
that the computation of the inverse of the empirical cross-
correlation matrix can be used for all transmissions, so that
an efficient centralized implementation of the decentralized
adaptive method proposed here is possible.

The th discrete time sample can be written as

(4)

Each observation interval corresponds to samples, and the
vector of received samples for theth observation interval
is . The
number of samples used for each bit decision is, where

is theprocessing gain, or the number of chips per bit, and
we may henceforth consider anequivalent synchronous system
with received vector of samples for the th
observation interval.

We will now express the observation vector in terms of
the parameters of the asynchronous CDMA model (1)–(3).
Without loss of generality, let denote the bit of the
th transmission that falls completely in theth observation

interval, and let denote the delay of this bit relative to the
left edge of the th observation interval. Since
we may write it as a multiple of the chip interval as
follows: , where is an integer between

and , and . Let denote a vector of
length consisting of the elements of the signature
sequence of the th transmission followed by zeroes,
i.e., . Let denote
the acyclic left shift operator, and denote the acyclic
right shift operator, both operating on vectors of length.
Thus, for a vector , we have

and .
For each asynchronous transmission, three consecutive bit

intervals overlap with a given observation interval of length
. Furthermore, since the system is chip-asynchronous, two

adjacent chips contribute to each chip sample. The contribution
of the th transmission to the received vector of

samples for the th observation is therefore given by

where

(5)

1While sampling at twice the chip rate would preserve most of the
information in the continuous-time signal, it would also lead to a larger number
of adaptive taps for a fixed observation interval.

2Longer observation intervals result in receivers with better steady state
performance, but with higher complexity and slower adaptation speed.

Thus, the contribution due to theth transmission consists of
threesignal vectors, each modulating a different bit. Each of
these signal vectors are linear combinations of two adjacent
shifts of the signature sequence for theth transmission. The
net received vector is given by

(6)

where is white Gaussian noise with covariance . Our
task is to demodulate bit based on the observation vector

. The observation vectors are identically distributed,
which means that adaptive mechanisms that exploit the struc-
ture of for demodulation can be devised. Note that the
observation vectors are not independent, since a given bit
appears in three consecutive observation intervals, and since
the first noise samples for are the same as the last

noise samples of . This is irrelevant in determining the
structure of the adaptive algorithm, however.

Since the model (5)–(6) is notationally cumbersome, it
is convenient to consider the followinggeneric equivalent
synchronous model:

(7)

where is thedesired bitthat we wish to demodulate,
is the vector modulating it, and, for , are
interfering bits due to intersymbol interference and multiple-
access interference, and are interference vectors modulating
these bits. Recalling that the first transmission is the desired
transmission, the correspondence between (7) and (5)–(6) is
as follows: , the desired signal vector ,
and the interfering vectors are the set
of vectors due to multiple-
access interference together with the vectors due
to intersymbol interference. Thus, the number of interference
vectors is given by , three for each interfering
transmission and two for the adjacent bits of the desired
transmission. The interfering bits are simply the bits
modulating the interfering vectors, as specified in (5). The bits

are uncorrelated by virtue of our assumption
that a given bit is uncorrelated with different bits of the same
transmission, as well as with bits of other transmissions.

For the remainder of this paper, we find it notationally con-
venient to hide the fine structure of the equivalent synchronous
model and work with (7).

C. Blind Demodulation

In this section, we supply background material adapted from
[3] together with some additional definitions and formulas that
will be required in our acquisition algorithm. Letting
denote inner product, the blind minimum output energy (MOE)
demodulator [3] for the equivalent synchronous system (7)
corresponds to an estimate ,
where the correlator is chosen to minimize the output
energy , subject to the constraint

(8)
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Here is a nominal signal vector, which is the receiver’s
estimate of thedirection of the desired signal vector . We
will assume that without loss of generality.

The norm squared of will be referred to as the
detector energy , and is a measure of the amount of noise
enhancement at the output. If has a nonzero component

orthogonal to the space spanned by the interference
vectors , complete cancellation of the interference
is obtained by setting , where is chosen to
satisfy (8), and the resulting choice ofsatisfies

(9)

where is the energy of the component of the
nominal orthogonal to the interference space (this equals the
relative energy of the orthogonal component by virtue of the
normalization ). Smaller values of correspond to
larger and, hence, to more noise enhancement at the output
of the detector.

