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Direct sequence (DS) code division multiple access (CDMA) is
a promising technology for wireless environments with multiple
simultaneous transmissions because of several features: asyn-
chronous multiple access, robustness to frequency selective fading,
and multipath combining. The capacity of DS-CDMA systems
is interference-limited and can therefore be increased by tech-
niques that suppress interference. In this paper, we present recent
developments in interference suppression using blind adaptive
receivers that do not require knowledge of the signal waveforms
and propagation channels of the interference, and that require
a minimal amount of information about the desired signal. The
framework considered generalizes naturally to include additional
capabilities such as receive antenna diversity. The most powerful
application of the methods described here is for linearly modulated
CDMA systems with short spreading waveforms (i.e., spreading
waveforms with period equal to the symbol interval), for which they
provide substantial performance gains over conventional recep-
tion. Implications for future system design due to the restriction of
short spreading waveforms and directions for further investigation
are discussed.

Keywords—Adaptive equalizers, blind equalization, code di-
vision multiple access, direct sequence, interference suppression,
multiuser detection, spread spectrum, timing acquisition.

I. INTRODUCTION

In this introductory section, we motivate the problem con-
sidered, provide a perspective on the state of the art in this
area, and discuss the new thinking in terms of system design
that would be needed to exploit the relatively new tech-
niques discussed in this paper. We end with an outline of
the remainder of the paper. Our objective in this paper is not
to survey the rapidly changing state of the art in this field,
but to convey a basic understanding of some key concepts.

A. Motivation

We are interested in the following problem:given multi-
ple digitally modulated signals being heard simultaneously
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by a receiver, how does the receiver reliably demodulate a
particular user of interest?While this problem is funda-
mental to communication theory, it is currently receiving
particularly intense scrutiny because of the key practical
role it plays in the emerging vision of “anywhere, anytime”
communications promised by systems such as personal
communications, digital cellular telephony, and mobile
computing. In essence, since mobile or untethered com-
munications must be wireless, and wireless is a broadcast
medium, the multiple-access interference (MAI) due to
many simultaneous users is what ultimately limits perfor-
mance. In this paper, we consider the problem of receiver
design for a specific multiple-access technology, direct-
sequence (DS) code division multiple access (CDMA).
Other multiple-access techniques that are applicable to a
cellular setting include combinations of time division mul-
tiple access (TDMA), frequency division multiple access
(FDMA), or frequency-hop (FH) CDMA [56].

The information-bearing signal for each user in a DS-
CDMA system is spread over a wider bandwidth by means
of a spreading waveform unique to that user. Fig. 1 shows
an example of the information signal, the spreading wave-
form, and the transmitted signal for a single DS transmitter.
Note from the figure that the spreading waveform is deter-
mined by a spreading code or spreading sequence (hence
the term CDMA); from Fig. 1(b), this is seen to be the
sequence 1, 1, 1, 1, 1 .

If the spreading waveforms for different receivers as seen
at the receiver were orthogonal, MAI could be eliminated.
However, in practice, signals from different users arrive
at the receiver at different delays, and it is not possible
to make the waveforms orthogonal at all possible relative
delays. Hence, the effort is to design waveforms with small
expected cross correlations averaged over relative delays.
Conventional system designs exploit this property of the
waveforms and ignore MAI in receiver design. For instance,
current implementations of the IS-95 U.S. digital cellular
standard [23] use matched filter reception (which is optimal
only if there is no MAI).
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Fig. 1. Construction of a typical DS signal. (a) Information
signal consisting of a symbol sequence at rate 1/5. (b) Spreading
waveform (two shifted copies of the waveform are shown with
dashed lines). (c) Transmitted waveform obtained by modulating
spreading waveform in (b) by the symbol sequence in (a).

If the signals due to all users arrive at the receiver
at roughly equal powers, the near-orthogonality of the
spreading waveforms implies that conventional reception
would work fairly well.1 However, the motivation for the
work reported in this paper is supplied by the following
drawbacks of conventional reception.

1) Interference floor: Since the interfering signals are not
truly orthogonal to the desired signal, the output of
the conventional matched filter for the desired user
contains contributions from the MAI. Thus, even if
the receiver thermal noise level goes to zero, the
error probability of the conventional receiver exhibits
a nonzero floor because of the MAI. This makes
it difficult to attain the low bit error rates required
by emerging applications such as data and video
using conventional reception without an excessive
reduction in system capacity (i.e., in the number of
simultaneous users permitted).

2) Near–far problem: If an interfering signal is much
stronger than the desired signal, its contribution to
the matched filter output for the desired signal can
become large enough to make reliable reception im-
possible. In order to avoid this, the IS-95 system
uses stringent closed loop power control, which has
several disadvantages. The overhead associated with
feedback-based power control may turn out to be
excessive in future packet CDMA systems (IS-95 is
a circuit-based system with relatively long lived con-
nections). Further, closed loop power control requires
coordination between transmitters and receivers at a
level which might be difficult, for instance, inad
hoc wireless networks with arbitrary and/or rapidly
time-varying topologies.2

1For analysis of the performance of conventional reception under such
circumstances, see [41], [48], and [72] (see also [36] for fundamental
limits on the performance of conventional timing acquisition methods).

2The term ad hoc networks has been recently coined for (typically
multihop) wireless networks which do not conform to the cellular paradigm
of a user accessing a wireline backbone via a single wireless hop to a
controlling base station.

The interference floor and the near–far problem en-
countered by conventional reception can be alleviated or
eliminated by the use of multiuser detection, a term we
use generically for any receiver that, unlike conventional
receivers, attempts to exploit the structure of the MAI.
Thus, the term includes receivers that are only interested
in reliable demodulation of a single user. See [71] for a
comprehensive treatment of multiuser detection. The power
of multiuser detection was first rigorously demonstrated
by Verdu in [68], where it was shown, under a mild
condition, that the near–far problem does not occur if
optimal maximum likelihood (ML) detection is used. The
complexity of implementing ML detection is exponential
in the number of active users, which has motivated the
invention of a number of suboptimal multiuser detectors
with lower complexity, typically linear in the number of
active users [11], [12], [30], [31], [66], [67], [77] (see [70]
and [71] for a survey). The receiver front end assumed
by all the aforementioned detectors is a bank of filters
matched to the transmitted waveforms and channels of the
active users, where each filter is sampled at the symbol
rate based on the timing of the corresponding user. Thus,
while each filter in the bank is a conventional receiver for
a given user, collectively the matched filter outputs form
sufficient statistics (i.e., contain all the relevant information)
for making joint symbol decisions for all users [68]. A
multiuser detection scheme based on this centralized front
end is, therefore, simply a means of jointly processing the
matched filter outputs to obtain the bit estimates for one
or more users.

Implementation of the preceding front end could be
cumbersome since it requires knowledge of the spreading
waveforms and the propagation channels of all users, even
if only one particular user is of interest. In particular, it
may be difficult to obtain reliable estimates of the users’
propagation channels in a typical wireless environment with
impairments such as fading and MAI. Furthermore, the
complexity of both the implementation of the front end and
of the processing of the outputs grows with the number of
users. As we shall see in Section I-B, for a certain class
of DS-CDMA systems these difficulties can be overcome
by using adaptive implementations of multiuser detection
based on an alternative front end.

B. Adaptive Interference Suppression

In this paper, we concentrate on the class of DS-CDMA
systems based on short spreading codes; the spreading
codes (and hence spreading waveforms) for each user are
periodic with period equal to the symbol interval. The
example shown in Fig. 1 falls within this class. In this
setting, the MAI seen by a given symbol of the desired
user is statistically identical to that seen by the next symbol
of that user, provided that the propagation channels for
the users vary relatively slowly. This observation (which
is made precise later in the paper) simplifies the task of
multiuser detection because the receiver can now adaptively
“learn” enough about the structure of the MAI to be
able to suppress it. Since such adaptation is implemented
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using digital signal processing, the front end needed for
such methods consists of a wideband filter sampled at (a
multiple of) the chip rate, thus preserving the information
in the continuous-time received signal. This front end is
independent of the spreading waveforms or propagation
channels of the interfering users. It now becomes possible
to do adaptive interference suppression, which is the term
we will use to describe multiuser detection schemes that
do not require explicit knowledge of the parameters of the
MAI.

Adaptive interference suppression is analogous to adap-
tive equalization of a time invariant (or slowly time-
varying) channel by virtue of the analogy between MAI
and intersymbol interference (ISI). Application of these
methods to DS-CDMA is a relatively recent concept pro-
posed by a number of different authors at approximately
the same time, e.g., Abdulrahmanet al. [2], Madhow and
Honig [35], Miller [38], and Rapajic and Vucetic [49].
All of these authors proposed adaptive receivers based on
the linear minimum mean squared error (MMSE) criterion.
These receivers require only a training sequence of symbols
transmitted by the desired user and a coarse knowledge of
the timing of the desired user, and can be implemented
adaptively using standard algorithms such as least mean
squares (LMS) or recursive least squares (RLS) [16]. After
the training phase, the receivers can continue to adapt in
decision-directed mode, in which symbol decisions made by
the receiver are fed back for further adaptation. Some basic
properties of linear MMSE receivers (including their immu-
nity to the near–far problem), as well as implementations of
varying complexity, can be found in [35], while simulations
of adaptive implementations over time invariant channels
appear in [2], [38], and [49]. Assuming convergence of
the adaptive receiver (which is easy to achieve in a time
invariant setting), linear MMSE reception has been shown
to provide large performance gains over conventional re-
ception: not only does it suppress interference, but it also
provides automatic multipath combining for the desired
user.

The preceding schemes all assume the availability of
a known sequence of symbols for the desired user in
the training phase, to be followed by a decision-directed
phase in which the decisions from the adaptive receiver
are used for continuing adaptation. They also assume that
some coarse knowledge of the timing of the desired user
is available, but this assumption can be removed by us-
ing the training sequence for initial timing acquisition as
well [4], [34], [53], [79]. A major hurdle that remains is
to make these adaptive algorithms robust to the severe
time variations typical of a wireless channel. In particular,
conventional LMS or RLS adaptation does not work over
rapidly fading channels either in training or in decision-
directed modes [80]. However, promising results have been
obtained using recently proposed modifications to LMS
and RLS that exploit differential modulation to relieve
the adaptive algorithm of the burden of channel tracking

[20], [80].3 Another approach to fading channels [74] is to
track fading gains explicitly using periodically transmitted
pilot symbols. Further modifications (typically involving
decorrelation of independently faded multipath components
of the desired user by using timing information, as in [22],
[74], and [82]) are needed to deal with channels in which
the multipath components undergo rapid independent fades,
since the automatic multipath combining capability of the
MMSE receiver is impaired in this setting. Finally, the
performance of adaptive algorithms, taking into account
transients in the interference pattern due to the arrival
and departure of interfering users, has been studied in
[21].

