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Direct sequence (DS) code division multiple access (CDMA) is by a receiver, how does the receiver reliably demodulate a

a promising technology for wireless environments with multiple particular user of interestaWhile this problem is funda-

simultaneous transmissions because of several features: asyn-antal to communication theory, it is currently receiving
chronous multiple access, robustness to frequency selective fading,

and multipath combining. The capacity of DS-CDMA systems particularly intense scrutiny because of the key practical
is interference-limited and can therefore be increased by tech- role it plays in the emerging vision of “anywhere, anytime”
niques that suppress interference. In this paper, we present recentcommunications promised by systems such as personal
developments in interference suppression using blind adaptive communications, digital cellular telephony, and mobile
receivers that do not require knowledge of the signal waveforms . . .

and propagation channels of the interference, and that require COMPUting. In essence, since mobile or untethered com-
a minimal amount of information about the desired signal. The Mmunications must be wireless, and wireless is a broadcast

framework considered generalizes naturally to include additional medium, the multiple-access interference (MAI) due to
capabilities such as receive antenna diversity. The most powerful many simultaneous users is what ultimately limits perfor-

application of the methods described here is for linearly modulated . . .
CDMA systems with short spreading waveforms (i.e., spreading mance. In this paper, we consider the problem of receiver

waveforms with period equal to the symbol interval), for which they design for a specific multiple-access technology, direct-
provide substantial performance gains over conventional recep- sequence (DS) code division multiple access (CDMA).
tion. Implications for future system design due to the restriction of Qther multiple-access techniques that are applicable to a
short spreading waveforms and directions for further investigation cellular setting include combinations of time division mul-

are discussed. . . .
tiple access (TDMA), frequency division multiple access

Keywords—Adaptive equalizers, blind equalization, code di- .
vision multiple access, direct sequence, interference suppression,(FDMA)’ or frequency-hop (FH) CDMA [56].

multiuser detection, spread spectrum, timing acquisition. The information-bearing signal for each user in a DS-
CDMA system is spread over a wider bandwidth by means
|. INTRODUCTION of a spreading waveform unique to that user. Fig. 1 shows

an example of the information signal, the spreading wave-

sidered, provide a perspective on the state of the art in this M. and the transmitted signal for a single DS transmitter.
area, and discuss the new thinking in terms of system design'NOt€ from the figure that the spreading waveform is deter-
that would be needed to exploit the relatively new tech- Mineéd by a spreading code or spreading sequence (hence
niques discussed in this paper. We end with an outline of the term CDMA); from Fig. 1(b), this is seen to be the
the remainder of the paper. Our objective in this paper is not Sequence{l, -1, -1, 1, —1}.

to survey the rapidly changing state of the art in this field, If the spreading waveforms for different receivers as seen

but to Convey a basic understanding Of some key Concepts_at the receiver were Orthogonal, MAI could be eliminated.
However, in practice, signals from different users arrive
A. Motivation at the receiver at different delays, and it is not possible
to make the waveforms orthogonal at all possible relative
delays. Hence, the effort is to design waveforms with small
expected cross correlations averaged over relative delays.
Manuscript received May 13, 1997; revised May 4, 1998. This work : ; : ;
was supported by the Office of Naval Research under Grant NO0O014-95- Conventional S)_/Stem deS'g”S eXPIOIt thIS. proper.ty of the
1-0647. waveforms and ignore MAI in receiver design. For instance,
The author is with the Electrical and Computer Engineering Department cyrrent implementations of the 1S-95 U.S. digital cellular
and the Coordinated Science Laboratory, University of lllinois, Urbana, . . T .
IL 61801 USA (e-mail: madhow@uiuc.edu). standard [23] use matched filter reception (which is optimal
Publisher Item Identifier S 0018-9219(98)06976-X. only if there is no MAI).

In this introductory section, we motivate the problem con-

We are interested in the following problemiven multi-
ple digitally modulated signals being heard simultaneously
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by, Time The interference floor and the near—far problem en-

5 0 Do E b, 110 countered by conventional reception can be alleviated or
. eliminated by the use of multiuser detection, a term we
@ use generically for any receiver that, unlike conventional
] — ST o receivers, attempts to exploit the structure of the MAL
— I i Thus, the term includes receivers that are only interested
S S A S S S in reliable demodulation of a single user. See [71] for a
() comprehensive treatment of multiuser detection. The power
|—— — |———| |—— of muItiusgr detection was first rigorously demonstra_ted
by Verdu in [68], where it was shown, under a mild
N ] condition, that the near—far problem does not occur if
© optimal maximum likelihood (ML) detection is used. The
T g o ol Seauce e (b Sty complexty of implementing ML detecton is exponenta
ngeform (two gshifted >(/:opies ofqthe waveform aré shovs?n withg in the number of active users, which has motivated the
dashed lines). (c) Transmitted waveform obtained by modulating invention of a number of suboptimal multiuser detectors
spreading waveform in (b) by the symbol sequence in (a). with lower complexity, typically linear in the number of

active users [11], [12], [30], [31], [66], [67], [77] (see [70]

If the signals due to all users arrive at the receiver @nd [71] for a survey). The receiver front end assumed
at roughly equal powers, the near-orthogonality of the by all the aforementioned detectors is a bank of filters
spreading waveforms implies that conventional reception Matched to the transmitted waveforms and channels of the
would work fairly well! However, the motivation for the active users, where each filter is sampled at the symbol

work reported in this paper is supplied by the following 't based on the timing of the corresponding user. Thus,
drawbacks of conventional reception. while each filter in the bank is a conventional receiver for

a given user, collectively the matched filter outputs form
1) Interference floarSince the interfering signals are not  sufficient statistics (i.e., contain all the relevant information)
truly orthogonal to the desired signal, the output of for making joint symbol decisions for all users [68]. A
the conventional matched filter for the desired user multiuser detection scheme based on this centralized front
contains contributions from the MAI. Thus, even if end is, therefore, simply a means of jointly processing the
the receiver thermal noise level goes to zero, the matched filter outputs to obtain the bit estimates for one
error probability of the conventional receiver exhibits or more users.
a nonzero floor because of the MAI. This makes Implementation of the preceding front end could be
it difficult to attain the low bit error rates required cumbersome since it requires knowledge of the spreading
by emerging applications such as data and video waveforms and the propagation channels of all users, even
using conventional reception without an excessive if only one particular user is of interest. In particular, it
reduction in system capacity (i.e., in the number of may be difficult to obtain reliable estimates of the users’
simultaneous users permitted). propagation channels in a typical wireless environment with
2) Near—far problem If an interfering signal is much  impairments such as fading and MAI. Furthermore, the
stronger than the desired signal, its contribution to complexity of both the implementation of the front end and
the matched filter output for the desired signal can of the processing of the outputs grows with the number of
become large enough to make reliable reception im- users. As we shall see in Section I-B, for a certain class
possible. In order to avoid this, the 1S-95 system of DS-CDMA systems these difficulties can be overcome
uses stringent closed loop power control, which has by using adaptive implementations of multiuser detection
several disadvantages. The overhead associated withbased on an alternative front end.
feedback-based power control may turn out to be
excessive in future packet CDMA systems (IS-95 is B. Adaptive Interference Suppression
a circuit-based system with relatively long lived con-  |n this paper, we concentrate on the class of DS-CDMA
nections). Further, closed loop power control requires systems based on short spreading codes; the spreading
coordination between transmitters and receivers at acodes (and hence spreading waveforms) for each user are

level which might be difficult, for instance, iad periodic with period equal to the symbol interval. The
hoc wireless networks with arbitrary and/or rapidly example shown in Fig. 1 falls within this class. In this
time-varying topologies. setting, the MAI seen by a given symbol of the desired

user is statistically identical to that seen by the next symbol
1For analysis of the performance of conventional reception under such of that user, prowdgd that the pro'pagatlon C_hannelsl for
circumstances, see [41], [48], and [72] (see also [36] for fundamental the users vary relatively slowly. This observation (which
limits on the performance of conventional timing acquisition methods).  ijs made precise later in the paper) simplifies the task of
2The termad hoc networks has been recently coined for (typically myltiuser detection because the receiver can now adaptively
multihop) wireless networks which do not conform to the cellular paradigm ‘| " h ab h f the MAI b
of a user accessing a wireline backbone via a single wireless hop to a earn” enough about the structure of the to be

controlling base station. able to suppress it. Since such adaptation is implemented
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using digital signal processing, the front end needed for [20], [80].2 Another approach to fading channels [74] is to
such methods consists of a wideband filter sampled at (atrack fading gains explicitly using periodically transmitted
multiple of) the chip rate, thus preserving the information pilot symbols. Further modifications (typically involving

in the continuous-time received signal. This front end is decorrelation of independently faded multipath components
independent of the spreading waveforms or propagation Of the desired user by using timing information, as in [22],
channels of the interfering users. It now becomes possible[74], and [82]) are needed to deal with channels in which
to do adaptive interference suppression, which is the termthe multipath components undergo rapid independent fades,
we will use to describe multiuser detection schemes that Since the automatic multipath combining capability of the

do not require explicit knowledge of the parameters of the MMSE receiver is impaired in this setting. Finally, the
MAL. performance of adaptive algorithms, taking into account

transients in the interference pattern due to the arrival
and departure of interfering users, has been studied in
[21].