Mismatchbetween the nominal and the signal vector
can occur due to errors in the timing estimate or due to the
presence of multipath components not accounted for in the
nominal. This can result in signal loss. In particular, complete
signal cancellation is possible by setting ,
where denotes the projection of the nominal orthogonal
to the space spanned by the desired signal vector, and where

is chosen to satisfy (8). The resulting choice ofsatisfies

(10)

where is the energy of the component of the nominal
orthogonal to the space spanned by the signal vector, i.e.,

is the near-far resistance of a hypothetical system in which
the nominal is the desired signal vector and the interference
consists solely of the desired signal vector.

Equations (9) and (10) imply that, if the nominal is closer
to the space spanned by the desired signal vectorthan to the
interference subspace (i.e., if ),
then interference suppression can be achieved while avoiding
excessive signal cancellation by constraining the norm of
, i.e., by constraining the detector energy. Ideally, the

constraint should be such that is allowed to exceed
but not . Using Lagrange multipliers to reflect the norm

constraint and (8), the cost function to be minimized becomes

(11)

While must be chosen to satisfy (8), it is convenient
to define anunscaled MOE solution,which corresponds to

as follows:3

(12)

where is the statistical correlation matrix for
the observation vector. This solution must be scaled down
by in order to satisfy the constraint (8), and the

3Note that demodulation performance does not depend on scaling for a
constant modulus constellation.

resulting MOE is given by

(13)

Similar, the detector energy for the appropriately scaled
MOE solution is given by

(14)

Recalling that the bits in (7) are uncorrelated, the
correlation matrix is given by

(15)

From (12) and (15), it is clear that the Lagrange multiplierfor
the constraint on plays the same role as additional noise
variance in determining the MOE solution. We will henceforth
call thefictitious noise variance.Large leads to less signal
loss, and hence to greater tolerance to mismatch at the cost of
less interference suppression.

Our acquisition scheme coarsely quantizes the delay into
a number of hypotheses, computes the MOE solution for
each corresponding nominal, and attempts to choose the best
hypothesis based on the resulting MOE’s. If all shifts of
the desired spreading sequence have reasonably low cross
correlations with the interference, the amount of interference
suppression under different hypotheses should be comparable.
However, it should be harder to suppress the desired signal for
nominals that are close to the direction of the desired signal
vector. For the same value of detector energy, therefore,
one would expect a larger MOE for the better hypotheses.
However, constraining to be the same under different
hypotheses requires, in general, that different values ofare
used. This is computationally cumbersome, since the inverse
of must be computed for each. In order to avoid this,
we assume that the same fictitious noise varianceis used for
finding the MOE solutions under all delay hypotheses. We
then compare the MOE in (13) for different hypotheses, and
choose the one that is the largest.

The MOE computed in (13) is normalized such that
. A different normalization that will be useful

in our acquisition algorithm is , which yields the
normalized MOE defined by

(16)

The utility of the normalized MOE is as follows: Once a
coarse estimate of the delay has been obtained, a local search
for refining this estimate can be performed by maximizing.
This is because, if there is a nominal with no mismatch, the
signal is not suppressed, leading to a large output energy.
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Further, in the absence of mismatch, the detector energyis
expended only on suppressing interference, so thatshould
be smaller at the correct delay. Thus, should be large
at the true delay. We will use this idea to interpolate between
two coarse delay hypotheses to estimate the true delay.

The reason that the MOE is not used to interpolate
between delay hypotheses is that maximizing it locally is
difficult. On the other hand, the normalized MOEis not
used for deciding among the coarse delay hypotheses because,
in the presence of mismatch, the detector energyunder the
good delay hypotheses can be large at low noise levels (since
the MOE criterion is trying to take advantage of the mismatch
to suppress the signal as well as the interference, especially
when the interference is weak). Thus, even thoughis larger
for the good hypotheses, so is, which may cause
to be smaller than for some incorrect delay hypothesis. Thus,
testing the hypotheses based onbreaks down in a low noise,
single-user regime, where we would like to obtain the best
performance. This phenomenon has been verified numerically,
although we do not include those results here. Note that the
problem occurs due to the mismatch due to coarse delay
quantization, and is not an issue when we are trying to choose
among a set of nominals such that one corresponds to the true
delay. We will therefore use the MOEfor the coarse delay
estimate and the normalized MOEfor refining the estimate.

III. B LIND ACQUISITION AND DEMODULATION

In the acquisition phase, the receiver does not know either of
the parameters or specifying the delay
for the first transmission, and therefore does not know the
desired signal vector . However, we do know that is a
linear combination of two shifts of the desired transmission’s
spreading sequence, given by

(17)

We must now determine the level of delay discretization
needed to translate the uncertainty in and into a finite
number of hypotheses.