In view of the work cited in the previous paragraph,
we anticipate that robust adaptive algorithms for both
the training and decision-directed phases that work in
the presence of severe channel time variations will soon
become available. If so, such algorithms may well con-
stitute the most practical approach to receiver design fu-
ture high-capacity systems based on DS-CDMA. Decision-
directed adaptation, however, is still vulnerable to sudden
channel variations. For example, it could be derailed by
the appearance of an extremely strong incoming interfer-
ing signal to which the receiver has not already adapted
(e.g., due to a new interfering user, or due to a new
multipath component appearing for an existing interfering
user). Similarly, appearance and disappearance of multipath
components for the desired user could affect decision-
directed adaptation adversely. In order to recover from
failure of decision-directed adaptation without requiring
the transmitter to send a fresh training sequence, it is
necessary to develop blind adaptive mechanisms that do
not require knowledge (or reliable explicit estimates) of the
symbol sequence of the desired user. For example, the blind
receiver in [18] is used to recover from failure of decision-
directed adaptation due to fading or interference transients
in [20] and [21]. Blind reception is also of interest in its
own right in broadcast or multicast settings, since it en-
ables receivers to asynchronously tune in to a transmission
of interest at any time. Achieving this using a training-
based mechanism would require significant overhead in
the form of transmission of training sequences at regular
intervals.

The preceding arguments motivate the subject of this
paper, namely, blind adaptive interference suppression,
which at its minimum means that the receiver does not
require a training sequence for the desired user (in addition
to not requiring knowledge of the interference parameters).

C. Classification of Blind Receivers

We classify blind schemes into three categories according
to the knowledge that the receiver assumes.

3In very recent work, we have identified a constrained optimization
problem for differentially modulated systems whose solution is the linear
MMSE detector [81]. Thead hocalgorithm in [80], which can be shown
to provide an approximate solution to the preceding optimization problem,
is just one of several adaptive algorithms that can be derived based on the
preceding optimization problem.
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C1) The receiver knows the timing (or more generally,
the propagation channel) and spreading waveform
of the desired user.

C2) The receiver knows only the spreading waveform
of the desired user.

C3) The receiver does not know any information about
the desired user, other than the fact that the desired
signal is digitally modulated at a given symbol rate.

A receiver in category C1) was obtained by Honiget
al. in [17] and [18], where an adaptive implementation of
the linear MMSE receiver based on a constrained minimum
output energy (CMOE) criterion was presented. A related
approach appeared in [13] at the same time as [17], but the
approach in [13] has the drawback of requiring knowledge
of the spreading waveforms and propagation channels of
all users. The idea behind the receiver in [18] is similar
to minimum variance beamforming for adaptive antenna
arrays [24], where, assuming that the direction of arrival
for the desired signal is known, interference can be nulled
by adapting the array to minimize the output variance,
subject to the constraint of not putting a null in the
direction of the desired signal. Knowing the spreading
waveform and propagation channel of the desired user is
analogous to knowledge of the desired user’s array response
in beamforming. Further discussion of the CMOE-based
category C1) receiver in [18] and its extensions is provided
in Section III-B1.

Our primary focus in this paper is on category C2);
we consider interference suppression methods for timing
acquisition and demodulation of a desired user whose
spreading waveform is known. Category C3) would be
classified as blind equalization for a system with one user
(see [14], [25], [60], and [63]), and blind source separation
for a multiuser system (see [7]). Receivers in this category
are traditionally applied to narrow-band systems and array
processing. In theory, such receivers apply to CDMA as
well, as pointed out in Section IV. However, if additional
information is available regarding the spreading waveform
of the desired user, then it can be exploited to simplify
implementation as well as to obtain better performance.
Thus, the practical utility of category C3) receivers for
CDMA applications beyond noncooperative applications
such as eavesdropping is unclear.

Remark I.1: We focus in this paper on the linear MMSE
receiver, since blind methods can be devised for its com-
putation. It is worth noting, however, that a number of
training-based adaptive schemes based on criteria other than
the linear MMSE criterion have been considered in the
literature. As shown in [9] and [40], it is also possible
to obtain recursive implementations of the decorrelating
detector [30], [31]. However, the implementations in [9]
and [40] require (differing degrees of) knowledge of the
delays and spreading waveforms of all users. It is also worth
mentioning attempts to adapt (using training sequences)
neural networks for multiuser detection [1], [39]. However,
the neural network approach outperforms linear interference
suppression only if training sequences are available for all

users [1]. When a training sequence is available only for the
desired user, the convergence and steady-state performance
of a neural network is typically a little worse than that of a
linear MMSE detector adapted using the LMS algorithm
[39]. Thus, linear MMSE receivers implemented using
faster LS type algorithms would be expected to perform
better than a neural network implementation when training
sequences for interfering users are not available.

D. System Design Considerations

Most current CDMA systems (including IS-95, as well
as military DS communication systems) are based on long
spreading waveforms (i.e., the period of the spreading
waveform is much longer than the symbol interval). For
such systems, the structure of the MAI changes from
symbol to symbol. This is an advantage for systems based
on conventional reception, since it prevents systematic
recurrence of bad realizations of the MAI at the output
of the conventional receiver. However, it is a disadvantage
from the point of view of implementing multiuser detec-
tion, since the detector must be time-varying and explicit
knowledge of interference parameters is required. Thus, for
future high-capacity systems designed around the notion
of multiuser detection, short spreading waveforms would
appear to be the logical choice. Concerns regarding privacy
could be overcome with suitable encryption schemes, or
with periodic changes in the spreading codes used (e.g.,
on a packet-by-packet basis). Another concern is that,
even with interference suppression, a set of relative delays
and spreading waveforms that leads to poor performance
could persist for a long period of time for short spread-
ing waveforms. Mechanisms for overcoming this might
include power control,4 assignment of a new spreading
waveform or new delay, or injection of slow drifts in
the transmitter and receiver clocks to produce drifts in
the relative delays. In short, we believe that research
results in adaptive interference suppression have reached
the point that a complete system design based on it is
within reach (assuming application of sufficient engineering
effort and ingenuity), and that such a system would provide
large performance gains even over severely time-varying
channels, compared to existing DS-CDMA systems based
on long spreading waveforms and conventional reception.

For CDMA receivers equipped with an antenna array,
further interference suppression in the spatial domain is
possible. Due to lack of space, we do not discuss such
techniques in any detail. However, the following comments
may form a useful starting point for further exploration of
this topic. The array response corresponding to a given user,
which depends on its direction of arrival (DoA), can be
thought of as its spatial spreading waveform. In analogy
with our notion of short and long spreading sequences,
the spatial spreading waveforms are “short” in the sense
that variations in the array response for (a given multipath

4Since adaptive interference suppression schemes are near–far resistant,
allowing users whose performance is poorer to send at higher powers
should have only a minor effect on the performance of users who are
currently enjoying good performance.
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component of) a given user are typically slow relative to
the symbol rate. Since different users have different DoA’s
(and hence different array responses), adaptive interference
suppression in the spatial domain can be applied.5

Due to the slow variation in the array responses, adap-
tation in the spatial domain is possible for DS-CDMA
systems with either short or long spreading sequences. For
short spreading sequences, since both the array responses
and the spreading waveforms are time invariant (or slowly
varying) from symbol to symbol, blind or training-based
adaptive interference suppression is directly applicable to
the spatiotemporal received signal corresponding to the
outputs of the antenna array elements over a given time
interval. The spatiotemporal filters resulting from such
a direct extension have a number of taps equal to the
product of the number of array elements and the number
of temporal taps, which leads to increased complexity
and slower convergence speed. While the performance
advantage of this approach is significant [35], [57], the
problem of low-complexity rapid spatiotemporal adaptation
is far from solved.

For DS-CDMA systems with long-spreading sequences,
the fact that the array responses are time invariant (or slowly
varying) implies that adaptive interference suppression can
still be performed in the spatial domain, while using ei-
ther conventional reception or multiuser detection (using
explicit knowledge about the interference) to exploit the
discrimination between users provided by the DS spreading
in the time domain. From a practical point of view, spatial
adaptation coupled with conventional reception appears to
be the most feasible. A number of algorithms using the
latter approach have been proposed recently [29], [32],
[42], [76]. In particular, as shown in [32], knowledge of
the desired user’s spreading sequence can be used as a
“training sequence” for antenna array adaptation even when
the desired user’s symbol sequence is unknown..

As with temporal interference suppression, the goal of
most algorithms using antenna arrays for interference sup-
pression is computation of approximations to the linear
MMSE receiver.

E. Outline

Section II contains a description of the system model,
showing how a continuous-time asynchronous CDMA sys-
tem can be reduced to an equivalent discrete-time syn-
chronous CDMA model for the purpose of digital signal
processing. This is an important observation, thus we
illustrate it in some detail via several examples. Section III
describes blind interference suppression schemes which
use only the second-order statistics (SOS) of the received
signal. We focus mainly on category C2) receivers, since
these form the main theme of the paper. We describe the
geometry behind the algorithms instead of giving a detailed
description of the computations involved. The algorithms

5If the multipath components for the user have a significant angular
spread, then the array response for different multipath components may
be different. However, each such response would still vary slowly with
time, hence making adaptation feasible.

described here are minor extensions of algorithms that have
appeared recently in the literature [5], [33], [55], [64]. A
brief discussion of SOS-based category C3) receivers is
provided at the end of Section III. Section IV discusses the
possible applicability of higher order statistics (HOS) for
devising receivers in category C3) for CDMA applications.
This includes comments on the fundamental limits of HOS
methods as well as on the local minima of the popular
constant modulus algorithm (CMA) [15], [62] when applied
in the present context. Section V contains some concluding
remarks.