In view of the work cited in the previous paragraph,

Adaptive interference suppression is analogous to adap-
tive equalization of a time invariant (or slowly time-
varying) channel by virtue of the analogy between MAI

and intersymbol mterfgrence (ISI)' Application of these we anticipate that robust adaptive algorithms for both
methods to DS-CDMA |s.a relatively recent concept PIO~ the training and decision-directed phases that work in
posed by 6,‘ number of different authors at approximately the presence of severe channel time variations will soon
the same time, e.g., Abdulrahmanal. [2], Madhow and 0 .ome available. If so, such algorithms may well con-
Honig [35], Miller [38], and Rapajic and Vucetic [49].  gityte the most practical approach to receiver design fu-
All of these authors proposed adaptive receivers based ory,re high-capacity systems based on DS-CDMA. Decision-
the linear minimum mean squared error (MMSE) criterion. girected adaptation, however, is still vulnerable to sudden
These receivers require only a training sequence of symbolschannel variations. For example, it could be derailed by
transmitted by the desired user and a coarse knowledge ofthe appearance of an extremely strong incoming interfer-
the timing of the desired user, and can be implemented ing signal to which the receiver has not already adapted
adaptively using standard algorithms such as least mean(e.g., due to a new interfering user, or due to a new
squares (LMS) or recursive least squares (RLS) [16]. After multipath component appearing for an existing interfering
the training phase, the receivers can continue to adapt inuser). Similarly, appearance and disappearance of multipath
decision-directed mode, in which symbol decisions made by components for the desired user could affect decision-
the receiver are fed back for further adaptation. Some basicdirected adaptation adversely. In order to recover from
properties of linear MMSE receivers (including their immu- failure of decision-directed adaptation without requiring
nity to the near—far problem), as well as implementations of the transmitter to send a fresh training sequence, it is
varying complexity, can be found in [35], while simulations necessary to develop blind adaptive mechanisms that do
of adaptive implementations over time invariant channels Not require knowledge (or reliable explicit estimates) of the
appear in [2], [38], and [49]. Assuming convergence of sympol sequence of the desired user. For.example, thg blind
the adaptive receiver (which is easy to achieve in a time "€C€iver in [18] is used to recover from failure of decision-
invariant setting), linear MMSE reception has been shown pllrected adaptatlon'due to fagllng'or mterfergnce tra.nS|.ents
to provide large performance gains over conventional re- in [20] and [21]. Blind reception is also of interest in its

ception: not only does it suppress interference, but it also O\t/)vln right In br(iadcast ?]r multlcfast,t Set.tlnth, ?mce 't. en-
provides automatic multipath combining for the desired ables Tecelvers 1o asynchronously tune in to a transmission
user of interest at any time. Achieving this using a training-

. - based mechanism would require significant overhead in
The preceding schemes all assume the availability of . 9

. . the form of transmission of training sequences at regular
a known sequence of symbols for the desired user in intervals

the training phase, to be followed by a decision-directed The preceding arguments motivate the subject of this
phase in which the decisions from the adaptive receiver paper, namely, blind adaptive interference suppression,
are used for continuing adaptation. They also assume that,nich at its minimum means that the receiver does not
some coarse knowledge of the timing of the desired user require a training sequence for the desired user (in addition
is available, but this assumption can be removed by us-tg not requiring knowledge of the interference parameters).
ing the training sequence for initial timing acquisition as
well [4], [34], [53], [79]. A major hurdle that remains is

to make these adaptive algorithms robust to the severe
time variations typical of a wireless channel. In particular,
conventional LMS or RLS adaptation does not work over
rgpldly fading channels either in tra.ur.nng or in decision- 3In very recent work, we have identified a constrained optimization
directed modes [80]. However, promising results have been problem for differentially modulated systems whose solution is the linear
obtained using recently proposed modifications to LMS MMSE detector [81]. Thead hocalgorithm in [80], which can be shown
and RLS that exploit differential modulation to relieve (9 ro‘de & 2pproxmat soluton to he prececing optmizaton proler,
the adaptive algorithm of the burden of channel tracking preceding optimization problem.

C. Classification of Blind Receivers

We classify blind schemes into three categories according
to the knowledge that the receiver assumes.
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C1) The receiver knows the timing (or more generally, users [1]. When a training sequence is available only for the
the propagation channel) and spreading waveform desired user, the convergence and steady-state performance

of the desired user. of a neural network is typically a little worse than that of a
C2) The receiver knows only the spreading waveform linear MMSE detector adapted using the LMS algorithm
of the desired user. [39]. Thus, linear MMSE receivers implemented using

C3) The receiver does not know any information about faster LS type algorithms would be expected to perform
the desired user, other than the fact that the desiredbetter than a neural network implementation when training
signal is digitally modulated at a given symbol rate. sequences for interfering users are not available.

A receiver in category C1) was obtained by Horag D. System Design Considerations
al. in [17] and [18], where an adaptive implementation of . .
the linear MMSE receiver based on a constrained minimum MO.SF current COMA ;yst_ems (including 1S-95, as well
output energy (CMOE) criterion was presented. A related as mlllt'ary DS commumpatlon SVSterT‘S) are based on I(_)ng
approach appeared in [13] at the same time as [17], but thespreadlng .waveforms (ie., the period of t_he spreading
approach in [13] has the drawback of requiring knowledge waveform is much longer than the symbol interval). For
of the spreading waveforms and propagation channels ofSUCh systems, the s_trgcture of the MAIl changes from
all users. The idea behind the receiver in [18] is similar symbol to symbol. This IS an a.dvan_tage for systems basgd
to minimum variance beamforming for adaptive antenna on conventional recep.tlon-, since It prevents systematic
arrays [24], where, assuming that the direction of arrival recurrence of.bad real|_zat|ons of the MAI at'the output
for the desired signal is known, interference can be nulled of the conve_ntlonal recewer. Howeve_r, Itis a_dlsadvantage
by adapting the array to minimize the output variance, f_rom the point of view of |mpleme_znt|ng m_ult|user dete(_:-_
subject to the constraint of not putting a null in the tion, since the_ detector must be t|me—_vary|ng_ and explicit
direction of the desired signal. Knowing the spreading knowledge of interference parameters is required. Thus, for

waveform and propagation channel of the desired user isfuture high-capacity systems designed around the notion

. , of multiuser detection, short spreading waveforms would
analogous to knowledge of the desired user’s array response

in beamforming. Further discussion of the CMOE-based appear to be the logical choice. Concerns regarding privacy

L ) : . . could be overcome with suitable encryption schemes, or
category C1) receiver in [18] and its extensions is provided . o . )
in Section III-B1 with periodic changes in the spreading codes used (e.g.,

Our primary focus in this paper is on category C2): on a packet-by-packet basis). Another concern is that,

we conpsider ?/nterference <y prepssion methodsgft?r/ timir; even with interference suppression, a set of relative delays

_ ubp ) 9and spreading waveforms that leads to poor performance
acquisition and demodulation of a desired user whose

. : could persist for a long period of time for short spread-
spread_mg wav_eform IS _knqwn. Category C3)_ would be ing waveforms. Mechanisms for overcoming this might
classified as blind equalization for a.system with one USer i clude power contrdf, assignment of a new spreading
(see [14]'.[25]’ [60], and [63]), and bI|n'd source §eparat|on waveform or new delay, or injection of slow drifts in
for a mqlpuser system (see [7]). Receivers in this category the transmitter and receiver clocks to produce drifts in
are trad!t|onally applied to narrow-band systems and arnadY ihe relative delays. In short, we believe that research
processing. In theory, SUCh. receivers apply _to CD_MA aS yesults in adaptive interference suppression have reached
yvell, as _p0|r_1ted O.Ut N Sectlon_ V. However,_n‘ additional the point that a complete system design based on it is
mformaﬂoq is available regardmg the spree'ldmg WaYefO_rm within reach (assuming application of sufficient engineering
_Of the deswgd user, then it can be_ exploited to simplify effort and ingenuity), and that such a system would provide
implementation as We.II. as to obtain better performance. large performance gains even over severely time-varying
Thus, the practical utility of category C3) receivers for

O s o2 channels, compared to existing DS-CDMA systems based
CDMA applications beyond noncooperative applications o, 5ng spreading waveforms and conventional reception.
such as eavesdropping is unclear.

_ e . For CDMA receivers equipped with an antenna array,
Remark I.1: We focus in this paper on the linear MMSE ¢, her interference suppression in the spatial domain is
receiver, since blind methods can be devised for its com- possible. Due to lack of space, we do not discuss such
putation. It is worth noting, however, that a number of tochniques in any detail. However, the following comments
training-based adaptive schemes based on criteria other thap, oy form a useful starting point for further exploration of
the linear MMSE criterion have been considered in the s topic. The array response corresponding to a given user,
literature. As shown in [9] and [40], it is also possible \\hich depends on its direction of arrival (DoA), can be

to obtain recursive implementations of the dgcorrglating thought of as its spatial spreading waveform. In analogy
detector [30], [31]. However, the implementations in [9] th our notion of short and long spreading sequences,

and [40] require (differing degrees of) knowledge of the he spatial spreading waveforms are “short” in the sense

delays and spreading waveforms of all users. Itis also worth iyt variations in the array response for (a given multipath

mentioning attempts to adapt (using training sequences)

neural networks for multiuser detection [1], [39]. However, 4Since adaptive interference suppression schemes are near—far resistant,
. . allowing users whose performance is poorer to send at higher powers

the neura_l network. applro_ach outperforms linear .mterferenceshould have only a minor effect on the performance of users who are

suppression only if training sequences are available for all currently enjoying good performance.
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component of) a given user are typically slow relative to described here are minor extensions of algorithms that have
the symbol rate. Since different users have different DoA’s appeared recently in the literature [5], [33], [55], [64]. A
(and hence different array responses), adaptive interferencebrief discussion of SOS-based category C3) receivers is
suppression in the spatial domain can be applied. provided at the end of Section lll. Section IV discusses the
Due to the slow variation in the array responses, adap- possible applicability of higher order statistics (HOS) for
tation in the spatial domain is possible for DS-CDMA devising receivers in category C3) for CDMA applications.
systems with either short or long spreading sequences. ForThis includes comments on the fundamental limits of HOS
short spreading sequences, since both the array responsasethods as well as on the local minima of the popular
and the spreading waveforms are time invariant (or slowly constant modulus algorithm (CMA) [15], [62] when applied
varying) from symbol to symbol, blind or training-based in the present context. Section V contains some concluding
adaptive interference suppression is directly applicable to remarks.
the spatiotemporal received signal corresponding to the
outputs of the antenna array elements over a given timell. SyYSTEM MODEL

interval. The spatiotemporal filters resulting from such \y, begin by illustrating key features of the system

a direct extension have a number of taps equal to the ,,4el for DS-CDMA by means of examples, followed by

product of the number of array elements and the number ; g ccinct statement of the general system model used in
of temporal taps, which leads to increased complexity ine remainder of the paper.

and slower convergence speed. While the performance \gtation: Boldface small letters denote column vectors,

advantage of this approach is significant [35], [57], the \yhile poldface capital letters denote matrices. Since we

problem of low-complexity rapid spatiotemporal adaptation .k with complex baseband system models, vectors and

is far from solved. _ _ matrices with complex components must be considered.
For DS-CDMA systems with long-spreading sequences, The row vectorsx? and x? are the transpose and the

the fact that the array responses are time invariant (or slowly complex conjugate transposed, respectivelys.fhe inner

varying) implies that adaptive interference suppression can product, or correlation, of two vectoss = (z,, -, z7)¥

still be performed in the spatial domain, while using ei- andy = (y1, ---, y)” of length L is defined as

ther conventional reception or multiuser detection (using

explicit knowledge about the interference) to exploit the " L .

discrimination between users provided by the DS spreading (x,y) =x"y = Z TiYi

in the time domain. From a practical point of view, spatial =t

adaptation coupled with conventional reception appears towhere z* denotes the complex conjugate of a scatar

be the most feasible. A number of algorithms using the For real vectors, the preceding expression specializes to

latter approach have been proposed recently [29], [32], the conventional inner produsf”y. Finally, the normi|x||