A. Number of Delay Hypotheses Needed

The delay discretization should be such that the mismatch,
and hence the signal cancellation, for the best hypothesis is
not excessive, regardless of the true delay. This is true
(see the previous section) if, for each , there is
a hypothesis for which the distance of the nominal from the
signal space is smaller than its distance from the interference
space, i.e., if , where the inequality is preferably
satisfied by a wide margin. For signature sequences with good
cross correlation properties, any given shift of the desired
signature sequence will have a nonzero component orthogonal
to the interference space, so that the near-far resistance
of the nominal corresponding to each delay hypothesis can be
expected to satisfy some designed lower bound, e.g., .
For the best hypothesis, must be smaller than this lower
bound.

Consider given by (17). Suppose the hypothesized delays
are integer multiples of the chip interval, so that the nomi-

nals corresponding to the two closest hypotheses are (scalar
multiples of) and , respectively.
To obtain a rough idea of the number of delay hypotheses
needed, it suffices to assume that these two nominals are
orthogonal, since shifts of typical signature sequences are
nearly orthogonal, in practice. We then obtain that the near-far
resistances of these nominals relative to the signal vector
in (17) are, respectively,

(18)

(19)

For , we have , which is comparable
to typical values of the near-far resistance relative to the
interference space. Thus, if the delay hypotheses are spaced
by the chip interval, the amount of signal loss could be large
even under the closest hypothesis.

Consider now an intermediate delay hypothesis with nomi-
nal (a scalar multiple of) , which
corresponds to a hypothesized delay of . The near-
far resistance of this nominal relative to the signal space can
be shown to be

(20)

For a given , the best hypothesis is the one with the
smallest value of . From (18)–(20), it can be shown that
the worst-case value of for the best hypothesis is

. The value of should therefore be larger than this
value for near-far resistant timing acquisition. In contrast,
when the delay is perfectly known, the value of is, in
theory, only required to be nonzero. The penalty in terms of
near-far resistance for not knowing the delay can be reduced by
using a finer delay discretization, which in turn implies a larger
number of delay hypotheses and thus greater complexity.

B. Acquisition Algorithm

For , the delay hypotheses and the
corresponding nominals are given by: Hypothesis: Delay

, Nominal Hypothesis
: Delay , Nominal

. All nominals are normalized to
unit energy to enable a fair comparison of the MOE’sfor
different hypotheses.

Step 1: Main Computations
For the th hypothesis, , compute the

MOE solution, as follows, as in (12):

(21)

and the MOE and normalized MOE as in (13) and (16),
respectively, as follows:

(22)
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(23)

Step 2: Finding the Best Hypotheses
Let denote the index of the hypothesis with the largest

MOE, i.e.,

Similarly, let denote the index of the best adjacent
hypothesis, i.e.,

except for , for which we set ,
and , for which . This is because it is
assumed (without loss of generality) that the delay .

Step 3: Combining Rule
Define theinterpolated nominal

(24)

where , and let denote the normalized MOE
corresponding to this nominal. Let

denote the value of that maximizes the
normalized MOE. As shown in Appendix A, the computation
of is simple, involving solution of a quadratic equation
for and comparison of and with
the values of evaluated at the solutions to the quadratic
equation.

Step 4: Algorithm Outputs
The demodulator produced by the acquisition algorithm is

given by

(25)

which is the (unscaled) MOE solution for themaximizing
interpolated nominal

(26)
For the delay estimate, applying the definitions of the and
using (24), the maximizing interpolated nominal is rewritten as

where and have a straightforward dependence on
and (see Appendix A). Referring to (5), the

delay estimate is given by

(27)

We will illustrate the operation of our algorithm via a least
squares implementation, which follows the steps 1 through 4
described previously, except that the cross correlation matrix

is replaced by the empirical crosscorrelation matrix
computed over bit intervals

(28)

The MOE corresponding to hypothesis is denoted by ,
in order to distinguish it from its steady state equivalent.

In practice, an RLS implementation might be preferred in
order to track time variations. It is also possible to use a
stochastic gradient algorithm, but the convergence of such
algorithms for blind adaptation has been found to be slow [3].
Furthermore, the complexity of running stochastic gradient
algorithms corresponding to the hypotheses is comparable
to that of RLS algorithms that share the most significant
part of the computation, i.e., the recursive computation of the
inverse of the empirical crosscorrelation matrix.