II. SYSTEM MODEL

We begin by illustrating key features of the system
model for DS-CDMA by means of examples, followed by
a succinct statement of the general system model used in
the remainder of the paper.

Notation: Boldface small letters denote column vectors,
while boldface capital letters denote matrices. Since we
work with complex baseband system models, vectors and
matrices with complex components must be considered.
The row vectors and are the transpose and the
complex conjugate transposed, respectively, of. The inner
product, or correlation, of two vectors
and of length is defined as

where denotes the complex conjugate of a scalar.
For real vectors, the preceding expression specializes to
the conventional inner product . Finally, the norm
of a vector is defined as .

A. Examples

We have already seen a DS user (labeled 1 in subsequent
discussion) in Fig. 1. The bit rate is denoted by ,
where the symbol interval in the example. Fig. 1(a)
shows the bit transitions: letting denote the bit (taking
values 1) sent in the time , we
have , , and . The DS
spreading waveform is shown in Fig. 1(b). Copies
of the spreading waveform shifted by the bit interval
are shown with dashed lines. The spreading waveform is
constructed by modulating a chip waveform using a
spreading code, or spreading sequence. In the example,
is a rectangular pulse of duration , where is the
chip interval, and the spreading code is given by

Fig. 1(c) shows the modulated baseband DS signal cor-
responding to the multiplication of the given bit sequence
and the spreading waveform. Clearly, the bandwidth of the
signal is of the order of , which is a factor
higher than the information rate. The factoris called the
processing gain ( in the example). Typically, it is
necessary for the processing gain to scale linearly with the
number of active users in a CDMA system.
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Fig. 2. The information signal, spreading sequence, and trans-
mitted waveform for an interfering user. The interference vectors
generated by the user depend on the observation interval used to
demodulate the desired user.

Consider first a receiver synchronized to user 1, which
obtains discrete time samples by integrating the received
signal chip by chip. This corresponds to sampling the output
of a filter matched to the chip pulse at the chip rate.
Our objective in this section is to model these discrete-time
samples in terms of the signal and interference parameters.
Such a model is the first step to designing interference
suppression schemes. Consider the discrete-time samples in
the interval ( ); these form a vector of length
five. From Fig. 1(c), the contribution to due to user 1 is

. While this corresponds to ,
in general, the contribution due to user 1 in is
given by . Thus, in order to implement matched filter
reception for user 1, the receiver would simply correlate
the vector with the spreading sequence and decide on
the bit based on the sign of the output.

Consider now the effect of an interfering user (user 2)
whose contribution to the received signal is offset from that
of user 1 by . Fig. 2 shows the bit sequence, spreading
waveform, and modulated signal due to user 2.

The spreading sequence for user 2 is
. From Fig. 2(c), the contribution

of user 2 to the received vector over is given by
. Letting denote the bit of user

2 that spans the interval ,
this contribution can be written as

where and are the bits sent by user
2 that overlap with the interval , and

The vector corresponds to the part of the spreading
waveform modulating bit that falls in the interval

. The vector corresponds to the part of the
spreading waveform modulating bit that falls in the
same interval. These can be expressed as left and right

shifts, respectively, of the spreading sequencefor user
2 as follows.

Let denote the acyclic right shift operator, and letde-
note the acyclic left shift operator, both operating on vectors
of length . Thus, for a vector we have

and .
We can now write (spreading sequence for
user 2, shifted left by three) and (spreading
sequence for user 2, shifted right by two).

Overall, the vector received over the interval can
be written as

(1)

where we introduce the notation to denote the vector
of samples obtained over the interval , and
where is the contribution due to noise in the interval.
The received vector is therefore modeled as the sum of
signal vectors modulated by bits, plus noise. The vector
is the desired vector modulated by the desired bit. The
vectors and are interference vectors modulated
by interfering bits.

1) Linear Receivers:We restrict attention to linear re-
ceivers in this paper. In the context of (1), this corresponds
to generation of a decision statistic by linear
correlation of the received vector. The statistic could be
used for either hard or soft decisions, with the former being
given by

sgn

for binary signaling and real valued signals. Writing out the
decision statistic using (1), we obtain that

(2)

For interference suppression, the contribution of the
interference vectors and the noise to the correlator output
[i.e., the last three terms in the right-hand side of (2)]
should be small compared to that of the desired vector [the
first term in the right-hand side of (2)]. This motivates the
definition of the signal-to-(noise+)interference ratio (SIR)
as the ratio of the energy of the signal contribution relative
to that of the noise plus interference [35]. In the preceding
example, the SIR is given by

SIR

where is the noise covariance matrix. While the ultimate
performance measure is the error probability, the SIR is
easier to compute and serves as a convenient measure for
comparing linear receivers. Moreover, in certain contexts,
the SIR has been found to be an excellent predictor of the
error probability [44].

One realization of a receiver in category C1) (see
Section I) is an adaptive correlator that maximizes the
SIR without requiring prior knowledge of the interference
vectors. To see why this could be possible, consider now the

2054 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 10, OCTOBER 1998



vector of samples corresponding to the interval .
Since the delays and spreading sequences remain the same,
the desired and interference vectors remain the same, but
the desired and interfering bits change. We therefore obtain

(3)

Comparing (1) and (3), we realize that the structure of
the received vectors corresponding to observation intervals
offset by is the same. In particular, a correlator that maxi-
mizes the SIR for also maximizes that for . Indeed, this
correlator maximizes the SIR in any observation interval so
that, by observing the sequence of received vectors ,
it is plausible that we could be able to learn the best choice
of correlator. One mechanism for achieving this is adaptive
implementation of the linear MMSE receiver mentioned
earlier.

The discussion in the previous paragraph may be made
precise as follows: the continuous-time received signal is
cyclostationary [47, pp. 75–76], in that its statistics do not
change under time shifts by the symbol interval. Hence,
received vectors obtained from observation intervals offset
by multiples of have identical statistics, i.e., the sequence

is stationary. This stationarity is what makes adaptive
reception feasible.

In the preceding example, the propagation channel for
the desired user is assumed to be an ideal channel which
only scales and delays the transmitted signal. The receiver
is assumed to know the delay of the desired user, so that
the received vector corresponds to theth bit interval
of the desired user. In addition, adaptive implementation of
the linear MMSE receiver requires a sequence of training
symbols for the desired user, followed by decision-
directed operation using the estimates . While the
latter does provide interference suppression without explicit
knowledge of interference parameters, recall that our objec-
tive is to also dispense with the need for prior information
regarding the desired signal. Furthermore, we are interested
in multipath channels, for which the received signal due
to a given user is a sum of several weighted and delayed
replicas of the transmitted signal.

The first step to dispensing with knowledge of the chan-
nel seen by the desired user is to enlarge the observation
interval used for each symbol decision. In particular, con-
sider samples in the observation interval [2, 8] shown in
Fig. 2. For each of the users shown in Figs. 1 and 2, one
complete bit falls in this interval. This property holds for
an observation interval of length regardless of delays,
and is key to devising blind detection schemes.6 As before,
we wish to use the received vector corresponding to this
interval to decide on the bit . Since bit transitions are
spaced by , this observation interval must be advanced
by in order to decide on the next bit of the
desired user. Generalizing the notation introduced earlier,
let denote the vector of samples corresponding to the

th observation interval. For the example at hand,
6For a multipath channel, one complete symbol falls into each obser-

vation interval if the length of the observation interval is at least2T plus
the channel delay spread.

denotes samples in the interval . Proceeding
as before, we can write each received vector as a sum
of vectors modulated by bits, plus noise. For example,
three bits of each user contribute to the zeroth observation
interval [ 2, 8]. Mimicking the notation in (1), we have a
received vector of length ten that can be written as

(4)

where now denotes a noise vector of length ten. From
Fig. 1, the desired vector (modulating the bit of
the desired user) is given by

(5)

The interfering vectors modulating the MAI bits (due to
user 2) can be read off from Fig. 2(b) as follows:

(6)

The interference vectors and modulating the ISI
bits (due to user 1) are similarly obtained from Fig. 1.

For the th observation interval, we obtain

(7)

Thus, the signal vectors are identical to those in (4), but
the indexes of the bits involved are incremented by, so
that the sequence is stationary, as before.

2) Effect of Chip Asynchronism:In the examples thus far,
we have restricted attention to a chip-synchronous system,
in that the chip intervals of the two users are aligned,
and the receiver knows the chip timing when generating
discrete time samples. In practice, users are chip- as well
as symbol-asynchronous, and the receiver does not know
the chip timing for (different multipath components of)
the desired usera priori. To model this effect, consider
the observation interval [1.5, 8.5] in which chip-spaced
samples are generated by integrating over [1.5, 0.5],
[ 0.5, 0.5], etc. Clearly, the form of the model (7) still
applies to the received vector thus obtained, but the signal
vectors change. In particular, it is easy to see from Fig. 1(b)
that the vector modulating the desired bit is now given
by

(8)

With a little thought, the preceding equation can be rewrit-
ten as

(9)

Thus, chip asynchronism leads to a signal vector, which is
a linear combination of shifts of the spreading sequence,
where the coefficients of the linear combination depend on
the fractional chip offset between the receiver’s integration
intervals and the chip timing for the corresponding user.
Expressions similar to (9) can be obtained for the other
signal vectors involved in (7).
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3) Sampling Faster Than the Chip Rate:Chip-spaced sam-
ples in a chip-asynchronous system can lead to significant
loss in SNR, as can be seen by comparing the energies (sum
of the squares of the components) of the desired vector
in (5) and (8). To roughly quantify the loss, note that (9)
can be generalized to obtain a desired vector of the form

(10)

when the delay of the desired bit from the left edge of the
observation interval is , where is an integer
and . Assuming that the two adjacent shifts of
the spreading sequence are roughly orthogonal, the relative
energy of the vector compared to , the energy in the
chip-synchronous case is approximately . When
minimized over , we obtain a relative energy of
(attained at ). Thus, for chip-rate sampling, there is a
worst-case SNR loss of approximately 3 dB, corresponding
to a half-chip offset between the chip timing for the received
signal due to the desired user, and the receiver sampling
times.