[42], [76]. In particular, as shown in [32], knowledge of Of @ vectorx is defined ag|x|| = \/(x, x).

the desired user’'s spreading sequence can be used as a

“training sequence” for antenna array adaptation even whenA. Examples

the desired user’'s symbol sequence is unknown.. We have already seen a DS user (labeled 1 in subsequent
As with temporal interference suppression, the goal of discussion) in Fig. 1. The bit rate is denoted byT’,

most algorithms using antenna arrays for interference sup-where the symbol interval’ = 5 in the example. Fig. 1(a)

pression is computation of approximations to the linear shows the bit transitions: letting, ; denote the bit (taking

MMSE receiver. values +1) sent in the timenT < ¢t < (n + 1)T, we
havet_ 11 = +1, byp,1 = —1, andb;,; = —1. The DS
E. Outline spreading waveforns; (¢) is shown in Fig. 1(b). Copies

of the spreading waveform shifted by the bit interval
are shown with dashed lines. The spreading waveform is
constructed by modulating a chip waveforii¢) using a

Section Il contains a description of the system model,
showing how a continuous-time asynchronous CDMA sys-
tem can be reduced to an equivalent discrete-time syn- ) :
chronous CDMA model for the purpose of digital signal SPréading code, or spreading sequence. In the examtle,
processing. This is an important observation, thus we S & rectangular pulse of duratidh = 1, whereT is the
illustrate it in some detail via several examples. Section 1 ChiP interval, and the spreading cosigis given by
describes blind interference suppression schemes which s =(1, -1, -1, 1, —1)7T.
use only the second-order statistics (SOS) of the received .
signal. We focus mainly on category C2) receivers, since Fig. 1(¢) shows the modulated baseband DS signal cor-
these form the main theme of the paper. We describe the'esponding to t.he multiplication of the given bit sequence
geometry behind the algorithms instead of giving a detailed @nd the spreading waveform. Clearly, the bandwidth of the

description of the computations involved. The algorithms Signal is of the order ot /7., which is a factorV = T/T..
higher than the information rate. The factSris called the

5If the multipath components for the user have a significant angular i i — £ ; i

rocessing gain ¥ = 5 in the example). Typically, it is
spread, then the array response for different multipath components may:,)]ec(_:‘ssar gfcg)r thjev rocessin ain topsc)ale)llaearly ith the
be different. However, each such response would still vary slowly with Yy p Ing gal I y Wi

time, hence making adaptation feasible. number of active users in a CDMA system.
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Fig. 2. The information signal, spreading sequence, and trans-
mitted waveform for an interfering user. The interference vectors
generated by the user depend on the observation interval used to
demodulate the desired user.

Consider first a receiver synchronized to user 1, which

shifts, respectively, of the spreading sequesgdor user
2 as follows. ,

Let7 denote the acyclic right shift operator, andTetle-
note the acyclic left shift operator, both operating on vectors
of lengthn. Thus, for a vectok = (z1, ---, z1.)¥ we have
Tx = (0, 1, -+, zr)¥ and Tx = (9, -+, xr, 0)T.
We can now writev_; o = T3s, (spreading sequence for
user 2, shifted left by three) aneh, » = 72s2 (spreading
sequence for user 2, shifted right by two).

Overall, the vector received over the intery@) 7' can
be written as

ro =bo, 181 +b_1,2v_1,2 +bo 2vo, 2 + Wo (1)

where we introduce the notatiar, to denote the vector
of samples obtained over the intervall’, (n + 1)77, and
wherew,, is the contribution due to noise in the interval.
The received vector, is therefore modeled as the sum of
signal vectors modulated by bits, plus noise. The vestor
is the desired vector modulated by the desiredbit. The
vectorsv_; » andvy, » are interference vectors modulated
by interfering bits.

1) Linear Receivers:We restrict attention to linear re-

obtains discrete time samples by integrating the receivedceijvers in this paper. In the context of (1), this corresponds
signal chip by chip. This corresponds to sampling the output {q generation of a decision statisti, = (c, ro) by linear

of a filter matched to the chip pulsg(t) at the chip rate.

correlation of the received vector. The statistic could be

Our objective in this section is to model these discrete-time ysed for either hard or soft decisions, with the former being
samples in terms of the signal and interference parametersgiven by

Such a model is the first step to designing interference

suppression schemes. Consider the discrete-time samples in bo,1 = sgn(Zo)

the interval[0, T] (T = 5); these form a vector of length
five. From Fig. 1(c), the contribution to due to user 1 is
(-1, 1, 1, =1, 1)T. While this corresponds tty 1 = —1,

in general, the contribution due to user 1 [, 77 is
given bybg 1s:. Thus, in order to implement matched filter
reception for user 1, the receiver would simply correlate
the vectorr with the spreading sequense and decide on
the bit by ; based on the sign of the output.

Consider now the effect of an interfering user (user 2)
whose contribution to the received signal is offset from that
of user 1 by2T.. Fig. 2 shows the bit sequence, spreading
waveform, and modulated signal due to user 2.

The spreading sequence for user 2 & =
(1,1, -1, -1, ). From Fig. 2(c), the contribution
of user 2 to the received vector ovfr, T'] is given by
(-1, 1, =1, =1, )T, Letting b,, » denote the bit of user
2 that spans the intervall’ + 27, < ¢t < (n + 1)T + 27,
this contribution can be written as

b_1,2v_1,2 4+ b, 2vo,2

whereb_; » = +1 andby, » = —1 are the bits sent by user
2 that overlap with the intervgD, 7], and

voi2=(-1,1,0,0,00"  v5,=(0,0,1,1, —1)*.

The vectorv_, » corresponds to the part of the spreading
waveform modulating bith_; » that falls in the interval
[0, T]. The vectorvy » corresponds to the part of the
spreading waveform modulating b » that falls in the

for binary signaling and real valued signals. Writing out the
decision statistic using (1), we obtain that

Zy =(c, rq)
=bo,1(c, s1) +b_1,2(c, v_1,2)
+ b0,2<C, V072> + {c, wo). (2)

For interference suppression, the contribution of the
interference vectors and the noise to the correlator output
[i.e., the last three terms in the right-hand side of (2)]
should be small compared to that of the desired vector [the
first term in the right-hand side of (2)]. This motivates the
definition of the signal-to-(noise+)interference ratio (SIR)
as the ratio of the energy of the signal contribution relative
to that of the noise plus interference [35]. In the preceding
example, the SIR is given by

SR (e, 1)
[for v 1 2P (e, vo 2+ e S ue]?

whereX,, is the noise covariance matrix. While the ultimate
performance measure is the error probability, the SIR is
easier to compute and serves as a convenient measure for
comparing linear receivers. Moreover, in certain contexts,
the SIR has been found to be an excellent predictor of the
error probability [44].

One realization of a receiver in category C1l) (see
Section 1) is an adaptive correlaterthat maximizes the
SIR without requiring prior knowledge of the interference

same interval. These can be expressed as left and rightvectors. To see why this could be possible, consider now the
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vectorr; of samples corresponding to the interyal 277]. denotes samples in the interfall’—2, n7'+8]. Proceeding
Since the delays and spreading sequences remain the samas before, we can write each received vector as a sum
the desired and interference vectors remain the same, bubf vectors modulated by bits, plus noise. For example,
the desired and interfering bits change. We therefore obtainthree bits of each user contribute to the zeroth observation
interval [-2, 8]. Mimicking the notation in (1), we have a

1= 0181 +bo2vor2 tbavo 2t Wi (3) received vector of length ten that can be written as
Comparing (1) and (3), we realize that the structure of 1 1
the received vectors corresponding to observation intervals ro = Z bi,1vi, 1 + Z bi,2Vi,2 + Wo (4)

offset by is the same. In particular, a correlator that maxi- i=—1 i=—1

mizes the SIR for, also maximizes that far,. Indeed, this  wherew, now denotes a noise vector of length ten. From
correlator maximizes the SIR in any observation interval so Fig. 1, the desired vector,,; (modulating the bithg 1 of
that, by observing the sequence of received vec{ors, the desired user) is given by

it is plausible that we could be able to learn the best choice T 5
of correlator. One mechanism for achieving this is adaptive Y0:1 = (0,0,1, -1, -1,1,-1,0,0,0" =77s;. (3)
implementation of the linear MMSE receiver mentioned The interfering vectors modulating the MAI bits (due to
earlier. user 2) can be read off from Fig. 2(b) as follows:

The discussion in the previous paragraph may be made T o
precise as follows: the continuous-time received signal is vo1,2=(1,-1,-1,1,0,0,0,0,0,0)" =7"s
cyclostationary [47, pp. 75-76], in that its statistics do not vo,2=(0,0,0,0,1,1, -1, -1, 1,07 =T*s,
change under time shifts by the symbol inter¥alHence, v1,2=(0,0,0,0,0,0,0, 0, 0, 1)T = TY%,. (6)
received vectors obtained from observation intervals offset
by multiples ofI” have identical statistics, i.e., the sequence
{r,} is stationary. This stationarity is what makes adaptive
reception feasible.