Choice of : The fictitious noise variance must be
chosen to optimize performance: a small value allows more
interference suppression, but also more signal loss. Numer-
ical results in [3] and [5] indicate that afictitious SNR of

of 10 dB appears to work well over most
ranges of relative amplitudes.4 However, since such a choice
of cannot be implemented without knowing the amplitude of
the desired transmission, we consider a more practical choice
of , which scales according to the net power in the received
signal, estimated as trace . Thus, we set trace .
As discussed in Section V, the performance is sensitive
to the choice of . While one fairly complex method for
automatically choosing is provided in Appendix B, finding
more satisfactory solutions is left as an open problem.

IV. PERFORMANCE ANALYSIS

Steady state benchmarks for the performance of the al-
gorithm are established by running the algorithm using the
statistical cross correlation matrix. The error probability
for the resulting demodulator , and the cosine of the
angle between and the ideal MMSE solution,

, are computed.5 The error probability for
the matched filter is computed as a benchmark
that any adaptive scheme should be able to beat when the
interference powers are significant. This comparison is biased
in favor of the matched filter, since we assume a perfect
delay estimate in this case. The latter would require a separate
acquisition scheme in practice. The steady state performance
measures are compared with corresponding results obtained
for each simulation run of a least squares implementation.
The bias and variance of the delay estimateare other
performance measures of interest associated with the least
squares implementation.

In addition to the preceding, a key performance measure
is the acquisition error probability, defined as the event that
the best delay hypothesis is not one of the two selected
by an adaptive implementation (in particular, by the least
squares implementation considered here). The best hypothesis
is defined to be the one with the largest normalized MOE
in steady state, provided that the delay it corresponds to is
within (the delay quantization used) of the true delay.
Otherwise, it is defined as the hypothesis that corresponds to
a delay closest to the true delay. In the latter instance, the

4In this case, ifjju0jj2=�2 is smaller than 10 dB, then the noise level is
high enough that no fictitious noise would be needed, so that� = 0 would
suffice.

5For the model 7, the error probability for any linear receiver is computed
analytically by averaging over the bitsfbj [n]g modulating the signal and
interference vectors; see [8], for instance.



130 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 1, JANUARY 1997

algorithm would choose an incorrect hypothesis even in steady
state, so that acquisition with an adaptive implementation
would necessarily be unreliable. In most cases of interest,
as the number of least squares iterations increases, the ac-
quisition error probability quickly becomes too small to be
estimated directly by simulation. On the other hand, an exact
analytical estimate of the acquisition error probability for the
least squares implementation appears intractable. We therefore
develop a simple approximation as follows.

Let denote the index of the best hypothesis. Let
denote the estimated MOE under hypothesis for a

least squares implementation. We will approximate the
as jointly Gaussian. Under this approximation, the random
variable , is Gaussian. Denoting its
mean by and its variance by , we obtain the following
approximation for the probability of choosing over the
correct hypothesis (this would be exact if the jointly
Gaussian assumption were exact):

(29)

Analytical computation of and is difficult; hence, we
simply estimate these using the empirical statistics of the
over multiple simulation runs.

Assuming that (29) provides an accurate estimate of the
probabilities , we can obtain a union bound on the prob-
ability of acquisition error as follows. Let and
index the best hypothesis and the best adjacent hypothesis
in steady state. Acquisition error occurs if is not
chosen by the adaptive implementation of the algorithm. If

is chosen but is not, this is not considered an
acquisition error. This is because, if is truly a significant
hypothesis, the probability of this event is very small, while
if is not significant, then it does not matter if the
wrong adjacent hypothesis is chosen, since the combining rule
would give a low weight to whichever adjacent hypothesis
is chosen. While it is possible, using the jointly Gaussian
approximation, to carry out a detailed analysis of the choice
of adjacent hypothesis taking into account the combining rule,
little additional insight would be gained by doing so.

The event that neither nor is chosen lies in the
union of the events for . On the
other hand, if is chosen, the event that is not the
best adjacent hypothesis also lies in the preceding union. Thus,
the probability that acquisition error occurs is bounded by

(30)

V. NUMERICAL RESULTS

We consider a symbol- and chip-asynchronous system with
processing gain and number of transmissions .
No attempt is made to optimize the set of signature sequences,
so that all numerical results are for a fixed, but random, choice
of the set of signature sequences. Steady state analysis
and simulations for other choices of signature sequences yield
qualitatively similar results. The delays of the
interfering transmissions are chosen randomly in and

then kept fixed. Two different values of the delay of the first
(desired) transmission are considered: (which is
perfectly matched to hypothesis ), and (which
falls in the “middle” of hypotheses and , so that there
is mismatch under either of these hypotheses).