The SNR loss due to chip asynchronism can be alleviated
by obtaining more samples, e.g., for an observation interval
[ 1.5, 8.5], use overlapping integration intervals [1.5,

0.5], [ 1, 0], [ 0.5, 0.5], etc. This is equivalent to
sampling the chip matched filter at twice the chip rate.
An estimate of the SNR loss in this case can be obtained
by considering (10) again. Sampling at twice the chip
rate is equivalent to obtaining two interleaved chip-rate
subsequences. While the noise samples for the overall
sample sequence are correlated, the noise samples for each
subsequence are uncorrelated. Since the SNR (accounting
for the noise coloring) based on the entire sample sequence
is at least as large as that for any of the subsequences, we
consider the chip-rate subsequence that is closest to the chip
timing of the desired user to obtain a worst-case value for
the SNR loss. For this subsequence, we must have

or in (10), so that the minimum value of
the relative energy occurs at , and
is given by 5/8. This corresponds to a 1 dB loss relative to a
chip-synchronous system. In general, for a rectangular chip
waveform, sampling at for an asynchronous system
would lead to an SNR relative to a chip-synchronous system
of dB, a loss that quickly
becomes negligible as increases.

For the same observation interval, sampling at rate
results in a received vector of twice the length. A linear
receiver operating on this vector would therefore also
need to have twice as many taps, which can slow down the
convergence of adaptive implementations. One approach
to this problem is to consider separately each of the
interleaved streams of chip-rate samples corresponding to
sampling at rate , to apply algorithms designed for
chip rate samples to each stream, and to then combine
the outputs of the algorithms in some manner. This
is the approach implicitly adopted in the presentation of
the algorithms in Section III, which assumes chip-rate
samples. Note, however, that simple modifications of these
algorithms could also be applied directly to the high-rate

stream, since the required stationarity of the still
holds.

In our example, sampling at yields two interleaved
versions of the model (7): the desired signal vector is given
by (5) in one version, and by (8) in the other. If these two
chip-rate models are interleaved to form a single stream at
rate , we still obtain a model of the form (7) when
using an observation interval of length , except that the
received vector is now of length 20 rather than ten.

In Section II-B, we note that the modeling done via
examples in this subsection [in particular, (7)] extends to
a general setting. This sets the stage for discussion of
interference suppression schemes in Section III.

B. General Model

The system model from the point of view of useris de-
picted in Fig. 3. Throughout this paper, we will work with
the low-pass equivalent, or complex baseband, represen-
tation of passband signals. The symbol sequence changes
at rate and is multiplied by the spreading sequence
which changes ( times faster) at rate , resulting in
a sequence at rate being input to a wideband chip
filter with impulse response . This input sequence
may be complex, since the elements of the symbol or
chip sequences may be chosen from a two-dimensional
constellation. For example, in the IS-95 downlink, the
spreading sequence is based on a complex quadrature phase
shift keyed (QPSK) constellation, but the symbol sequence
is from a real binary PSK (BPSK) constellation. Letting

denote the frequency response of the chip filter ,
the chip filter is typically chosen such that , which is
the frequency response of the cascade of the chip filter and
chip matched filter, is a Nyquist pulse at rate . Provided
chip timing is available, this avoids interchip interference
for a given user. The rectangular in Section II-A is
an example of such a pulse, but in practice one might use
pulses with better spectral properties, e.g., is chosen
to be the square root of a raised cosine in the IS-95 system.

Let denote the spreading waveform for user.
Let denote the effective spreading waveform for the
th user after going through the channel (which may be

different for different users). The received signal due to the
user is then given by

where is the symbol rate and is the th symbol
transmitted by the th user. The net received signal is given
by the sum of the received signals due toactive users,
plus AWGN

(11)

As shown in Fig. 3, the received signal is converted to
discrete time after chip matched filtering and sampling. As
in the examples, we consider use of a finite observation
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Fig. 3. System model from the viewpoint of userk.

interval for each symbol decision. Letting denote
the vector of samples in the th observation interval,
as illustrated in Section II-A, we may write as the
sum of signal vectors modulated by symbols, together
with Gaussian noise. The signal vectors are simply the
effective spreading waveforms after filtering,
sampling, and windowing in a given observation interval.
The number of such vectors within a given observation
interval depends on the length of the interval, the duration
of the chip waveform, and the delay spread of the channel.
In particular, we can work with the following generic
equivalent synchronous model.

1) Equivalent Synchronous Model:The received vector
in the th observation interval is an-dimensional complex
vector given by

(12)

where is the desired symbol for theth observation
interval and is the desired signal vector. The symbols

are interfering symbols, with corre-
sponding interference vectors . The vector

is discrete-time Gaussian noise, which is colored if the
sample spacing is closer than the chip interval.

Remark II.1: The notation in (12) is deliberately chosen
to be different from that in the examples in Section II-A in
order to emphasize the generic nature of the model. For the
example in Section II-A corresponding to an observation
interval of length , a comparison of (7) and (12) yields
that the desired bit , and that the interfering
bits and consist of the ISI bits
and from the desired user 1 and the MAI bits

, , and from the interfering user 2, so
that is the number of interference vectors. For chip
rate samples, the dimension . On the other hand,
for an observation interval of length synchronized to the
desired user, (no ISI, and two MAI bits due to user
2) and .

Remark II.2: Different symbols of the same user, as well
as symbols from different users, are assumed to be uncorre-
lated, which implies uncorrelatedness for the symbols ,

, , in the equivalent synchronous model. Thus,

for . This property is crucial for
distinguishing the desired vector from the interfering users.

Remark II.3: The model (12) is applicable to any linearly
modulated system in which the symbol waveform and the
channel are time invariant. For instance, it also applies for
modeling intersymbol interference in narrow-band systems,
and therefore provides a simple framework for developing
a geometric understanding of blind equalization, as dis-
cussed in Section IV. It also brings out the close analogy
between ISI and MAI: each phenomenon simply contributes
interference vectors, modulated by interfering symbols, to
the received vector. The only difference is that ISI scales
with the desired user’s power, and therefore cannot cause
a near–far problem. Finally, note that the model applies to
either finite or infinite observation intervals (the number of
interference vectors and the dimension of the received
vectors are infinite in the latter case).

Remark II.4: The adaptive interference suppression algo-
rithms considered here do not require explicit knowledge
of the interference vectors appearing in (12). It is not
necessary, therefore, to keep track of the spreading se-
quences and propagation channels for interfering users.
The only relevant property of the model is that the signal
vectors are the same for (or slowly varying over)
different observation intervals, due to our assumption of
short spreading sequences and time invariant (or slowly
varying) channels.

Remark II.5: Most receiver algorithms in category C3
(i.e., algorithms which do not utilize any information re-
garding the desired user) rely only on the time invariance of
the and the independence of the for different

and .7 However, for receivers in category C2) (which
do exploit information regarding the spreading sequence
of the desired user), we require, in addition, a model for
the desired signal vector in terms of the spreading
sequence and the unknown channel. If this information can
be economically parametrized, blind adaptive interference
suppression can be achieved by fitting the parametric model
to the observed received vectors so as to obtain a

7There are blind equalizers in category C3) that also exploit the memory
in the sequencefrng [59], but we do not consider these here, since their
generalization to multiuser applications appears to be difficult.
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Fig. 4. Net chip response�(t) due to a rectangular chip wave-
form.

receiver that preserves the energy due to the desired user
while suppressing MAI.

2) Model for the Desired Signal Vector:Consider the re-
sponse to a single chip (i.e., a given element of the
spreading sequence for the desired user) at the output of the
chip matched filter: given an ideal channel, this response
is given by (a shift of) . For the
rectangular chip waveform considered in Section II-A,
is a triangular pulse of width ( ), as shown in
Fig. 4.

The discrete-time response to a single chip depends on
the relation between the chip timing of the user and the
receiver sampling clock. For chip rate sampling, the overall
response to a single chip for the sampling times shown
in Fig. 4 is . This implies that
the discrete-time response to the spreading sequence is a
linear combination of two adjacent shifts of the spreading
sequence weighted by and , respectively. Restriction to
an observation interval simply corresponds to windowing
this response. Thus, for chip-rate sampling and an ideal
channel, each signal vector in (12) corresponds to (a
possibly truncated version of) a linear combination of two
adjacent shifts of the spreading sequence for the associated
user.

When the chip response has duration larger than
(e.g., for band-limited chip waveforms or due to channel
distortions), the discrete-time chip response after sampling
may have more than two nonzero elements. In this case, the
response to the spreading sequence is a linear combination
of several shifted versions of it. Define the desired symbol

in the th observation interval to be the symbol of
the desired user with the largest energy in that interval. We
may write the desired signal vector as

(13)

where is the delay of the signal modulating the de-
sired symbol with respect to the left edge of the observation
interval, and and the channel coefficients depend
on the channel and the chip waveform. The receiver might
have an estimate of , but and are assumed to be
unknown by receivers in category C2). In many applications
of interest, the channel delay spread is small compared to
the symbol interval, so that .

3) Example: For a rectangular chip waveform, a single
path channel, a observation interval, and chip rate
sampling (13) specializes to

(14)

where ( an integer, ) is the
(unknown) delay of the desired symbol from the left edge
of the observation interval, and is an unknown complex
gain. This will be the example used in our numerical results.

III. B LIND RECEPTION BASED ON

SECOND-ORDER STATISTICS

Assume that the observation interval is large enough such
that most of the energy from at least one symbol of the
desired user is contained in it. This is achieved, for instance,
by choosing an observation interval of length, plus the
anticipated channel delay spread. Thus, the delay spread due
to the channel causes little additional complexity in terms
of number of correlator taps if it is small compared to the
symbol interval . We consider the equivalent synchronous
model (12), modeling the desired signal vector as in (13),
where and the coefficients are unknown, and
where the choice of depends on the anticipated delay
spread of the channel. Since blind reception cannot resolve
phase ambiguity, it is assumed that the desired user’s data
is differentially encoded.

Under the model (13) for the desired vector, a conven-
tional differentially coherent RAKE receiver (see [46] for
the original formulation of the RAKE receiver) is given as
follows. For a received vector in observation interval, let

(15)

denote the output of a correlator matched to the contribution
of the th shift of the spreading sequence. The output of the
correlator matched to the desired signal vectorgiven by
(13) is therefore . The decision
statistic for differential encoding is given by .
Assuming that the shifts involved in (13) are approximately
orthogonal, we may write

(16)

Our objective in this section is to estimate and
so as to be able to apply (16), while replacing the matched
filter in (15) by an interference suppressing correlator.