In the preceding example, the propagation channel for ! !
the desired user is assumed to be an ideal channel which T» = Z bitn,1Vi,1 + Z bitn,2Vi,2 + Wn.  (7)
only scales and delays the transmitted signal. The receiver =1 i=-1
is assumed to know the delay of the desired user, so thatThus, the signal vectors are identical to those in (4), but
the received vector,, corresponds to theth bit interval the indexes of the bits involved are incrementedrhyso
of the desired user. In addition, adaptive implementation of that the sequencér,,} is stationary, as before.
the linear MMSE receiver requires a sequence of training 2) Effect of Chip Asynchronismtn the examples thus far,
symbols{b,_,} for the desired user, followed by decision- we have restricted attention to a chip-synchronous system,
directed operation using the estimatgls, ;}. While the in that the chip intervals of the two users are aligned,
latter does provide interference suppression without explicit and the receiver knows the chip timing when generating
knowledge of interference parameters, recall that our objec-discrete time samples. In practice, users are chip- as well
tive is to also dispense with the need for prior information as symbol-asynchronous, and the receiver does not know
regarding the desired signal. Furthermore, we are interestedhe chip timing for (different multipath components of)
in multipath channels, for which the received signal due the desired usea priori. To model this effect, consider
to a given user is a sum of several weighted and delayedthe observation interval-{1.5, 8.5] in which chip-spaced
replicas of the transmitted signal. samples are generated by integrating oved.p, —0.5],

The first step to dispensing with knowledge of the chan- [-0.5, 0.5], etc. Clearly, the form of the model (7) still
nel seen by the desired user is to enlarge the observationapplies to the received vector thus obtained, but the signal
interval used for each symbol decision. In particular, con- vectors change. In particular, it is easy to see from Fig. 1(b)
sider samples in the observation interval?] 8] shown in that the vector modulating the desired &jt; is now given
Fig. 2. For each of the users shown in Figs. 1 and 2, one by

The interference vectors_, ; andv; ; modulating the ISI
bits (due to user 1) are similarly obtained from Fig. 1.
For thenth observation interval, we obtain

complete blt. faII's in this interval. This property holds for Vo1 = (0, 5,0, —1,0,0, —.5, 0, 0, 0)7. 8)

an observation interval of lengtkl’ regardless of delays, _ _ _ _ _
and is key to devising blind detection scherfdss before, With a little thought, the preceding equation can be rewrit-
we wish to use the received vector corresponding to this ten as

interval to decide on the bty ;. Since bit transitions are Vo1 = 0.57 s, + 0.57 %s;. (9)

spaced byT’, this observation interval must be advanced

by T = 5 in order to decide on the next bit , of the Thus, chip asynchronism leads to a signal vector, which is
desired user. Generalizing the notation introduced earlier, @ linear combination of shifts of the spreading sequence,
let r,, denote the vector of samples corresponding to the where the coefficients of the linear combination depend on

nth observation interval. For the example at hamg, the fractional chip offset between the receiver’s integration
6 . ) intervals and the chip timing for the corresponding user.
For a multipath channel, one complete symbol falls into each obser- E . imil 9 b btained f h h
vation interval if the length of the observation interval is at led5tplus .xpressmns S'm' ar to ( ) can be obtained for the other
the channel delay spread. signal vectors involved in (7).
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3) Sampling Faster Than the Chip Ratehip-spaced sam-  stream, since the required stationarity of the,} still

ples in a chip-asynchronous system can lead to significantholds.

loss in SNR, as can be seen by comparing the energies (sum In our example, sampling &/7. yields two interleaved

of the squares of the components) of the desired vegtar versions of the model (7): the desired signal vector is given

in (5) and (8). To roughly quantify the loss, note that (9) by (5) in one version, and by (8) in the other. If these two

can be generalized to obtain a desired vector of the form chip-rate models are interleaved to form a single stream at
” 1 rate 2/7., we still obtain a model of the form (7) when

Vo1 = (1= 8)T s +6T" sy (10) using/an observation interval of leng®i’, except that the

when the delay of the desired bit from the left edge of the received vector is now of length 20 rather than ten.

observation interval ign + 6)7,., wheren is an integer In Section 1I-B, we note that the modeling done via

and0 < § < 1. Assuming that the two adjacent shifts of €xamples in this subsection [in particular, (7)] extends to

the spreading sequence are roughly orthogonal, the relatived general setting. This sets the stage for discussion of

energy of the vector compared fie, ||, the energy in the interference suppression schemes in Section lll.

chip-synchronous case is approximatély-(1—46)2. When

minimized ovel < § < 1, we obtain a relative energy éf B. General Model

(attained at = 3). Thus, for chip-rate sampling, there is @ The system model from the point of view of useis de-
worst-case SNR loss of approximately 3 dB, corresponding picted in Fig. 3. Throughout this paper, we will work with
tqahalf—chlp offset betyveen the chip timing for _the recelve_d the low-pass equivalent, or complex baseband, represen-
§|gnal due to the desired user, and the receiver samplingistion of passband signals. The symbol sequence changes
times. . . . at rate1/T and is multiplied by the spreading sequence
The SNR loss due to chip asynchronism can b_e aII_ewatedwhiCh changes ¥ times faster) at rate /7, resulting in
by obtaining more samples_, e.g., for an ob_servatlon interval 5 sequence at rate/7. being input to a wideband chip
[-1.5, 8.5], use overlapping integration intervals1[s, filter with impulse response)(t). This input sequence
—0.5], [-1, 0], [-0.5, 0.5], etc. This is equivalent 10 may pe complex, since the elements of the symbol or
sampling the chip matched filter at twice the chip rate. chip sequences may be chosen from a two-dimensional
An estimate of the SNR loss in this case can be obtained .onstellation. For example, in the 1S-95 downlink, the
by considering (10) again. Sampling at twice the chip gpreading sequence is based on a complex quadrature phase
rate is equivalent to obtalnmg two interleaved chip-rate gpift keyed (QPSK) constellation, but the symbol sequence
subsequences. While the noise samp!es for the overallig from a real binary PSK (BPSK) constellation. Letting
sample sequence are correlated, t_he noise samples for egc{iy(f) denote the frequency response of the chip filtét),
subseque.nce are.uncorrelated. Since t_he SNR (accounting,q chip filter is typically chosen such that( f)[?, which is
for the noise coloring) based on the entire sample sequencene frequency response of the cascade of the chip filter and
is at least as large as that for any of the subsequences, W&hip matched filter, is a Nyquist pulse at raj;.. Provided

consider the chip-rate subsequence that is closest to the chihip timing is available, this avoids interchip interference
timing of the desired user to obtain a worst-case value for o 4 given user. The rectangulgr(t) in Section I1-A is

the SNR loss. For this subsequence, we must hlave’ < an example of such a pulse, but in practice one might use
1/dor3/426< 12|n (10), >0 that the minimum value of  ises with better spectral properties, ed(f) is chosen
the relative energy=+(1—6)" occurs a = 1/4,3/4, and to be the square root of a raised cosine in the IS-95 system.

is given by 5/8. This corresponds to a 1 dB loss relativetoa | gt sk(t) denote the spreading waveform for usler
chip-synchronous system. In general, for a rectangular chip et g, (+) denote the effective spreading waveform for the
waveform, sampling at/7. for an asynchronous system  iih yser after going through the channel (which may be
would lead to an SNR relative to a chip-synchronous system gifterent for different users). The received signal due to the
of 10 log, o[(1/2m)*+(1—1/2m)?| dB, a loss that quickly 1. ser is then given by
becomes negligible as increases.

For the same observation interval, sampling at = .
results in a received vector of twice the length. %tﬁcnear ri(t) = Z b, 8k (t — KT)
receiverc operating on this vector would therefore also e
need to have twice as many taps, which can slow down thewhere 1/7 is the symbol rate and, ; is the nth symbol
convergence of adaptive implementations. One approachtransmitted by théth user. The net received signal is given
to this problem is to consider separately each of #he by the sum of the received signals duefoactive users,
interleaved streams of chip-rate samples corresponding toplus AWGN
sampling at raten /7., to apply algorithms designed for x
chip rate samples to each stream, and to then combine
the outputs of them algorithms in some manner. This r(t) = Z mk(t) + n(t).
is the approach implicitly adopted in the presentation of =t
the algorithms in Section Ill, which assumes chip-rate  As shown in Fig. 3, the received signal is converted to
samples. Note, however, that simple modifications of these discrete time after chip matched filtering and sampling. As
algorithms could also be applied directly to the high-rate in the examples, we consider use of a finite observation

(11)

2056 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 10, OCTOBER 1998



SYMBOL SEQUENCE
(kth transmission)

&

BASEBAND TRANSMITTED
SIGNAL (kth transmission)

CHIP FILTER V() —>

T

CHIP SEQUENCE
(kth transmission)

t=1T /m
DISCRETE TIME

CHIP MATCHED
| FILTER W{-1)

-~

ECEIVED SIGNAL

Fig. 3. System model from the viewpoint of usér

interval for each symbol decision. Lettingr,} denote
the vector of samples in theth observation interval,
as illustrated in Section II-A, we may write,, as the
sum of signal vectors modulated by symbols, together
with Gaussian noise. The signal vectors are simply the
effective spreading wavefornm, (¢t — »nT’) after filtering,
sampling, and windowing in a given observation interval.
The number of such vectors within a given observation
interval depends on the length of the interval, the duration
of the chip waveform, and the delay spread of the channel.
In particular, we can work with the following generic
equivalent synchronous model.

1) Equivalent Synchronous Modelfhe received vector
in thenth observation interval is ah-dimensional complex
vector given by

J
r, = bo[n]up + Z bi[nlu; +wy
j=1

(12)

wherebg[n] is the desired symbol for theth observation
interval anduyg is the desired signal vector. The symbols
{b;[n], 1 £ j < J} are interfering symbols, with corre-
sponding interference vectofs;, 1 < j < J}. The vector
w,, Is discrete-time Gaussian noise, which is colored if the
sample spacing is closer than the chip inte¥/al

Remark II.1: The notation in (12) is deliberately chosen
to be different from that in the examples in Section II-A in

order to emphasize the generic nature of the model. For the

example in Section II-A corresponding to an observation
interval of length2Z’, a comparison of (7) and (12) yields
that the desired biby[n] = b, 1, and that the interfering
bits b;[n]and1 < j < J consist of the ISI bitsh,_1 1
and b,1,1 from the desired user 1 and the MAI bits
bpn_1,1, bn 1, and b,41 1 from the interfering user 2, so
that J = 5 is the number of interference vectors. For chip
rate samples, the dimensidn= 2N. On the other hand,
for an observation interval of length synchronized to the
desired user,] = 2 (no ISI, and two MAI bits due to user
2) andL = N.

Remark I1.2: Different symbols of the same user, as well

as symbols from different users, are assumed to be uncorre-

lated, which implies uncorrelatedness for the symbgls],
bi[n], - - -, bs[n] in the equivalent synchronous model. Thus,

MADHOW: BLIND ADAPTIVE INTERFERENCE SUPPRESION
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E[b;[n]bi[n]] = 0 for j # k. This property is crucial for
distinguishing the desired vector from the interfering users.
Remark I1.3: The model (12) is applicable to any linearly
modulated system in which the symbol waveform and the
channel are time invariant. For instance, it also applies for
modeling intersymbol interference in narrow-band systems,
and therefore provides a simple framework for developing
a geometric understanding of blind equalization, as dis-
cussed in Section IV. It also brings out the close analogy
between ISI and MAI: each phenomenon simply contributes
interference vectors, modulated by interfering symbols, to
the received vector. The only difference is that ISI scales
with the desired user’'s power, and therefore cannot cause
a near—far problem. Finally, note that the model applies to
either finite or infinite observation intervals (the number of
interference vectord and the dimensiod. of the received

vectors are infinite in the latter case).

Remark I1.4: The adaptive interference suppression algo-
rithms considered here do not require explicit knowledge
of the interference vectors appearing in (12). It is not
necessary, therefore, to keep track of the spreading se-
quences and propagation channels for interfering users.
The only relevant property of the model is that the signal
vectors {u;} are the same for (or slowly varying over)
different observation intervals, due to our assumption of
short spreading sequences and time invariant (or slowly
varying) channels.