The SNR for the equivalent synchronous model (7) is
. Since this depends on the chip delay, we define

SNR to be that corresponding to a chip-synchronous system
( ), so that SNR . The numerator, , is
simply the bit energy , and , so that SNR
(dB) . We fix the amplitude of the desired
transmission, and assume thateach interfering transmission
has power relative to that of the desired transmission. Three
different values of are considered: 20 dB (to check for near-
far resistance), 0 dB (to examine the performance with perfect
power control), and 20 dB (to check that signal cancellation
is not excessive, and that the performance is not degraded too
much relative to the matched filter receiver). The least squares
implementation is run for a value of fictitious noise variance

trace , where unless specified otherwise.

A. Steady State Benchmarks

We consider two values of , 7 dB (which is moderate
for single-user applications, but low for linear multiuser de-
tection, which causes noise enhancement) and 17 dB (which
is high for single-user systems, but not uncommon for CDMA
systems whose performance is limited by multiple-access
interference). These values correspond to (chip-synchronous)
SNR’s of 10 dB and 20 dB, respectively.

We define to be the largest MOE among the
timing hypotheses within at most of the true delay, and

to be the largest MOE among all other hypotheses.
The difference between these two quantities is a measure of
how well the algorithm can distinguish between good and
bad hypotheses (the bias and variance in estimates of these
in a least squares implementation will ultimately determine
acquisition performance). These and other relevant steady state
quantities are displayed in Tables I and II.

For of 17 dB, the delay estimates based on interpo-
lating between good hypotheses are excellent, and the cosine
of the angle between the resulting demodulator and the MMSE
solution is close to one. The demodulator is near-far resistant,
and performs much better than the matched filter even with
perfect power control ( dB). The separation between

and is substantial, so that the scheme is
expected to be robust to least squares estimation errors. For a
smaller of 7 dB, the acquisition scheme can go wrong
for high interference levels (see the entry for
in Table II) in the presence of mismatch.6 In every other
case for of 7 dB, the acquisition algorithm selects the
correct hypotheses and the demodulator and delay estimate
based on interpolating the hypotheses is again very close to
the MMSE solution. However, in this low SNR regime, the
performance gains over the matched filter receiver are not as
dramatic. The separation between and is

6In this case, increasingEb=N0 by a further 2 dB leads to correct
acquisition in steady state.
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TABLE I
STEADY STATE BENCHMARKS FOR THEPERFORMANCE OF THEBLIND ACQUISITION ALGORITHM (CASE 1: �1 = 3:5Tc)

TABLE II
STEADY STATE BENCHMARKS FOR THE PERFORMANCE OF THEBLIND ACQUISITION ALGORITHM (CASE 2: �1 = 3:25Tc)

also smaller here, implying that a large number of least squares
iterations might be required to provide reliable acquisition.
For the remainder of the paper, therefore, we restrict attention
to an interference-limited regime more typical of CDMA
applications, taking dB.

While 0.0001 is used for the preceding results, it is
important to choose according to signal and interference
powers for rapid acquisition using a least squares implemen-
tation. See Section V-B, where we illustrate the advantage
of choosing larger when is smaller. Conversely, if we
increase to 50 dB while keeping 0.0001, acquisition
error occurs in steady state even for of 17 dB. This
is because, for fixed trace , and hence , increases with

, permitting less interference suppression. Using a smaller
0.000 01 restores reliable steady state performance in this

setting.
Finally, it is worth noting that even for very weak in-

terference, the error probability performance for all three
demodulators considered is substantially worse than the stan-
dard error probability formula for binary phase
shift keying (BPSK). This occurs because the receiver is not
chip-synchronous with the desired transmission, causing both
SNR loss and intersymbol interference.

B. Acquisition Error Probability

In view of the poor performance even in steady state for
of 7 dB, we restrict attention to of 17 dB

in order to evaluate the performance of the least squares
implementation of the algorithm in an interference-limited
regime. Our objective is to explore the dependence of the
acquisition error probability on the number of least
squares iterations used. We use 10 000 simulation runs to

estimate the acquisition probability in each case considered,
and compare it with the analytical approximation (29)–(30)
obtained using the jointly Gaussian assumption for the output
energies obtained over the simulation runs (the second-order
statistics of the can be well estimated using many fewer
runs than required to estimate the acquisition error probability
accurately).