In Section III-A, we discuss preliminary concepts in
linear interference suppression. A blind receiver algorithm
based on the CMOE version of the MMSE receiver is
given in Section III-B. Another algorithm based on sub-
space decompositions is given in Section III-C. Typical
numerical results for a particular CMOE-based algorithm
are presented in Section III-D.

A. Linear Interference Suppression

For the equivalent synchronous model (12), let de-
note the subspace spanned by the interference vectors
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Fig. 5. Geometry underlying zero-forcing receiver.

. Let denote the projection of
orthogonal to the interference subspace, as illustrated in
Fig. 5.

1) Decorrelating (Zero-Forcing) Detector:If the projec-
tion is nonzero, then a linear correlator chosen
along this direction forces the contribution of the interfer-
ence to zero while preserving some of the energy of the
desired vector. Thus, such a receiver can be written as

(17)

where is an arbitrary scale factor. Application of this
concept to ISI suppression results in the well-known zero-
forcing equalizer [47], while its application to MAI sup-
pression results in the decorrelating detector studied by
Lupas and Verdu [30], [31]. The adjectives decorrelating
and zero-forcing will be used interchangeably in the sequel.

2) Near–Far Resistance:Choosing the correlator along
the orthogonal projection rather than along the
desired vector implies some loss of signal energy relative
to the noise energy at the output of the detector. This in
turn implies, for Gaussian noise, that the exponent of decay
of error probability with is reduced by the factor
by which the signal energy is reduced. For any multiuser
detector, such a factor is called its asymptotic efficiency
[69]. The worst-case value of the asymptotic efficiency over
all possible interference amplitudes is called the near–far
resistance [31] of the detector. Since the decorrelating
detector projects the received vector orthogonal to the
interference subspace, its performance is independent of
the interference amplitudes. Thus, the near–far resistance

equals its asymptotic efficiency and has a geometric
interpretation given by the following expression:

(18)

The near–far resistance is therefore the energy of the com-
ponent of the desired vector orthogonal to the interference
subspace relative to the energy of the desired vector.

Alternatively, by choosing the scale factorin (17) so
that the size of the desired vector’s contribution to the
detector output is fixed, may be thought of as the noise
enhancement factor. This is the commonly used interpre-
tation in equalization applications, where the interference
vectors are due only to ISI.

Remark III.1—Linear Independence Condition:The zero-
forcing detector exists if and only if the orthogonal projec-
tion is nonzero, which in turn is true if and only if

the desired signal vector is linearly independent of the
interference vectors .

3) Linear MMSE Detector:The MMSE detector mini-
mizes the MSE between the decision statistic and the
desired symbol, given by in the
context of the model (12). The MMSE receiver
is closely related to the zero-forcing receiver, and satisfies
the following key properties [35], as described in Remarks
III.2–III.4.

Remark III.2—Maximization of SIR:The MMSE receiver
maximizes the output SIR and is superior to the zero-forcing
receiver in that respect. Moreover, the MMSE solution is
well defined even when the zero-forcing solution does not
exist (i.e., when the linear independence condition is not
satisfied).

Remark III.3—Performance at High SNR:As the noise
level goes to zero, the MMSE receiver tends to the zero-
forcing receiver (if the latter exists). This means that the
asymptotic efficiency and near–far resistance of the MMSE
and zero-forcing receivers are the same.

Remark III.4—Performance in Near–Far Regime [35], [44]:
Even for nonzero noise levels, the MMSE receiver forces to
zero the contribution of any interference vector whose
energy is large compared to that of the desired vector. That
is, as . Thus,
if all interference vectors are strong, the MMSE receiver
again degenerates to the zero-forcing solution. Otherwise it
forces interference contributions to zero to different extents
to optimize the tradeoff between noise enhancement and
interference suppression.

3) Computation of the MMSE Solution:The MSE is a
quadratic function of , and the minimizing solution is
readily obtained as [16, Ch. 5]

(19)

where is the statistical correlation matrix
for the received vector and is the cor-
relation of the desired symbol with the received vector.8

Assuming (as in Remark II.2) that the symbols are
uncorrelated, we have .

4) Training-Based Implementation:For an adaptive im-
plementation, the statistical averagecan be replaced by
an empirical average , for example

(20)

(the factor is unnecessary, but is inserted to make
the averaging interpretation transparent). Furthermore, if a
training sequence is available, then we may replace
the statistical average by an empirical average , for
example

(21)

8Note that our use of the notationR differs from that in much of
the literature on multiuser detection (e.g., see [70] and [71]), whereinR

denotes the matrix of cross correlations between the spreading waveforms
of the different users.
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Plugging (20) and (21) into (19) comprises the LS im-
plementation of the MMSE receiver, and denotes
the number of symbol-rate iterations. For time-varying
channels, it may be more appropriate to use an RLS
implementation [16] in which the arithmetic averages in
(20) and (21) are replaced by exponential averages that
gradually forget the past. A lower complexity adaptive
mechanism is the LMS algorithm resulting from stochastic
gradient descent based on the MSE [16], but we have found
its convergence to be too slow for wireless applications,
especially in near–far regimes. For further results on LS
and RLS implementations in the context of CDMA, see
[21] and [45].

Remark III.5—Toward a Blind Adaptive Implementation:
The estimate used in the preceding LS implementation
does not require any knowledge regarding either the desired
or interfering users. The only function of the training
sequence is to provide the estimate (21) of the desired signal
vector. Thus, a blind adaptive implementation of the MMSE
receiver only requires that we can obtain an estimate of the
desired signal vector in some other fashion. This leads to
the blind receiver algorithms in the next two subsections.

B. CMOE-Based Blind Receiver

In Section III-B1, we present background material re-
garding the category C1) receiver in [18], which assumes
that the channel seen by the desired user is known to the
receiver. In Section III-B2 this is extended, as in [33], to
a category C2) receiver, which estimates the propagation
channel of the desired user.

1) Category C1) CMOE Receiver:From (13) or (14) it is
clear that if the receiver knows the spreading waveform and
has an estimate of the propagation channel of the desired
user, it can obtain an estimate (henceforth termed the
nominal signal vector) of the desired signal vector. This
provides a method for computing an estimate of the MMSE
correlator without a training sequence as follows:

(22)

where is computed as in (20).
Remark III.6: Since any scalar multiple of the MMSE

correlator leads to the same SIR, the nominal vector
can be an arbitrary scalar multiple of the true vector.
The resulting scaling of the correlator output (possibly
by a complex number) can be handled using differential
encoding of the desired symbol sequence. Thus, for a single
path channel, (14) indicates that it is only necessary to know
the timing and spreading waveform of the desired user to
obtain the nominal vector.

The category C1) receiver (22) forms the starting point
for obtaining receivers in category C2) that estimate the
propagation channel. In order to see this, it is necessary to
view (22) as the solution to an optimization problem, as
described in the following.

Any linear receiver that does not null out the desired
vector satisfies . Thus, if an estimate of
the direction of the desired signal vector were available, a

Fig. 6. Geometry of interference suppression using CMOE de-
tector.

scaled version of this receiver could be chosen to satisfy

(23)

This constraint can be interpreted geometrically as fol-
lows. Any satisfying (23) can be decomposed into two
orthogonal components

orthogonal to (24)

where we assume, for simplicity, that is normalized to
have unit norm. Clearly, if the nominal is proportional to
the desired vector , the contribution of the desired vector
to the receiver output is not affected by the choice of.
On the other hand, Fig. 6 shows that, provided has a
nonzero projection orthogonal to the interference subspace

, it is possible to choose so as to synthesize a zero-
forcing receiver , which nulls out the contribution of the
interference vectors.

The CMOE receiver is chosen to minimize the average
output energy , subject to the constraint (23).
Since (23), or equivalently (24), freezes the contribution
of the desired vector to the output, the CMOE receiver can
only suppress the sum of the noise and interference energies
at the output. This is precisely the quantity being minimized
by the MMSE receiver, except that the latter also optimizes
the scaling of the contribution of the desired vector to the
output so as to track the desired symbol , rather than
any arbitrary scalar multiple of . This implies that the
CMOE receiver is proportional to the MMSE receiver (see
[18] for a formal proof).

Using the similarity of the triangles oab and obc, the
length of the correlator in Fig. 6 can be calculated as

(the length of the nominal vector
). Thus, the smaller the projection of the nominal vector

orthogonal to the interference subspace the more the noise
enhancement (which is proportional to ) associated
with suppressing the interference.

2) Effect of Mismatch:In order to extend the CMOE
receiver to settings in which the propagation channel of
the desired user, and hence the desired signal vector, is
unknown, it is first necessary to address the issue of
mismatch, i.e., when the receiver does not have exact
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knowledge of the direction of the desired signal vector.
We provide a brief discussion of this issue here, referring
the reader to [18] and [33] for details. Let denote the
one-dimensional subspace spanned by. Replacing by

in Fig. 6, we see that suppression of the desired signal
vector is possible if the orthogonal projection is
nonzero (i.e., if the nominal is not exactly proportional
to ). However, if the mismatch (and hence the length
of the orthogonal projection) is small, then reasoning as
before, the length of required to achieve this is large,
which leads to more noise enhancement, which in turn
leads to increased output energy. Thus, the MOE criterion
in itself can prevent excessive signal suppression by virtue
of the tradeoff between signal suppression and noise en-
hancement, provided that the noise levels are moderate. If
the noise levels are low, the amount of signal suppression
due to mismatch may be excessive unless it is prevented by
some explicit constraint. One possibility, explored in [18]
and [33], is to put a constraint on : is allowed
to be large enough to permit the interference suppression
depicted in Fig. 6, but not the analogous suppression of the
desired signal. Mathematically, incorporating the constraint
on can be interpreted as adding fictitious noise to the
system, since the constraint results inbeing replaced by

, where is the Lagrange multiplier corresponding
to the norm constraint. See [18] for details of this approach
to dealing with mismatch.