Remark I.5: Most receiver algorithms in category C3
(i.e., algorithms which do not utilize any information re-
garding the desired user) rely only on the time invariance of
the {u;} and the independence of tk&;[n]} for different
4 and n.” However, for receivers in category C2) (which
do exploit information regarding the spreading sequence
of the desired user), we require, in addition, a model for
the desired signal vecton, in terms of the spreading
sequence and the unknown channel. If this information can
be economically parametrized, blind adaptive interference
suppression can be achieved by fitting the parametric model
to the observed received vectofs,} so as to obtain a

"There are blind equalizers in category C3) that also exploit the memory
in the sequencér,, } [59], but we do not consider these here, since their
generalization to multiuser applications appears to be difficult.
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e Sampling Times

Fig. 4. Net chip response(t) due to a rectangular chip wave-
form.

3) Example: For a rectangular chip waveform, a single
path channel, &7 observation interval, and chip rate
sampling (13) specializes to

w =A3[(1—87T"s; + 67""'"151] (14)

wherer = (m + 87, (m an integer,0 < § < 1) is the
(unknown) delay of the desired symbol from the left edge
of the observation interval, and is an unknown complex
gain. This will be the example used in our numerical results.

Ill. BLIND RECEPTION BASED ON
SECOND-ORDER STATISTICS

receiver that preserves the energy due to the desired user Assume that the observation interval is large enough such

while suppressing MAL.
2) Model for the Desired Signal VectorConsider the re-
sponse to a single chip (i.e., a given element of the

that most of the energy from at least one symbol of the
desired user is contained in it. This is achieved, for instance,
by choosing an observation interval of length, plus the

spreading sequence for the desired user) at the output of theénticipated channel delay spread. Thus, the delay spread due
chip matched filter: given an ideal channel, this response to the channel causes little additional complexity in terms

is given by (a shift of)¢(t) = ¢(t) * ¢(—t). For the
rectangular chip waveform considered in Section llgf¢)

is a triangular pulse of widtRT,. (1. = 1), as shown in
Fig. 4.

of number of correlator taps if it is small compared to the
symbol intervall’. We consider the equivalent synchronous
model (12), modeling the desired signal vector as in (13),
where my and the coefficientgh,,} are unknown, and

The discrete-time response to a single chip depends onwhere the choice ofi/ depends on the anticipated delay

the relation between the chip timing of the user and the
receiver sampling clock. For chip rate sampling, the overall
response to a single chip for the sampling times shown

in Fig. 4 is(---,0,0, %, 2,0,0,---). This implies that

spread of the channel. Since blind reception cannot resolve
phase ambiguity, it is assumed that the desired user’s data
is differentially encoded.

Under the model (13) for the desired vector, a conven-

the discrete-time response to the spreading sequence is donal differentially coherent RAKE receiver (see [46] for

linear combination of two adjacent shifts of the spreading
sequence weighted b}lyand%, respectively. Restriction to
an observation interval simply corresponds to windowing

this response. Thus, for chip-rate sampling and an ideal

the original formulation of the RAKE receiver) is given as
follows. For a received vector in observation interwalet

Kin,n = {(T7s1, I'y) (15)

channel, each signal vector in (12) corresponds to (a denote the output of a correlator matched to the contribution

possibly truncated version of) a linear combination of two

of themth shift of the spreading sequence. The output of the

adjacent shifts of the spreading sequence for the associatedorrelator matched to the desired signal veatggiven by

user.
When the chip respons&t) has duration larger tha2il,
(e.g., for band-limited chip waveforms or due to channel

(13) is thereforey,, = S0 F =+ px ¥, .. The decision
statistic for differential encoding is given I#;, = Y,*_,Y,,.

Assuming that the shifts involved in (13) are approximately

distortions), the discrete-time chip response after sampling orthogonal, we may write

may have more than two nonzero elements. In this case, the
response to the spreading sequence is a linear combination

of several shifted versions of it. Define the desired symbol
bo[n] in the nth observation interval to be the symbol of

mo+M—1

2.

m=mg

Zn ~ |h"l|2X:;l, n—lX"l,n' (16)

the desired user with the largest energy in that interval. We  Our objective in this section is to estimdfe,,|? andmy

may write the desired signal vector as

mo+M—1

2.

m=myg

hon T ™1 (13)

Ug =

wheremoT, is the delay of the signal modulating the de-
sired symbol with respect to the left edge of the observation
interval, andM and the channel coefficien{s.,,,} depend

on the channel and the chip waveform. The receiver might

have an estimate df/, butmg and{#,,} are assumed to be
unknown by receivers in category C2). In many applications

so as to be able to apply (16), while replacing the matched
filter in (15) by an interference suppressing correlator.

In Section IlI-A, we discuss preliminary concepts in
linear interference suppression. A blind receiver algorithm
based on the CMOE version of the MMSE receiver is
given in Section IlI-B. Another algorithm based on sub-
space decompositions is given in Section IlI-C. Typical
numerical results for a particular CMOE-based algorithm
are presented in Section IlI-D.

A. Linear Interference Suppression

of interest, the channel delay spread is small compared to For the equivalent synchronous model (12), dst de-

the symbol interval, so that/ <« N.
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Orthogonal Projection the desired signal vectar, is linearly independent of the
- interference vectorsiy, ---, uy.

Desired Vector ug 3) Linear MMSE Detector:The MMSE detector mini-
mizes the MSE between the decision statistic and the
desired symbol, given byE[|(c, r,) — bo[n]?] in the
context of the model (12). The MMSE receivefivse
is closely related to the zero-forcing receiver, and satisfies

Interference Subspace Sy the following key properties [35], as described in Remarks

1.2—l111.4.

Remark lll.2—Maximization of SIRThe MMSE receiver
maximizes the output SIR and is superior to the zero-forcing

Py
s 0

Fig. 5. Geometry underlying zero-forcing receiver.

ug, -, uy. Let PLsug denote the projection oy receiver in that respect. Moreover, the MMSE solution is

orthogonal to the interference subspace, as illustrated inye|l defined even when the zero-forcing solution does not

Fig. 5. _ exist (i.e., when the linear independence condition is not
1) Decorrelating (Zero-Forcing) Detectorif the projec- satisfied).

tion PLs,uo is nonzero, then a linear correlator chosen  Remark 11l.3—Performance at High SNRis the noise

along this direction forces the contribution of the interfer- |ayel goes to zero, the MMSE receiver tends to the zero-

ence to zero while preserving some of the energy of the forcing receiver (if the latter exists). This means that the

desired vector. Thus, such a receiver can be written as asymptotic efficiency and near—far resistance of the MMSE
czr = aPrs,ug 17) and zero-forcing receivers are the same. '

Remark lll.4—Performance in Near—Far Regime [35], [44]:
where « is an arbitrary scale factor. Application of this Even for nonzero noise levels, the MMSE receiver forces to
concept to ISI suppression results in the well-known zero- zero the contribution of any interference vector whose
forcing equalizer [47], while its application to MAI sup- energy is large compared to that of the desired vector. That
pression results in the decorrelating detector studied byis, {cvmsk, u;) — 0 as (|lu;||*/|[uol|?) — oc. Thus,
Lupas and Verdu [30], [31]. The adjectives decorrelating if all interference vectors are strong, the MMSE receiver
and zero-forcing will be used interchangeably in the sequel. again degenerates to the zero-forcing solution. Otherwise it

2) Near—Far ResistanceChoosing the correlator along forces interference contributions to zero to different extents
the orthogonal projectiorP1 s, u, rather than along the to optimize the tradeoff between noise enhancement and
desired vector implies some loss of signal energy relative interference suppression.
to the noise energy at the output of the detector. This in 3) Computation of the MMSE Solutionfhe MSE is a
turn implies, for Gaussian noise, that the exponent of decayquadratic function ofc, and the minimizing solution is
of error probability with £, /N, is reduced by the factor readily obtained as [16, Ch. 5]

(tj)y which the signal energy is red_uced. For any ml_JI'Fluser eanse = RLiig (19)
etector, such a factor is called its asymptotic efficiency
[69]. The worst-case value of the asymptotic efficiency over where R = EJ[r,r//] is the statistical correlation matrix
all possible interference amplitudes is called the near—far for the received vector andy, = E[bj[n]r,] is the cor-
resistance [31] of the detector. Since the decorrelating relation of the desired symbol with the received veétor.
detector projects the received vector orthogonal to the Assuming (as in Remark 11.2) that the symbéls[n]} are
interference subspace, its performance is independent ofuncorrelated, we havé, = uo.
the interference amplitudes. Thus, the near—far resistance 4) Training-Based Implementatiorf-or an adaptive im-
n equals its asymptotic efficiency and has a geometric plementation, the statistical averaBecan be replaced by

interpretation given by the following expression: an empirical averag®, for example
[P+ 5,10l L1 X’
n= s (18) R=—— r,r 20
ol Nirs 2 (20)

The near—far resigtance is therefore the energy of the COM-(the factorl/M; s is unnecessary, but is inserted to make
ponent of the desired vector orthogonal to the interference the ayeraging interpretation transparent). Furthermore, if a
subspace relative to the energy of the desired vector. training sequencébo[n]} is available, then we may replace

Alternatively, by choosing the scale factarin (17) S0 he statistical averaga, by an empirical averagéy, for
that the size of the desired vector's contribution to the example

detector output is fixed,/n may be thought of as the noise

L . Mys
enhancement factor. This is the commonly used interpre- o — 1 i b [n]r (21)
tation in equalization applications, where the interference 0= Mg — ol™tn-
vectors are due only to ISI. "=
Remark Ill.1—Linear Independence Conditiofthe zero- 8Note that our use of the notatioR. differs from that in much of

. . . . . the literature on multiuser detection (e.g., see [70] and [71]), whdRein
forcmg detector exists if and Only if the Ortthonal ProJ€C-  denotes the matrix of cross correlations between the spreading waveforms

tion P15, ug is nonzero, which in turn is true if and only if  of the different users.
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Plugging (20) and (21) into (19) comprises the LS im- Correlator
plementation of the MMSE receiver, antll;,s denotes c=’1‘10+x Ac; X
the number of symbol-rate iterations. For time-varying D
channels, it may be more appropriate to use an RLS ':
implementation [16] in which the arithmetic averages in !
(20) and (21) are replaced by exponential averages that ' \

gradually forget the past. A lower complexity adaptive \\
mechanism is the LMS algorithm resulting from stochastic P la p Nominal Vector
gradient descent based on the MSE [16], but we have found s, Yopm T U,

its convergence to be too slow for wireless applications,
especially in near—far regimes. For further results on LS
and RLS implementations in the context of CDMA, see
[21] and [45]. Interfercnce Subspace SI