The over independent runs will be identically dis-
tributed only if the value of used for the runs is the
same. Since the empirical crosscorrelation matrixdiffers
over different runs, so does the value of the fictitious noise
variance trace . However, for all the simulation runs
considered, trace (which is a rapidly converging estimate
of the average received power) is close to the statistical
average trace . Thus, from the point of view of analyzing
acquisition performance, it suffices to consider a fixed value
for the fictitious noise variance, trace . For this value
of , 1000 simulation runs of the least squares implementation
of the acquisition algorithm are used to compute the empirical
mean and variance of . This is used
to estimate the probability of choosing a given wrong
hypothesis via (29), and then to compute the union bound
(30) on the probability .

In comparing the results of the analysis with direct estimates
of the acquisition error probability, we list the following
quantities.

1) The acquisition error probability obtained via
10 000 simulation runs and the (simulation-aided) an-
alytical approximation.

2) Let denote
the index of the incorrect hypothesis with the largest
probability of being chosen over the best hypothesis
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TABLE III
ACQUISITION PERFORMANCE AS A FUNCTION OF THE RELATIVE INTERFERENCEPOWER PI , THE NUMBER

MLS OF LEAST SQUARES ITERATIONS, AND � = �=trace(R) (�1 = 3:5Tc; Eb=N0 = 17 dB)

TABLE IV
ACQUISITION PERFORMANCE AS A FUNCTION OF THE RELATIVE INTERFERENCEPOWER PI , THE NUMBER

MLS OF LEAST SQUARES ITERATIONS, AND � = �=trace(R) (�1 = 3:25Tc; Eb=N0 = 17 DB)

, as estimated by simulations. In order to evaluate
the performance of the jointly Gaussian approximation
for the with simulations, we compare ob-
tained using the two methods, rather than listing all the

(if the latter are all zero as
estimated from simulations, we list the largest of these
values according to our analytical approximation).

3) The bias and standard deviation of the delay estimate
.

While all the results from the steady state analysis in Section
V-A are for , here we illustrate the effect of varying

on the performance of the least squares implementation.
Tables III and IV list the preceding performance measures as
a function of the relative interference power, the number
of iterations , and .

For high SNR, is small enough to permit
suppression of very strong interference ( dB), and
gives good performance for dB as well, especially
when there is no mismatch under the best hypothesis, as in
Table III. Recall that the steady state results in Tables I and
II show that gives acceptable performance for all
values of considered. For the least squares implementation,
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TABLE V
ERROR PROBABILITY PERFORMANCE OVER100 SIMULATION RUNS OF

THE LEAST SQUARES IMPLEMENTATION OF THE BLIND ACQUISITION

ALGORITHM (Eb=N0 = 17 dB, �1 = 3:5Tc; MLS = 40)

however, Tables III and IV show that, for smaller , the
acquisition error probability and the delay bias and standard
deviation are better for larger values of, such as .001 and
.01. This might be because, for a fixed number of least squares
iterations, decreasing makes the empirical cross correlation
matrix more ill conditioned. Further, for fixed, decreasing

amounts to decreasing. Thus, the noise enhancement due
to inverting for small appears to be excessive
for 0.0001. If the least squares implementation is run for
long enough with .0001, reliable acquisition is attained
for all values of (see the entries for ), which
is consistent with the steady state analysis. However, larger
values of of .001 and .01 produce reliable acquisition much
more quickly for of 0 and 20 dB. Of course, these
values of are not universally good either, since they can
be shown to cause acquisition errors even in steady state for

of 20 dB. If is chosen appropriately, reliable acquisition
is obtained within iterations for and
within for .

Comparing Tables XIII and IX in Appendix B with Tables
III and IV, it is interesting to note that the automatic choice of

via the algorithm presented in Appendix B does eliminate
values of that provide poor performance for a given value
of . However, because of the bias of the algorithm toward
smaller values of (in order to permit more interference
suppression), it need not select the value ofthat provides the
best performance for a given , especially for small or mod-
erate (which requires a large to optimize performance).
Thus, we see from Table IV that works better for

dB, but the results in Table IX show that .001 is
selected much more often in this case.

Comparing Tables III and IV, note that, for the same number
of least squares iterations, the fact that there is mismatch even
under the best hypothesis for leads to a larger
acquisition error probability and to a larger bias and standard
deviation for the delay estimate, even though the steady state
performance for this delay is better (see Tables I and II). The

TABLE VI
ERROR PROBABILITY PERFORMANCE OVER100 SIMULATION RUNS OF

THE LEAST SQUARES IMPLEMENTATION OF THE BLIND ACQUISITION

ALGORITHM (Eb=N0 = 17 dB, �1 = 3:25Tc; MLS = 40)

performance quickly improves as increases, especially
for values of that are well matched to .