When the mismatch can be modeled accurately, the signal
degradation due to mismatch can be completely eliminated
without the need for a norm constraint. Consider the
expression (13) for , and suppose that the receiver has a
coarse timing estimate, so that is known. If the receiver
knows the multipath spread but does not know the
channel coefficients , then it only knows that lies
in the subspace spanned by . In
general, suppose that the desired signal vector is not known
perfectly but is known to lie in a subspace of dimension
possibly larger than one. Any nominal chosen in this
subspace is vulnerable to mismatch. However, the CMOE
algorithm can be modified to get around this problem by
constraining the correlator to be of the form (24), where

is chosen to be orthogonal to the entire subspace.
Thus, if the desired vector is indeed in this subspace, it
is unaffected by the choice of. This idea, which was
proposed independently by several authors, including [22],
[64], and others, is depicted in Fig. 7. Note that constraining

in this fashion reduces the interference suppression
capability of the detector. However, if the dimension of

is small, this reduction is expected to be small. Finally,
note that mismatch occurs again if the knowledge of the
subspace in which the desired vector lies is imperfect
(e.g., due to timing errors or larger than anticipated delay
spreads), so that it may be necessary to impose a norm
constraint in addition to subspace constraints.

Remark III.7—Extending CMOE to Obtain Category C2)
Receivers:Now that we can handle mismatch, the basic
idea behind estimating the propagation channel of the
desired user can be stated. Run the CMOE algorithm

Fig. 7. Geometry of additional constraints in the CMOE formu-
lation for handling mismatch. Ideally,Su is chosen large enough
so as to contain both the nominal and the desired vector.

(modified using the methods mentioned above to deal with a
controlled amount of mismatch) under different hypotheses
regarding the propagation channel of the desired user.
The hypotheses that are grossly incorrect lead to large
mismatch, which results in suppression of both the desired
and interference vectors without much noise enhancement,
thus giving small values of MOE. The good hypotheses,
on the other hand, have less mismatch with the true signal
vector, and can be identified because of their larger MOE
due to the desired signal energy at the output and the noise
enhancement due to suppression of the desired signal. The
CMOE solutions under the good hypotheses are then used
to obtain an interference suppressing receiver. One possible
algorithm based on this idea is given next.

3) Category C2) CMOE Receiver:While there are many
possible variations of CMOE based reception, we give one
possible algorithm that is based on the assumption that the
multipath delay spread of the channel is small compared
to the symbol interval. The algorithm is new, being a
generalization and improvement of the algorithm in [33],
in the sense that it uses subspace constraints to handle
mismatch more effectively. Note that more complicated
algorithms might be needed for channels with significant
delay spread.

The uncertainty regarding the propagation channel is
expressed in terms of the following hypotheses.

Hypothesis
m

: The desired vector has a significant
component along , the th shift of the spreading
sequence. Under this hypothesis, the desired vectorlies
in the subspace spanned by the shifts
through of the spreading sequence, since
the maximum multipath spread is assumed to be.

An algorithm for identifying the significant multipath
components consists of solving a binary hypothesis testing
problem for each , namely, testing hypothesis against
the hypothesis that the th shift is not present. The
algorithm can be decomposed into the following steps,
where we omit the detailed computations involved.

Step 1) Computation of CMOE Solution Under Hypothesis

m
: Under the hypothesis , set the nominal

, consider a correlator of the form

orthogonal to (25)
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and minimize the output energy subject to (25). Denote
the correlator thus obtained by and the corresponding
MOE by .

Assuming that the CMOE solution under suppresses
the interference and does not suppress the desired signal if
the hypothesis is true, the MOE gives a coarse estimate
of , where is the unknown channel coefficient.
If the hypothesis is not true, i.e., , then the
MOE will be small, and again gives a rough estimate of

. Furthermore, the CMOE solution under
is simply a correlator matched to theth shift, plus an
interference suppressing orthogonal component. Thus,
one simple method of combining the CMOE solutions under
the different hypotheses is to mimic (15) and (16), with
replacing , and replacing .

Step 2) Combining the CMOE Solutions:The decision
statistic for the th symbol is given by

(26)

Remark III.8—Improving the Combining Rule:A better
decision rule might be to discard hypotheses corresponding
to small values of MOE rather than rely on the MOE
weighting to deemphasize them. Other heuristics include
considering only hypotheses within the maximum delay
spread of the hypothesis with the highest MOE, or to
consider only a cluster of contiguous hypotheses in the
summation (26), with the cluster chosen to maximize the
net estimated energy, say .

Remark III.9—Relation to Previous Work:The solution to
the original CMOE problem with constraint (24) and norm
constraint is given by , where

is adjusted so as to satisfy the norm constraint [18].
The idea behind the category C2) receiver in [33] is to use a
fixed small value of to compute a CMOE-based receiver
under each hypothesis as follows: .
The reasoning is as follows: the small value ofprovides
robustness against mismatch for the good hypotheses, but is
not enough to prevent mismatch under the bad hypotheses.
For heuristics on the choice of, see [33]. This approach
has the disadvantages that, despite the norm constraint,
some desired signal degradation still occurs under the good
hypotheses, and that the choice ofrelies on heuristics.
Note that heuristics are not needed for the results in this
paper, since we assume that the mismatch can be modeled
accurately and handled using subspace constraints as in
(25), and can therefore set .

Remark III.10—Computations Required in the Algorithm:
In either an LS or RLS formulation, it is necessary to
compute [or if a norm constraint is being
imposed], where is the empirical correlation matrix. The
correlators solving the CMOE problem with constraints
(25) under the hypotheses can be shown to be linear
combinations of the . For obtaining the
coefficients of the linear combinations, we need computa-
tion of the correlations and for all
pairs .

Remark III.11—Improved Algorithm for a Single Path Chan-
nel: For a single path channel, the form of the desired
signal vector is given by (14). Assuming an observation
interval of , can range from 0 to . In this case, it
is possible to obtain better performance using a refinement
of the preceding algorithm. Let denote the composite
hypothesis corresponding to in (14). Under ,
the desired vector lies in the subspace spanned by two
consecutive shifts and of the spreading
sequence. Running Step 1) of the previous algorithm for

equal to a normalized version of (14), we can obtain
a closed form expression for the CMOE as a function of

and . Maximization over for each , and
then maximization over , gives a delay estimate .
The corresponding CMOE solution is then given by the
solution to (25) and can be used for differential detection
as before.

Remark III.12—Faster than Chip Rate Sampling:In this
case, in order to avoid slowing down the adaptation (i.e.,
estimation and tracking of ), parallel versions of the algo-
rithm could be run on chip rate subsamples, as mentioned
in Section II, and the MOE solutions for all hypotheses for
all versions could be combined.

Remark III.13—Ambiguity in Symbol Timing:Depending
on the multipath spread, some of the correlators in (26)
may correspond to earlier or later symbols of the desired
user. This ambiguity can be resolved by correlating (over
a number of observation intervals) the noncoherent outputs

of a reference correlator against
shifts of other outputs , where
the range of considered depends on the
anticipated channel delay spread as a multiple of the symbol
interval. Choose for eachthe value of that provides a
peak and use that value in the summation (26).

C. Subspace-Based Blind Receiver

We begin with background on signal and noise subspaces,
followed by an algorithm which is an extension of the
timing acquisition algorithms presented in [5] and [55].
More recently, subspace-based representations of multiuser
detectors have been considered in [73].

D. Basic Subspace Notions

For the equivalent synchronous model (12), the
correlation matrix for this model (recall that denotes
the dimension of the received vector in this generic
model) is given by

(27)

assuming that the noise is white with variance per
component. Consider an eigendecomposition ofinto
orthonormal eigenvectors with corresponding
eigenvalues . The eigenvalue can be inter-
preted as the expected (desired and interference) signal
plus noise energy in the direction . Thus, the minimum
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value of each is since the latter is the noise energy
is any direction. The signal vectors span a
signal subspace of dimension . Since the signal
vectors contribute energy along the eigenvectors spanning
the signal subspace, the associated eigenvalues are larger
than . On the other hand, the eigenvectors spanning the

dimensional noise subspace all have eigenvalues.
The preceding arguments imply that an eigendecomposi-

tion of an estimate of the correlation matrix can be used
to estimate the signal and noise subspaces. If the number
of signal vectors is known, and if the vectors may
be assumed to be linearly independent,9 then we would set

. If is not knowna priori, then it can be
estimated using information-theoretic criteria [75]. In any
case, the eigenvectors associated with the
largest eigenvalues are assumed to span the signal subspace,
and the remaining eigenvectors provide an estimate of the
noise subspace. In practice, eigendecomposition may be
replaced by subspace tracking algorithms such as [6], [54],
and [78] for time-varying channels.

Remark III.14—Using Subspace Methods to Obtain Cate-
gory C2) Receivers:Having estimated the signal and noise
subspaces, the problem reduces to one of finding good
fits among different hypothesized propagation channels (or
equivalently, among hypothesized desired signal vectors)
with the estimated signal subspace. One example is the
MUSIC algorithm, which minimizes the projection of the
hypothesized signal vectors onto the estimated noise sub-
space (or equivalently, maximizes the projection onto the
estimated signal subspace). A version of this algorithm is
described next.

Remark III.15—Subspace-Based Computation of MMSE Re-
ceiver: The spectral decomposition of gives

and

Applying the formula (19), and noting that the desired sig-
nal vector is orthogonal to the eigenvectors
spanning the noise subspace, we obtain that [73]

(28)

Only the signal subspace eigenvectors appear on the ex-
treme right-hand side of (28), which gives explicit expres-
sion to the intuition that any correlator that has a component
in the noise subspace is suboptimal, since it only adds
noise to the output. The formula is particularly useful in
the presence of mismatch, since restriction to the signal
subspace makes suppression of the desired signal more
difficult. See [73] for details.

E. Category C2) Subspace-Based Receiver

The receiver is based on the MUSIC algorithm [50],
originally invented for array processing applications. Ap-

9Linear independence might be a reasonable assumption for CDMA
systems in which the signal vectors are shifts of spreading sequences with
good auto- and cross correlation properties.

plication of MUSIC for CDMA timing acquisition was
independently proposed by Bensley and Aazhang [5], and
by Stromet al. [55]. The algorithms in [5] and [55] consider
an observation interval of length, so that one complete
symbol of the desired user is not guaranteed to fall in
the observation interval. While this is enough to provide a
timing estimate, direct computation of a demodulator is not
possible in the framework of [5] and [55]. The algorithm
presented here is a simple generalization, applying essen-
tially the same algorithm to an observation interval of length

. This yields a receiver in category C2), i.e., provides a
demodulator in addition to a timing estimate. As in [5],
[55], we consider only the case of a single path channel,
which corresponds to the model (14) for the desired signal
vector. However, we comment on possible extensions for
multipath channels in Remark III.18.