Remark III.!—:;—Towa_rd a Blind Ad_aptlve !mplementaﬂ_on: . 6. Geometry of interference suppression using CMOE de-
The estimateR used in the preceding LS implementation tector.
does not require any knowledge regarding either the desired
or interfering users. The only function of the training . . . .
sequence is to provide the estimate (21) of the desired signalScalecj version of this receiver could be chosen to satisfy
vector. Thus, a blind adaptive implementation of the MMSE (c, ) = 1. (23)
receiver only requires that we can obtain an estimate of the
desired signal vector in some other fashion. This leads to This constraint can be interpreted geometrically as fol-
the blind receiver algorithms in the next two subsections. lows. Any c satisfying (23) can be decomposed into two

orthogonal components

B. CMOE-Based Blind Receiver c=1o+ X, X 0rthogona| tolg (24)

In Section IlI-B1, we present background material re- L o .
garding the category C1) receiver in [18], which assumes where We assume, for s_lmpllcny, .th?b 'S norma!lzed o
that the channel seen by the desired user is known to thehave un_lt norm. Clearly, if the _nomlnab IS propo_rt|0nal to
receiver. In Section IlI-B2 this is extended, as in [33], to the desired vectong, the contribution of the desired vector

a category C2) receiver, which estimates the propagation© the receiver output is not affected by the choicexof
channel of the desired user. On the other hand, Fig. 6 shows that, providig has a

1) Category C1) CMOE ReceivefErom (13) or (14) it is nonzero projection orthogonal to the interference subspace

clear that if the receiver knows the spreading waveform and Sr, it is possible to choos& so as to synthesize a zero-
has an estimate of the propagation channel of the desiredforc'ng receiverc, which nulls out the contribution of the
user, it can obtain an estimate, (henceforth termed the Nterference vectors. L

nominal signal vector) of the desired signal veaigr This The CMOE receiver is chosen to minimize the average

provides a method for computing an estimate of the MMSE CUtPUt energyE(|(c, r,)|*], subject to the constraint (23).
correlator without a training sequence as follows: Since (23), or equivalently (24), freezes the contribution
of the desired vector to the output, the CMOE receiver can

N

eymvise = R (22) only suppress the sum of the noise and interference energies
A at the output. This is precisely the quantity being minimized
whereR is computed as in (20). by the MMSE receiver, except that the latter also optimizes

Remark I11.6: Since any scalar multiple of the MMSE  the scaling of the contribution of the desired vector to the
correlator leads to the same SIR, the nominal vedtgr output so as to track the desired symbgln], rather than
can be an arbitrary scalar multiple of the true veabgr any arbitrary scalar multiple dfy[n]. This implies that the
The resulting scaling of the correlator output (possibly CMOE receiver is proportional to the MMSE receiver (see
by a complex number) can be handled using differential [18] for a formal proof).
encoding of the desired symbol sequence. Thus, for a single Using the similarity of the triangles oab and obc, the
path channel, (14) indicates that it is only necessary to know length ||c|| of the correlator in Fig. 6 can be calculated as
the timing and spreading waveform of the desired user to 1/(||P1s,{||) (the length of the nominal vectdfi,| =
obtain the nominal vector. 1). Thus, the smaller the projection of the nominal vector

The category C1) receiver (22) forms the starting point orthogonal to the interference subspace the more the noise
for obtaining receivers in category C2) that estimate the enhancement (which is proportional ti||?) associated
propagation channel. In order to see this, it is necessary towith suppressing the interference.
view (22) as the solution to an optimization problem, as  2) Effect of Mismatch:In order to extend the CMOE

described in the following. receiver to settings in which the propagation channel of
Any linear receiver that does not null out the desired the desired user, and hence the desired signal vector, is
vectoruy satisfies(c, ug) # 0. Thus, if an estimatdi, of unknown, it is first necessary to address the issue of

the direction of the desired signal vector were available, a mismatch, i.e., when the receiver does not have exact
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knowledge of the direction of the desired signal veaigr

We provide a brief discussion of this issue here, referring
the reader to [18] and [33] for details. Lé&t,, denote the
one-dimensional subspace spannedipyReplacingSy by

Su, N Fig. 6, we see that suppression of the desired signal
vector is possible if the orthogonal projectidmLSu0 g IS
nonzero (i.e., if the nominahg is not exactly proportional

to ug). However, if the mismatch (and hence the length
of the orthogonal projection) is small, then reasoning as
before, the length ot required to achieve this is large,
which leads to more noise enhancement, which in turn
leads to increased output energy. Thus, the MOE criterion
in itself can prevent excessive signal suppression by virtue
of the tradeoff between signal suppression and noise en-
hancement, provided that the noise levels are moderate. If
the noise levels are low, the amount of signal suppression
due to mismatch may be excessive unless it is prevented b
some explicit constraint. One possibility, explored in [18]
and [33], is to put a constraint ojix||: ||x|| is allowed

to be large enough to permit the interference suppression
depicted in Fig. 6, but not the analogous suppression of the
desired signal. Mathematically, incorporating the constraint
on ||x||* can be interpreted as adding fictitious noise to the
system, since the constraint resultsRnbeing replaced by

R + I, wherev is the Lagrange multiplier corresponding
to the norm constraint. See [18] for details of this approach
to dealing with mismatch.

When the mismatch can be modeled accurately, the signal
degradation due to mismatch can be completely eliminated
without the need for a norm constraint. Consider the
expression (13) fon,, and suppose that the receiver has a
coarse timing estimate, so that, is known. If the receiver
knows the multipath spread/ but does not know the
channel coefficient§’,,, }, then it only knows thati, lies
in the subspace spanned By™s;, ---, 7™ +tM~1g; In
general, suppose that the desired signal vector is not known
perfectly but is known to lie in a subspasg, of dimension
possibly larger than one. Any nominél chosen in this
subspace is vulnerable to mismatch. However, the CMOE
algorithm can be modified to get around this problem by
constraining the correlator to be of the form (24), where
x is chosen to be orthogonal to the entire subspSge
Thus, if the desired vector is indeed in this subspace, it
is unaffected by the choice of. This idea, which was
proposed independently by several authors, including [22],
[64], and others, is depicted in Fig. 7. Note that constraining
x in this fashion reduces the interference suppression
capability of the detector. However, if the dimension of
Sy, 1S small, this reduction is expected to be small. Finally,
note that mismatch occurs again if the knowledge of the
subspaceS,, in which the desired vector lies is imperfect
(e.g., due to timing errors or larger than anticipated delay
spreads), so that it may be necessary to impose a nor
constraint in addition to subspace constraints.

Remark Ill.7—Extending CMOE to Obtain Category C2)
Receivers:Now that we can handle mismatch, the basic
idea behind estimating the propagation channel of the
desired user can be stated. Run the CMOE algorithm

MADHOW: BLIND ADAPTIVE INTERFERENCE SUPPRESION
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Fig. 7. Geometry of additional constraints in the CMOE formu-
lation for handling mismatch. Ideallysy,, is chosen large enough
S0 as to contain both the nominal and the desired vector.

y(modiﬁed using the methods mentioned above to deal with a

controlled amount of mismatch) under different hypotheses
regarding the propagation channel of the desired user.
The hypotheses that are grossly incorrect lead to large
mismatch, which results in suppression of both the desired
and interference vectors without much noise enhancement,
thus giving small values of MOE. The good hypotheses,
on the other hand, have less mismatch with the true signal
vector, and can be identified because of their larger MOE
due to the desired signal energy at the output and the noise
enhancement due to suppression of the desired signal. The
CMOE solutions under the good hypotheses are then used
to obtain an interference suppressing receiver. One possible
algorithm based on this idea is given next.

3) Category C2) CMOE ReceivetVhile there are many
possible variations of CMOE based reception, we give one
possible algorithm that is based on the assumption that the
multipath delay spread of the channel is small compared
to the symbol interval. The algorithm is new, being a
generalization and improvement of the algorithm in [33],
in the sense that it uses subspace constraints to handle
mismatch more effectively. Note that more complicated
algorithms might be needed for channels with significant
delay spread.

The uncertainty regarding the propagation channel is
expressed in terms of the following hypotheses.

HypothesisH,,: The desired vecton, has a significant
component alondZ ™s;, the mth shift of the spreading
sequence. Under this hypothesis, the desired vagidies
in the subspace,, spanned by the shiftss — (M — 1)
throughm + (M — 1) of the spreading sequeneg, since
the maximum multipath spread is assumed toMe

An algorithm for identifying the significant multipath
components consists of solving a binary hypothesis testing
problem for eachn, namely, testing hypothesis$,,, against
the hypothesis that thenth shift is not present. The

malgorithm can be decomposed into the following steps,

where we omit the detailed computations involved.

Step 1) Computation of CMOE Solution Under Hypothesis
H..: Under the hypothesi#i,,, set the nominaﬁé’") =
T™s;, consider a correlator of the form

c= ﬁé’") + x, x orthogonal toS,, (25)
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and minimize the output energy subject to (25). Denote
the correlator thus obtained hy,, and the corresponding
MOE by (..

Assuming that the CMOE solution und#,, suppresses

Remark I1l.11—Improved Algorithm for a Single Path Chan-
nel: For a single path channel, the form of the desired
signal vector is given by (14). Assuming an observation
interval of 27", m can range from 0 téV — 1. In this case, it

the interference and does not suppress the desired signal ifs possible to obtain better performance using a refinement

the hypothesis is true, the MQOgE;, gives a coarse estimate
of |k, |*, whereh,, is the unknown channel coefficient.
If the hypothesis is not true, i.eh,, = 0, then the
MOE will be small, and again gives a rough estimate of
|hm|?. Furthermore, the CMOE solution,,, under H,,

is simply a correlator matched to theth shift, plus an
interference suppressing orthogonal componentThus,
one simple method of combining the CMOE solutions under
the different hypotheses is to mimic (15) and (16), with
replacingZ ™s;, and(,, replacing|h,,|?.

Step 2) Combining the CMOE Solution$he  decision
statistic for thenth symbol is given by
N-1
Ly = Z Cm(cma I‘n_1>*<Cm, rn>- (26)
m=0

Remark I11.8—Improving the Combining Rulés  better
decision rule might be to discard hypotheses corresponding
to small values of MOK,, rather than rely on the MOE
weighting to deemphasize them. Other heuristics include
considering only hypotheses within the maximum delay
spread of the hypothesis with the highest MOE, or to
consider only a cluster o/ contiguous hypotheses in the
summation (26), with the cluster chosen to maximize the
net estimated energy, sa&y,.