The analytical prediction based on the jointly Gaussian
approximation is seen to be always larger than the acquisition
error probability directly estimated from simulations. The
match is better for . For , the analytical
estimate is sometimes larger by several orders of magnitude.
However, even in this case, because the acquisition error
probability decreases so rapidly with , the analytical
approximation is still a good tool for conservative design;
e.g., for dB, .0001, and a desired of ,
simulations show that should suffice (see Table III),
while the analytical approximation would lead to .
Of course, if very low acquisition error probabilities are
desired, then the analytical approximation provides the only
possible design approach, since direct simulations would be
too time consuming.

C. Error Probability Performance

The preceding results show that, for high SNR and an
appropriate choice of , our method quickly provides a good
delay estimate. We now evaluate the average error probability

of the demodulator produced by the algorithm after
least squares iterations. The error probability is evaluated

analytically after each simulation run. For each run, we also
evaluate the cosine of the angle between and .
The range and median of (the mean would be weighted too
heavily by outliers), and the range and mean ofare presented
in Tables V and VI, which should be compared with the steady
state results in Section V-A. As in the previous section, we
restrict attention to of 17 dB, and vary , keeping

. For each value of , we choose the values
of determined by results in the previous subsection (and
automatically chosen by the algorithm described in Appendix
B) to give better acquisition performance. Fewer (100) simu-
lation runs are used here, due to the complexity of the error
probability computation.
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TABLE VII
ERROR PROBABILITY PERFORMANCE FORSELECTED SETTINGS, COMPUTED

USING 100 SIMULATION RUNS OF THE LEAST SQUARES IMPLEMENTATION OF

THE BLIND ACQUISITION ALGORITHM (Eb=N0 = 17 dB, MLS = 80)

TABLE VIII
FRACTION OF TIMES EACH VALUE OF � IS CHOSEN BY THE MODIFIED

ALGORITHM (Eb=N0 = 17 dB, �1 = 3:5Tc; MLS = 40)

The results for of 0 dB and 20 dB show that it
is important to choose large enough to prevent excessive
signal suppression and noise enhancement in these situations.
In particular, the largest bit error probability for .001 and

dB is unacceptable. Even when is chosen to
optimize performance, there is a large variation in bit error
probabilities over different runs. Nevertheless, for of at
least 0 dB (which is of most interest in a CDMA system, where
there are at least a few interferers with strength comparable to
that of the desired transmission), the scheme quickly provides a
detector with performance far superior to that of the matched
filter.

For of 0 dB and 20 dB, since the performance for
.001 is unsatisfactory for 0.001, we have tried a larger
number of least squares iterations, , in these cases.
The results are shown in Table VII. While the performance
for dB improves significantly, the performance for

dB remains poor. Running the algorithm for
selecting in this setting, we have found that the likelihood
of choosing 0.001 is small (a few percent) but nonzero.
One possibility for rectifying this (if some estimate of received
power level relative to background noise were available) might
be to bias the algorithm for choosingtoward higher values
when the received power level is lower.

VI. CONCLUSIONS

We have presented a blind interference suppression scheme
for joint acquisition and demodulation, which requires knowl-
edge only of the spreading sequence of the desired trans-

TABLE IX
FRACTION OF TIMES EACH VALUE OF � IS CHOSEN BY THE MODIFIED

ALGORITHM (Eb=N0 = 17 dB, �1 = 3:25Tc; MLS = 40)

mission. The performance of the scheme is illustrated via
a steady state analysis and simulations of a least squares
implementation. Based on our numerical results, we make the
following observations.

1) Given that , and hence the fictitious noise variance
, is chosen appropriately, the algorithm chooses the

correct timing hypotheses with a fairly small number of
iterations for a wide range of interference powers. The
acquisition algorithm is near-far resistant, so that it can
operate in situations in which conventional acquisition
methods are useless.

2) If the correct (coarsely quantized) delay hypotheses are
chosen, the combining rule for interpolating between
these hypotheses produces an excellent delay estimate,
which eliminates the need for “pull-in” using a code
tracking loop. The interpolation also produces a near-far
resistant demodulator which is close to the MMSE so-
lution, and outperforms the conventional matched filter
(which assumes perfect knowledge of timing) when the
interference levels are significant, including the situation
of perfect power control.