The algorithm is described in the following steps.
Step 1) Estimation of Signal and Noise Subspaces:

Compute estimates of the signal and noise subspaces using
eigendecomposition of , as indicated in Section III-D.
This yields a matrix whose columns are the orthonormal
eigenvectors spanning the estimated signal subspace, and
a corresponding matrix of orthonormal eigenvectors
spanning the estimated noise subspace.

Step 2) Minimization of Projection onto Noise Subspace:
For each nominal parameterized by as in (14) and
normalized to unit energy, the energy of the projection onto
the noise subspace is given by [5], [55]

(29)

Minimize over for each , and then
minimize over . This gives the timing estimate .

Step 3) Computation of CMOE Solution:Compute the

CMOE solution (25) for with replaced by .
This can now be used for differential detection.

Alternative to Step 3) Signal Subspace Receiver:Once a
subspace decomposition has been obtained, attention may
be restricted to the signal subspace when computing a
correlator based on the timing estimate obtained in Step
2. In particular, we may use the formula (28), with

replaced by , and , replaced by their estimates.
Remark III.16—Effect of Errors in Subspace Estimation:If

the dimension of the signal subspace is underestimated, the
true desired signal vector may have a significant component
in the estimated noise subspace, thereby leading to possible
errors in timing estimation due to a “miss” of the correct
timing values. On the other hand, overestimation of the sig-
nal subspace dimension means that nominals corresponding
to incorrect timing have a larger component in the signal
subspace, thereby making “false alarms” more likely. The
effect of estimation errors on subspace based algorithms for
CDMA therefore deserves detailed investigation.

Remark III.17—Relation of Subspace Methods to CMOE:
The CMOE and subspace methods are closely related. For
a nominal , application of the spectral decomposition of
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yields that the MOE with constraint (24) is given by

MOE

where is the component of the nominal in the noise
subspace . In a high SNR regime, the signal subspace
eigenvalues are much larger than
the noise variance , so that 1/MOE is dominated by

. Choosing the largest MOE, or smallest 1/MOE,
among timing hypotheses corresponding to different nomi-
nals is therefore roughly equivalent to a subspace algorithm
that chooses the nominal(s) with the smallest projection in
the noise subspace, where this equivalence becomes exact
as .

Remark III.18—Extensions to Multipath Channels:For
large delay spreads (of the order of a symbol duration),
one approach is to find the shifts of the desired
spreading sequence with small projections onto the noise
subspace, and to then apply a suitable CMOE formulation
based on the assumption that these good shifts span the
space in which the true desired signal vectorlies. This
approach has not been explored in detail in the literature.
For small delay spreads, it is possible to hypothesize desired
signal vectors of the form (13), where is small, and
to try to estimate the channel coefficients using
an LS fit within the signal subspace. This approach has
been explored in [28] for synchronous CDMA and in [61]
for asynchronous CDMA (the latter employs subspace
decomposition for the received signal corresponding to an
observation interval several times larger than the symbol
interval, unlike the earlier work on subspace based timing
acquisition in [5], [55]).

F. Numerical Results

Extensive numerical comparisons of different receiver
algorithms in realistic settings are beyond the scope of
this paper, since our primary purpose here is to explain
the conceptual framework for obtaining blind algorithms.
Hence, we only give a few numerical results to indicate
the potential of the methods discussed here. We consider a
category C2) blind CMOE receiver optimized, as indicated
in Remark III.10, for an asynchronous CDMA system with
a single path channel for each user. The model is similar to
that in [33], with processing gain . The algorithm
in [33] uses a norm constraint to deal with mismatch, so
that the CMOE criterion concentrates on suppressing the
desired signal (the extent of signal degradation depends on
the amount of mismatch and on the strictness of the norm
constraint) when the interference is weak, since this strategy
minimizes the output energy. For strong interference, on the
other hand, suppressing interference is a more effective way
of reducing the output energy. This leads to the algorithm in
[33] actually performing worse for weak interference. This

problem is eliminated in the new algorithm, since it explic-
itly models the mismatch, and uses subspace constraints
of the form (25) to eliminate it.10 Since the performance of
the new algorithm improves as the interference gets weaker
(as it should), we consider only the following two systems:
a system with equal power users (perfect power
control), and a system with users, with the five
interfering users each 20 dB stronger than the desired user
(severe near–far problem).

A fixed, but random, choice of spreading sequences is
used in each case; results for other choices are qualitatively
similar. The observation interval is of length . For the
th user, denote the delay of this symbol from the left

edge of the observation interval by. The delays are
chosen randomly in and then kept fixed. Chip-spaced
sampling is used, so that the received vectors, and hence
the CMOE correlator, are of length . Two or more
parallel chip-spaced versions of the algorithms could be run
to handle the signal loss due to chip asynchronism, but we
do not consider that option here.

An evaluation of the steady-state performance of the
algorithm can be obtained by running it using the statistical
correlation matrix . For both systems considered, this
yields timing estimates within of the true values.
The SIR attained by demodulators based on these steady-
state estimates is within a dB of that of the ideal MMSE
receiver, where the loss in SIR occurs due to the subspace
constraints imposed to deal with mismatch.

Next, we consider an LS adaptive implementation based
on an estimate of the correlation matrix as in (20). We
plot in Figs. 8 and 9 the SIR, averaged over 100 runs,
achieved by the CMOE receiver as a function of the number

of (symbol rate) LS iterations. As other benchmarks,
we indicate the SIR of an LS version of a training based
MMSE receiver (averaged over the same realization as our
blind algorithm), and the SIR of the LS version of the
[category C1)] blind receiver in [18] with perfect timing
information. Finally, we plot the largest achievable SIR,
that of the ideal MMSE receiver.

Some key observations from the numerical results are as
follows. Further discussion is given in Section V.

1) The conventional matched filter (whose performance
is not plotted in the figures) is useless in the near–far
regime, attaining an SIR of 16 dB. Even with
perfect power control it provides poorer performance
than the receivers considered here, obtaining an SIR
of about 5 dB (which is about 10 dB worse than the
ideal MMSE receiver). Note that the matched filter
has the advantage of perfect timing information.

2) Fig. 9 shows that both the blind- and training-based
receivers are near–far resistant.

3) For both systems, the category C2) receiver (which
uses a timing estimate to compute the correlator)

10Note that the mismatch problem (and the role of norm constraints in
the algorithm) could resurface if there were too much uncertainty regarding
the desired signal vector to be completely captured using constraints such
as (25), e.g., for channels with large multipath spread.

2064 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 10, OCTOBER 1998



Fig. 8. SIR (dB) for LS versions of category C1) and C2) blind
receivers and a training based receiver, compared with that of the
ideal MMSE receiver. The correlators have 30 taps. There are nine
equal power interfering users.

Fig. 9. SIR (dB) for LS versions of category C1) and C2) blind
receivers and a training based receiver, compared with that of the
ideal MMSE receiver. The correlators have 30 taps. There are five
interfering users, each 20 dB stronger than the desired user.

incurs no performance loss relative to the category
C1) receiver (which has perfect timing information).
Thus, the timing estimate provided by the algorithm
in Remark III.10 is accurate even with a severe
near–far problem.

4) The training-based receiver converges much faster
than either blind receiver. It appears that this is
because the errors in the LS estimates (20) and
(21) of the correlation matrix and desired vector,
respectively, somehow conspire to give a better ap-
proximation to the steady-state MMSE correlator than
in a blind algorithm which does not use a LS estimate
of . The blind receivers use the LS estimate (20) of
the correlation matrix, but the category C1) receiver
uses perfect knowledge of the desired vector, while
the category C2) receiver uses its timing estimate to

obtain a near-perfect estimate of the desired vector.11

In view of these remarks, we recommend switching
from blind adaptation to decision-directed MMSE
adaptation as soon as possible.

G. Category C3) Receivers

Since the same correlation matrix can correspond to
infinitely many possibilities for the choice of signal vectors

in the equivalent synchronous model (12), it is clear
that second-order statistics alone cannot be used to discrim-
inate between different users without some prior knowledge
about the user(s) of interest. However, for a system with
only one user, it is possible to use second-order statistics
for category C3) reception by exploiting the relationship
between the symbols and the vectors (corresponding to
desired signal and ISI) appearing in successive received
vectors and . To the best of our knowledge, the
first authors to consider blind equalization and channel
identification using second-order statistics were Tonget
al. in [59]. Slock [52] applies second-order methods to
a multiuser system, using a linear prediction framework
to partially identify a multi-input, multi-output system
(Slock points out that the remaining uncertainties would
need to be resolved by higher order techniques). For a
survey of further work along these lines see [60], and for
applications of similar ideas for blind channel identification
and demodulation for a system with a single DS signal see
[65].

IV. COMMENTS ON HIGHER ORDER STATISTICS METHODS

Consider the equivalent synchronous model (12). We
first give a (new) limiting result which makes evident
the theoretical potential of HOS methods for separating
digitally modulated sources. We then comment on the
relevance of two specific HOS methods, source separation
based on fourth-order cumulants and CMA, to CDMA
applications.

A. A Limiting Result

Assume that the symbols in (24) are independent
random variables chosen from a known discrete alphabet. It
is possible to identify an arbitrarily large number of signal
vectors using HOS methods (allowing the orders
of the statistics used to be arbitrarily large). That is, the
number of identifiable signal vectors tends to infinity
even though the dimension of the received vectors
is fixed.

For an informal proof of this result, see the Appendix.
Remark IV.1—Caveats:The preceding result is purely

theoretical, in that practical algorithms to identify arbi-
trarily many signal vectors with reasonable complexity
and convergence speeds (i.e., number of received vector

11Conversely, we have checked that using a perfect estimate ofR and
a noisy LS estimate (21) ofu0 also performs worse than the training
based implementation using noisy LS estimates of bothR andu0, giving
further support to our claim of a benevolent interaction between the errors
in the LS estimates ofR andu0.