Remark Ill.9—Relation to Previous WorkEhe solution to
the original CMOE problem with constraint (24) and norm
constraint]]x||2 < x is given byc = (R + 1)~ 1i,, where
v > 0 is adjusted so as to satisfy the norm constraint [18].
The idea behind the category C2) receiver in [33] is to use a
fixed small value of» to compute a CMOE-based receiver
under each hypothesis as follows;, = (R + »I)~!al™.

The reasoning is as follows: the small valueroprovides
robustness against mismatch for the good hypotheses, but i
not enough to prevent mismatch under the bad hypotheses
For heuristics on the choice of see [33]. This approach
has the disadvantages that, despite the norm constraint

of the preceding algorithm. Leif,,, denote the composite
hypothesis corresponding ton, ) in (14). Under H,,,
the desired vector lies in the subspat;g spanned by two
consecutive shiftg ™s, and7(™*Vs, of the spreading
sequence. Running Step 1) of the previous algorithm for
ﬁé’"’ %) equal to a normalized version of (14), we can obtain
a closed form expression for the CMOE as a function of
m and §. Maximization over0 < § < 1 for eachm, aAnd
then maximization overn, gives a delay estimatgn, 6).
The corresponding CMOE solutichis then given by the
solution to (25) and can be used for differential detection
as before.

Remark Ill.12—Faster than Chip Rate Samplinig this
case, in order to avoid slowing down the adaptation (i.e.,
estimation and tracking di), parallel versions of the algo-
rithm could be run on chip rate subsamples, as mentioned
in Section Il, and the MOE solutions for all hypotheses for
all versions could be combined.

Remark I11.13—Ambiguity in Symbol Timindepending
on the multipath spread, some of the correlators in (26)
may correspond to earlier or later symbols of the desired
user. This ambiguity can be resolved by correlating (over
a number of observation intervals) the noncoherent outputs
(Cm, Tn—1)*{cm, r,,) Of @ reference correlaton against
shifts of other outputs(c;, r,,—1-a)*(c;, rn_a), Where
the range ofA = 0, 41, --- considered depends on the
anticipated channel delay spread as a multiple of the symbol
interval. Choose for eachthe value ofA that provides a
peak and use that value in the summation (26).

C. Subspace-Based Blind Receiver
We begin with background on signal and noise subspaces,

St"ollowed by an algorithm which is an extension of the

timing acquisition algorithms presented in [5] and [55].
More recently, subspace-based representations of multiuser
detectors have been considered in [73].

some desired signal degradation still occurs under the good

hypotheses, and that the choice ofrelies on heuristics.
Note that heuristics are not needed for the results in this

D. Basic Subspace Notions
For the equivalent synchronous model (12), thex L

paper, since we assume that the mismatch can be modeledorrelation matrixR. for this model (recall thaf. denotes
accurately and handled using subspace constraints as inthe dimension of the received vectey, in this generic

(25), and can therefore set= 0.

Remark 11l.10—Computations Required in the Algorithm:
In either an LS or RLS formulation, it is necessary to
computeR ™! [or (R+21)~! if a norm constraint is being
imposed], wherd is the empirical correlation matrix. The
correlatorse,,, solving the CMOE problem with constraints
(25) under the hypothesdd,,, can be shown to be linear
combinations of the{p; = f{—lﬁél)}. For obtaining the
coefficients of the linear combinations, we need computa-
tion of the correlationga{™, 0"y and (p,,, ") for all
pairs (m, 1).

2062

model) is given by

J
R = Z ujuf + o3I
=0

(27)

assuming that the noise is white with variangé per
component. Consider an eigendecomposition Rofinto
orthonormal eigenvectorsy, ---, vy with corresponding
eigenvalues\,, -+, Ar. The eigenvalue\; can be inter-
preted as the expected (desired and interference) signal
plus noise energy in the direction;. Thus, the minimum
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value of each); is o2 since the latter is the noise energy plication of MUSIC for CDMA timing acquisition was
is any direction. The signal vectonsg, ---, u; span a independently proposed by Bensley and Aazhang [5], and
signal subspace of dimensialy < J + 1. Since the signal by Stromet al.[55]. The algorithms in [5] and [55] consider
vectors contribute energy along the eigenvectors spanningan observation interval of length, so that one complete
the signal subspace, the associated eigenvalues are largegymbol of the desired user is not guaranteed to fall in
than o2, On the other hand, the eigenvectors spanning the the observation interval. While this is enough to provide a
L —d, dimensional noise subspace all have eigenvaifes  timing estimate, direct computation of a demodulator is not
The preceding arguments imply that an eigendecomposi-possible in the framework of [5] and [55]. The algorithm
tion of an estimatd of the correlation matrix can be used presented here is a simple generalization, applying essen-
to estimate the signal and noise subspaces. If the numbetially the same algorithm to an observation interval of length
of signal vectors/ + 1 is known, and if the vectors may 27'. This yields a receiver in category C2), i.e., provides a
be assumed to be linearly independetiten we would set  demodulator in addition to a timing estimate. As in [5],
ds = J + 1. If ds is not knowna priori, then it can be [55], we consider only the case of a single path channel,
estimated using information-theoretic criteria [75]. In any which corresponds to the model (14) for the desired signal
case, the eigenvectofs, - --, V4, associated with the, vector. However, we comment on possible extensions for
largest eigenvalues are assumed to span the signal subspacmultipath channels in Remark [11.18.
and the remaining eigenvectors provide an estimate of the The algorithm is described in the following steps.
noise subspace. In practice, eigendecomposition may be Step 1) Estimation of Signal and Noise Subspaces:
replaced by subspace tracking algorithms such as [6], [54], Compute estimates of the signal and noise subspaces using
and [78] for time-varying channels. eigendecomposition oR, as indicated in Section IlI-D.
Remark Ill.14—Using Subspace Methods to Obtain Cate- This yields a matrixV, whose columns are the orthonormal
gory C2) Receivers:Having estimated the signal and noise eigenvectors spanning the estimated signal subspace, and
subspaces, the problem reduces to one of finding gooda corresponding matri®/,, of orthonormal eigenvectors
fits among different hypothesized propagation channels (or spanning the estimated noise subspace.
equivalently, among hypothesized desired signal vectors) Step 2) Minimization of Projection onto Noise Subspace:
with the estimated signal subspace. One example is theFor each nominal parameterized by, §) as in (14) and
MUSIC algorithm, which minimizes the projection of the normalized to unit energy, the energy of the projection onto
hypothesized signal vectors onto the estimated noise sub-the noise subspace is given by [5], [55]

space (or equivalently, maximizes the projection onto the I

estimated signal subspace). A version of this algorithm is (ﬁé’"’é)) anf,ﬁ’ﬁé"” %

described next. &(m, 6) = N (29)
Remark I1l.15—Subspace-Based Computation of MMSE Re- (fl(()m’ )) o™

ceiver: The spectral decomposition & gives o
Minimize £(m, §) over0 < ¢ < 1 for eachm, and then

L L h
_ o H -1 1w minimize overm. This gives the timing estimatgrn, 6).
R= z_:l Ajvgvj and R = z_; A ViV - Step 3) Computation of CMOE Solutiof€ompute  the
’ ’ CMOE solution (25) forc with 4™ replaced bya{™ .
This can now be used for differential detection.
Alternative to Step 3) Signal Subspace Receiv@nce a
subspace decomposition has been obtained, attention may

Applying the formula (19), and noting that the desired sig-
nal vector is orthogonal to the eigenvect®ts 1, ---, v,
spanning the noise subspace, we obtain that [73]

L1 ds 4 be restricted to the signal subspace when computing a
CMMSE = Z N, ViV to = Z v (vj, uo)v;. (28) correlator based on the timing estimate obtained in Step
j=t 7 j=1 Y 2. In particular, we may use the formula (28), witty
Only the signal subspace eigenvectors appear on the exfeplaced byﬁém"s), andv;, A; replaced by their estimates.

treme right-hand side of (28), which gives explicit expres- Remark Ill.16—Effect of Errors in Subspace Estimatidh:

sion to the intuition that any correlator that has a component the dimension of the signal subspace is underestimated, the
in the noise subspace is suboptimal, since it only adds true desired signal vector may have a significant component
noise to the output. The formula is particularly useful in in the estimated noise subspace, thereby leading to possible
the presence of mismatch, since restriction to the signal errors in timing estimation due to a “miss” of the correct
subspace makes suppression of the desired signal mordiming values. On the other hand, overestimation of the sig-

difficult. See [73] for detalils. nal subspace dimension means that nominals corresponding
to incorrect timing have a larger component in the signal
E. Category C2) Subspace-Based Receiver subspace, thereby making “false alarms” more likely. The

The receiver is based on the MUSIC algorithm [50], €ffect of estimation errors on subspace based algorithms for

originally invented for array processing applications. Ap- CDMA therefore deserves detailed investigation.
o . . _ Remark Ill.17—Relation of Subspace Methods to CMOE:
Linear independence might be a reasonable assumption for CDMA h d b hod | | lated
systems in which the signal vectors are shifts of spreading sequences withT € CMOE an Sg space methods are closely re ate . For
good auto- and cross correlation properties. a nominalig, application of the spectral decomposition of
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R yields that the MOE with constraint (24) is given by
1/MOE =9oR ™ty

~

N~ L[y a0l
2NN
ds A ~

N~ L vy a0 | [P, ol
“ )\j )\j 0'2

<

where Ps, 1y is the component of the nominal in the noise
subspaceS,,. In a high SNR regime, the signal subspace
eigenvalues{};, 0 < j < d,} are much larger than
the noise variancer?, so that 1/MOE is dominated by

|| Ps, t0]|2. Choosing the largest MOE, or smallest 1/MOE,
among timing hypotheses corresponding to different nomi-
nals is therefore roughly equivalent to a subspace algorithm
that chooses the nominal(s) with the smallest projection in

problem is eliminated in the new algorithm, since it explic-
ity models the mismatch, and uses subspace constraints
of the form (25) to eliminate it° Since the performance of
the new algorithm improves as the interference gets weaker
(as it should), we consider only the following two systems:
a system withK' = 10 equal power users (perfect power
control), and a system witli{’ = 6 users, with the five
interfering users each 20 dB stronger than the desired user
(severe near—far problem).

A fixed, but random, choice oK spreading sequences is
used in each case; results for other choices are qualitatively
similar. The observation interval is of leng#¥". For the
kth user, denote the delay, of this symbol from the left
edge of the observation interval by. The delaysr; are
chosen randomly if0, 7'] and then kept fixed. Chip-spaced
sampling is used, so that the received vectgorsand hence
the CMOE correlator, are of lengthV = 30. Two or more

the noise subspace, where this equivalence becomes exagiarallel chip-spaced versions of the algorithms could be run

aso? — 0.