3) A Gaussian approximation used to estimate the ac-
quisition error probability is found to be consistently
conservative in regimes where acquisition error prob-
abilities are large enough to be directly estimated by
simulation. Application of this approximation shows that
the acquisition error probability drops rapidly with the
number of least squares iterations when the SNR is high
enough. For low SNR’s and high relative interference
powers, noise enhancement due to linear interference
suppression causes acquisition errors regardless of the
number of iterations. These errors can be predicted using
the steady state analysis.

4) The biggest disadvantage of the algorithm presented here
is its sensitivity to the choice of. One possible method
for automatically choosing is given, but it is not
completely satisfactory because of its high complexity.
An analogous training based method for joint acquisition
and demodulation [6], [7] does not suffer from such
sensitivity to the choice of algorithm parameters.

In future work, it is of interest to seek lower complexity
methods for automating the choice of. Extending the range of
operation of the algorithm to lower SNR’s is another problem
that needs to be addressed. Finally, while there are now a
number of low-complexity methods for interference suppres-
sion in CDMA systems, extensive performance evaluation of
these schemes in a typical time-varying wireless environment
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is required to quantify the trade-offs involved in designing a
functioning system based on these ideas.

APPENDIX A
COMBINING RULE FORINTERPOLATINGBETWEENHYPOTHESES

We supply here the details of obtaining the best interpolation
between the nominals for the best two hypotheses. Simplifying
the notation, consider two nominals and , and
consider an interpolated nominal ,
where . The normalized MOE for this nominal is
given by

where denotes the statistical correlation matrix, and is
replaced by for a least squares implementation. We want to
maximize over .

The numerator and denominator of are quadratics in ,
whose coefficients already need to be evaluated when running
the acquisition algorithm. Differentiating with respect to
and simplifying, we find that the unconstrained extrema of

solve a quadratic equation. Denoting by and the
solutions to the quadratic equation, choose to be the
value that maximizes over and either of ,
that fall in . Thus, evaluating involves a comparison
of at most four real numbers. The demodulator can then
be obtained using (25).

Obtaining the delay estimate requires expressing the nomi-
nals and as linear combinations of shifts of the spreading
sequence. Suppose, without loss of generality, that

and . Then the interpolated

nominal is written as , where

and the delay estimate is given by

APPENDIX B
CHOOSING AUTOMATICALLY

We describe here a modified algorithm in which the MOE
detectors under each hypothesis are computed as in (21) for
different values of , so that there are parallel algorithms
using values of given by trace . This
is admittedly complex, since it requires matrix inversions
(or RLS algorithms running in parallel). If is large, it
might even be easier to compute theinverses based on an
eigendecomposition of , which would make the complexity
comparable to that of the MUSIC method in [2], [15].

The algorithm chooses between the values ofbased on
the following reasoning. In general, it is preferable to use
the smallest possible value of, since this yields better
interference suppression and a better approximation to the
MMSE detector. However, smallpermits a large detector en-
ergy and more noise enhancement, which becomes especially

significant when the interference is weak and the detector
energy is expended mainly in suppressing the desired signal.
Since the detector energy required to suppress the interference
should be of the order of (see Section II-C),
near-far resistance should still be obtained if the maximum
allowable value of is of the order of . This leads to the
following modification to the algorithm in Section III-B, based
on constraining the maximum detector energy to be at most

, where is chosen large enough to allow adequate
interference suppression.

For each value of , compute the
correlators using (21). For , define

as the largest detector energy among all

hypotheses. Choose to be thesmallest such that
(set if the latter condition

does not hold for any). Now follow Steps 1 through 4 of the
algorithm using the correlators obtained for .

In an RLS implementation, it might be possible to use a
single value of instead of running parallel RLS algorithms,
and to adapt this value based on the detector energies produced
by the algorithm. We leave the study of such modifications
for future work.

While we did not perform extensive simulations with this
modified algorithm due to its complexity, its effectiveness is
illustrated by the following example. Consider , with

, , and . For
and (corresponding to 10 dB noise

enhancement), we present in Tables VIII and IX the fraction
of 1000 simulation runs in which is chosen, as a function of

. Note that the values of chosen decrease with increasing
, as they should. Referring back to Tables V and VI, we see

that the values of chosen for a given value of are the ones
that give good performance for that interference power level.
When the algorithm for choosing is applied in steady state,
however, the choice is for all values of .
It appears, therefore, that least squares estimation errors cause
a larger value of detector energythan would be obtained in
steady state, causing larger values ofto be chosen by the
algorithm.
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