MADHOW: BLIND ADAPTIVE INTERFERENCE SUPPRESION 2065



samples required for accurate estimation) are probably
infeasible. Furthermore, even if arbitrarily many signal
vectors can be identified, reliable demodulation using linear
receivers is not possible if the linear independence condition
stated in Section III is not satisfied.12 Note also that the
convergence of HOS-based algorithms is more sensitive to
noise than SOS-based algorithms, especially as the order of
the statistics increases. Algorithms that specifically exploit
the finite alphabet property for source separation have been
proposed in [58].

B. Fourth-Order Cumulant-Based Methods

In theory, the blind source separation methods based
on fourth-order cumulants (see [7]), although originally
intended for antenna arrays, apply directly to the model
(12). Indeed, these methods have been shown to be able to
identify “more sources than sensors,” which translates in
the context of (12) to the number of signal vectors
exceeding the dimension of the received vectors .
This is a practical corroboration of the limiting result stated
previously. Fourth-order methods (possibly enhanced by
prior knowledge regarding spreading waveforms) deserve
further investigation for CDMA applications, especially for
training antenna arrays when precise array calibration is not
available, or when the angular spread of the multipath for
a given transmission is large.

C. CMA

CMA was first proposed in the context of equalization
(i.e., suppression of ISI) [15], [62], and has been studied
extensively since then (see [25] in this special issue for a
review). In view of the analogy between ISI and MAI, it is
natural to raise the question of the applicability of CMA to
multiuser applications since it is perhaps the simplest HOS-
based receiver algorithm. To this end, consider (12), which
applies to either intersymbol interference or multiple-access
interference. Assume that the symbols are constant
modulus, i.e., (although CMA is known to work
for constellations that do not satisfy this property as well).

CMA chooses a linear receiver that minimizes the
deviation of the receiver output from a constant modulus;
in particular, consider the cost function

. The hope is that this cost function causes “locking
on” to the contribution of a particular (constant modulus)
desired symbol while making the contribution of interfering
symbols (ISI and MAI) as small as possible. However,
the cost function does not distinguish between desired and
interfering symbols, which leads to a number of local
minima.

For the equivalent synchronous model (12), for
, let denote the subspace spanned by all signal

vectors except for , i.e., is spanned by ,
. Let denote the projection

12On the other hand, for nonlinear receivers, the idea of “stripping,” or
successive interference cancellation, might lead to reliable demodulation
even without linear independence if the energies of the signal vectors are
sufficiently disparate.

of orthogonal to the space spanned by the remaining
signal vectors. If , then any scalar multiple of it
provides a zero-forcing receiver for demodulation of .
In particular, in the absence of noise, it is possible to choose
a correlator along such that , which
is constant modulus. Thus, the zero-forcing receivers for
each symbol (when they exist, i.e., when ) are
local minima of the CMA cost function. In the presence of
noise, the MMSE receivers corresponding to the different
signal vectors approximate the local minima of the CMA
cost function (see [25] in this issue for a discussion of how
the CMA cost function approximates the MSE locally). See
[10], [27], and [51] for approaches to characterizing the
local minima of CMA and other blind equalizers.

Remark IV.2—Global Minima for Infinite Length Equaliz-
ers: For a single digital source, an infinite observation
interval implies that the (infinitely many) signal vectors

are simply shifted versions of each other, as are the
corresponding zero-forcing receivers . Thus, any of
the zero-forcing receivers constituting the local minima in
the preceding result are equally good from the point of
view of performance. This reasoning does not apply either
for a finite observation interval or for a multiuser system,
since the zero-forcing solutions for different ISI and MAI
symbols in an observation interval are not equivalent.

Remark IV.3—Discriminating Between Local Minima:In
a multiuser context, we would like to arrive at the zero-
forcing receiver for a particular symbol of the partic-
ular transmission of interest. A preliminary attempt to
apply blind equalization techniques to a multiuser context
appeared in [43], but this paper did not satisfactorily
address the issue of discriminating between different zero-
forcing receivers. Since then, several methods have been
proposed in the literature for this purpose. One is to
allow the algorithm to lock on to one user, and to then
subtract or project out its contribution to the received vector
[26]. The result is fed to a second algorithm, which is
expected to lock on to a second user, and so on. Another
approach is to run parallel versions of CMA, coupled
by additional constraints that are designed to make the
outputs of different versions uncorrelated [3], [8]. The
objective is to use the uncorrelatedness of the symbols

to force different versions to converge to different
zero-forcing receivers. Of course, the number of versions
needed might be reduced because of the fact that signal
vectors with small orthogonal projections correspond
to zero-forcing receivers which constitute shallow minima
(especially at moderate noise levels, due to the noise
enhancement associated with small) of the CMA cost
function. Disadvantages of both approaches include slow
convergence and complexity, due to the large number of
parallel versions needed for multiuser applications (many
MAI symbols) or for highly dispersive channels (many ISI
symbols). As an overall comment, searching for the zero-
forcing receiver for the desired symbol using such general
techniques may be impractical for CDMA applications,
where the number of signal vectors as well as the number
of correlator taps is large.
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Remark IV.4—More on Constraints:If the propagation
channel and spreading sequence of the desired transmission
is known, it is possible to use a nominal desired vector to
constrain the correlator as in the CMOE algorithm.
Since the CMA cost function prevents the output from
being forced to zero, CMA has the advantage of being
more robust to mismatch than the CMOE algorithm.
Preliminary results in this direction were reported in [19],
where constrained optimization of the Sato cost function

sgn was shown to be more robust to
mismatch than the CMOE algorithm. Thus, the constrained
optimization of cost functions other than the output energy
under multiple hypothesized nominals is an interesting
option to explore in the context of blind signal detection
for CDMA. The practicality of algorithms based on fourth-
order cost functions such as CMA, however, may be limited
by their poorer convergence compared to algorithms such
as CMOE, which are based on second-order cost functions.

V. CONCLUSIONS

We conclude with the following comments.

1) The equivalent synchronous model provides a simple
tool for design and performance analysis of interfer-
ence suppression techniques, for CDMA as well as
for any system with ISI and/or MAI. In particular, it
provides geometric insights into both SOS and HOS
methods.

2) For single path channels, blind SOS algorithms that
give accurate timing estimates for all ranges of in-
terference amplitudes (including a severe near–far
problem) are now available. These timing estimates
can then be used to compute a near–far resistant
demodulator. Further research is needed for obtaining
and evaluating the performance of extensions of these
algorithms for multipath channels.

3) While adaptive equalizers are often implemented us-
ing the relatively low-complexity LMS algorithm,
the latter may be inappropriate for rapidly time-
varying systems and near–far settings. Thus, adaptive
receivers for CDMA applications will probably need
to use more complex LS or subspace-based imple-
mentations, which is a challenge.

4) The blind adaptive receiver in 2) converges slower
than training-based adaptation based on the MMSE
criterion. Thus, whenever possible, blind CMOE
adaptation should be switched to decision-directed
MMSE adaptation. While standard decision-directed
adaptation does not work for fading channels [80],
modified decision-directed mechanisms that are more
robust are now available [20], [80], [81]. Robust
receiver design using an appropriate combination of
training, decision-directed adaptation, blind CMOE
adaptation, and subspace-based methods, remains an
important topic for future research. The performance
of any such receiver design must be validated
in severely time-varying environments, including

fading, shadowing, and time variations due to the
arrival and departure of interfering transmissions.

5) While the blind interference suppression techniques
considered here naturally extend to systems with
antenna arrays, optimizing the complexity and con-
vergence associated with such extensions requires
further study.

6) Blind HOS-based reception techniques developed in
the context of equalization or source separation ap-
ply directly to the equivalent synchronous model
presented here. As such, the applicability of source
separation methods based on fourth-order cumulants,
or of constrained versions of CMA, to the context
of CDMA deserves further investigation. A limiting
result stated in Section IV also leads to the fol-
lowing intriguing concept: HOS-based methods can
(in theory) identify a very large number of signal
vectors, and nonlinear successive interference can-
cellation methods can (in theory) reliably demodulate
them in the presence of sufficient power disparity, so
that the combination could potentially lead to blind
reception techniques for very high-capacity systems.
Of course, this is purely theoretical speculation, since
there are difficulties in the practical implementation of
both HOS-based methods and nonlinear interference
cancellation.

APPENDIX

We sketch here an informal proof of the result stated
in Section IV-A regarding the ultimate limits of HOS
methods applied to the equivalent synchronous model (12).
For simplicity, consider binary signaling, i.e., the symbols

. In the limit of many observations and
arbitrarily complicated estimates, HOS methods give us the
distribution of the received vectors . In this limit noise
can be ignored, so that the received vectors have
a discrete distribution given as follows. Since the
symbols occurring in (12) are independent, can take

values, given by

(30)
If the vectors are distinct, then each has probabil-
ity of occurrence. If of the coincide, the
corresponding vector occurs with probability .

In the limit, the vectors where the discrete distri-
bution places its probability mass, as well the probabilities
of occurrence of the , are perfectly known. The smallest
possible probability of occurrence of a given is ,
which immediately yields the number of signal vectors
(if all such probabilities are larger than this, then the number
of nonzero signal vectors must be less than ).

Suppose first that the in (30) are all distinct, so
that there are distinct vectors . Now, take all

possible differences for .
It can be checked that, for each , the term
occurs times, and the term occurs times. Other
distinct linear combinations of the signal vectors occur less
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frequently. Thus, the signal vectors are identified (upto
sign) as the most frequently occurring differences.

If the number of vectors is smaller than , then
replicate times any vector which has probability mass

before applying the argument in the previous
paragraph. This concludes the proof.

Remark A.1—More Caveats:Elaborating further on re-
mark IV.1 on the limited practical applicability of the
result, note that estimating the distribution of the
accurately would require an exorbitant number of samples,
and would be impossible in time-varying settings. In the
presence of noise, the cluster points used in the proof are
the local maxima of a continuous distribution which is a
mixture of Gaussian distributions, so that identification of
the cluster points and their probabilities is an issue. Finally,
the “algorithm” itself, involving all possible differences of
the cluster points, is too complex for practical applications.
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