Remark 111.18—Extensions to Multipath Channelor
large delay spreads (of the order of a symbol duration),
one approach is to find the shifts”'s; of the desired
spreading sequence with small projections onto the noise
subspace, and to then apply a suitable CMOE formulation

to handle the signal loss due to chip asynchronism, but we
do not consider that option here.

An evaluation of the steady-state performance of the
algorithm can be obtained by running it using the statistical
correlation matrixR. For both systems considered, this
yields timing estimates withi®.027,. of the true values.

based on the assumption that these good shifts span the'he SIR attained by demodulators based on these steady-

space in which the true desired signal veatgrlies. This
approach has not been explored in detail in the literature.
For small delay spreads, it is possible to hypothesize desired
signal vectors of the form (13), wher&/ is small, and
to try to estimate the channel coefficientd,,} using

state estimates is within a dB of that of the ideal MMSE
receiver, where the loss in SIR occurs due to the subspace
iconstraints imposed to deal with mismatch.

Next, we consider an LS adaptive implementation based
on an estimat& of the correlation matrix as in (20). We

an LS fit within the signal subspace. This approach has plot in Figs. 8 and 9 the SIR, averaged over 100 runs,
been explored in [28] for synchronous CDMA and in [61] achieved by the CMOE receiver as a function of the number
for asynchronous CDMA (the latter employs subspace Mrg of (symbol rate) LS iterations. As other benchmarks,
decomposition for the received signal corresponding to an we indicate the SIR of an LS version of a training based
observation interval several times larger than the symbol MMSE receiver (averaged over the same realization as our
interval, unlike the earlier work on subspace based timing blind algorithm), and the SIR of the LS version of the

acquisition in [5], [55]).

F. Numerical Results
Extensive numerical comparisons of different receiver

[category C1)] blind receiver in [18] with perfect timing
information. Finally, we plot the largest achievable SIR,
that of the ideal MMSE receiver.

Some key observations from the numerical results are as

algorithms in realistic settings are beyond the scope of follows. Further discussion is given in Section V.
this paper, since our primary purpose here is to explain
the conceptual framework for obtaining blind algorithms.
Hence, we only give a few numerical results to indicate
the potential of the methods discussed here. We consider a
category C2) blind CMOE receiver optimized, as indicated
in Remark I11.10, for an asynchronous CDMA system with
a single path channel for each user. The model is similar to
that in [33], with processing gaitW = 15. The algorithm
in [33] uses a norm constraint to deal with mismatch, so
that the CMOE criterion concentrates on suppressing the
desired signal (the extent of signal degradation depends on
the amount of mismatch and on the strictness of the norm
constraint) when the interference is weak, since this strategy
minimizes the output energy. For strong interference, on the
other hand, suppressing interference is a more effective way 1%Note that the mismatch problem (and the role of norm constraints in

. . . .~ the algorithm) could resurface if there were too much uncertainty regarding
of reducmg the output energy. This leads to the algorlthm N the desired signal vector to be completely captured using constraints such
[33] actually performing worse for weak interference. This as (25), e.g., for channels with large multipath spread.

1) The conventional matched filter (whose performance
is not plotted in the figures) is useless in the near—far
regime, attaining an SIR of-16 dB. Even with
perfect power control it provides poorer performance
than the receivers considered here, obtaining an SIR
of about 5 dB (which is about 10 dB worse than the
ideal MMSE receiver). Note that the matched filter
has the advantage of perfect timing information.

Fig. 9 shows that both the blind- and training-based
receivers are near—far resistant.

For both systems, the category C2) receiver (which
uses a timing estimate to compute the correlator)

2)

3)
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Fig. 8. SIR (dB) for LS versions of category C1) and C2) blind
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equal power interfering users.
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Fig. 9. SIR (dB) for LS versions of category C1) and C2) blind

400

receivers and a training based receiver, compared with that of the
ideal MMSE receiver. The correlators have 30 taps. There are five

interfering users, each 20 dB stronger than the desired user.

obtain a near-perfect estimate of the desired vector.
In view of these remarks, we recommend switching
from blind adaptation to decision-directed MMSE
adaptation as soon as possible.

G. Category C3) Receivers

Since the same correlation mati can correspond to
infinitely many possibilities for the choice of signal vectors
{u;} in the equivalent synchronous model (12), it is clear
that second-order statistics alone cannot be used to discrim-
inate between different users without some prior knowledge
about the user(s) of interest. However, for a system with
only one user, it is possible to use second-order statistics
for category C3) reception by exploiting the relationship
between the symbols and the vectors (corresponding to
desired signal and ISl) appearing in successive received
vectorsr,, andr,,;. To the best of our knowledge, the
first authors to consider blind equalization and channel
identification using second-order statistics were Taig
al. in [59]. Slock [52] applies second-order methods to
a multiuser system, using a linear prediction framework
to partially identify a multi-input, multi-output system
(Slock points out that the remaining uncertainties would
need to be resolved by higher order techniques). For a
survey of further work along these lines see [60], and for
applications of similar ideas for blind channel identification
and demodulation for a system with a single DS signal see
[65].

IV. COMMENTS ON HIGHER ORDER STATISTICS METHODS

Consider the equivalent synchronous model (12). We
first give a (new) limiting result which makes evident
the theoretical potential of HOS methods for separating
digitally modulated sources. We then comment on the
relevance of two specific HOS methods, source separation
based on fourth-order cumulants and CMA, to CDMA
applications.

A. A Limiting Result
Assume that the symbols;[»] in (24) are independent

4)
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incurs no performance loss relative to the category random variables chosen from a known discrete alphabet. It
C1) receiver (which has perfect timing information). is possible to identify an arbitrarily large number of signal
Thus, the timing estimate provided by the algorithm Vvectors {u;} using HOS methods (allowing the orders
in Remark 1I1.10 is accurate even with a severe Of the statistics used to be arbitrarily large). That is, the
near—far problem. numberJ + 1 of identifiable signal vectors tends to infinity
The training-based receiver converges much faster ven though the dimensiah of the received vectorsr;, }

than either blind receiver. It appears that this is IS fixed. _ _
because the errors in the LS estimates (20) and For an informal proof of this result_, see the A_ppendlx.
(21) of the correlation matrix and desired vector, _emark IV.1—CaveatsThe preceding result is purely
respectively, somehow conspire to give a better ap- :he(_)lretlcal, n _thatl practt|cal al_?r? rithms toblldentlfy Ia rb|t
proximation to the steady-state MMSE correlator than rarfly many signai vectors with reasonable complexity
; . . ) . and convergence speeds (i.e., number of received vector
in a blind algorithm which does not use a LS estimate

of ug. The blind receivers use the LS estimate (20) of  1iconversely, we have checked that using a perfect estimae ad

the correlation matrix, but the category C1) receiver a nhoisy LS estimate (21) of, also performs worse than the training
based implementation using noisy LS estimates of BtAndug, giving

uses perfect knOWIedge of the (_jes[req Vethr' while further support to our claim of a benevolent interaction between the errors
the category C2) receiver uses its timing estimate to in the LS estimates aR. anduy.
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samples(r,, } required for accurate estimation) are probably of u; orthogonal to the space spanned by the remaining
infeasible. Furthermore, even if arbitrarily many signal signal vectors. Ifv; # 0, then any scalar multiple of it
vectors can be identified, reliable demodulation using linear provides a zero-forcing receiver for demodulatiorbgffn].
receivers is not possible if the linear independence condition In particular, in the absence of noise, it is possible to choose
stated in Section Il is not satisfidd.Note also that the  a correlatorc; alongv; such that(c;, r,,) = b;[n], which
convergence of HOS-based algorithms is more sensitive tois constant modulus. Thus, the zero-forcing receivers for
noise than SOS-based algorithms, especially as the order okach symbob;[n] (when they exist, i.e., whewn; # 0) are

the statistics increases. Algorithms that specifically exploit local minima of the CMA cost function. In the presence of
the finite alphabet property for source separation have beennoise, the MMSE receivers corresponding to the different

proposed in [58]. signal vectors approximate the local minima of the CMA
cost function (see [25] in this issue for a discussion of how
B. Fourth-Order Cumulant-Based Methods the CMA cost function approximates the MSE locally). See

, . [10], [27], and [51] for approaches to characterizing the
In theory, the blind source separation methods basedlocal minima of CMA and other blind equalizers.

on fourth-order cumulants (see [7]), although originally Remark 1V.2—Global Minima for Infinite Length Equaliz-

intended for antenna arrays, apply directly to the model ) ; - o .
(12). Indeed, these methods have been shown to be able &S For a single digital source, an infinite observation

identify “more sources than sensors,” which translates in Interval implies that the (ipfinitely many) signal vectors
the context of (12) to the numbef+ 1 of signal vectors % are S|mply shifted versions c.)f each other, as are the
oxceeing the dmension o e received vector,). _ ISPON0 Sei0 oes S T, o o
This is a practical corroboration of the limiting result stated the orecedin gresult are equall o?)d from the boint of
previously. Fourth-order methods (possibly enhanced by ". pf fo?mance This r?aaso);]'r? does not a IID either
prior knowledge regarding spreading waveforms) deserve:fIew ?. per b > 1 I 'fg " pply €l
further investigation for CDMA applications, especially for ora Inite o serva_tlon mterya or for a mu tiuser system,
training antenna arrays when precise array calibration is not>"Mce the zero-forcing solutions for different ISI and MAI

available, or when the angular spread of the multipath for sy;nbolsklnl\?r; otE)s.erv.atl.ont'lnterE\S/atl are nft ec?u':)l{a!en;].
a given transmission is large. emark IV.3—Discriminating Between Local Minim

a multiuser context, we would like to arrive at the zero-
forcing receiver for a particular symbol of the partic-
C. CMA ular transmission of interest. A preliminary attempt to
CMA was first proposed in the context of equalization apply blind equalization techniques to a multiuser context
(i.e., suppression of ISI) [15], [62], and has been studied appeared in [43], but this paper did not satisfactorily
extensively since then (see [25] in this special issue for a address the issue of discriminating between different zero-
review). In view of the analogy between ISl and MAI, itis forcing receivers. Since then, several methods have been
natural to raise the question of the applicability of CMA to proposed in the literature for this purpose. One is to
multiuser applications since it is perhaps the simplest HOS- allow the algorithm to lock on to one user, and to then
based receiver algorithm. To this end, consider (12), which subtract or project out its contribution to the received vector
applies to either intersymbol interference or multiple-access [26]. The result is fed to a second algorithm, which is
interference. Assume that the symbaélgn]| are constant  expected to lock on to a second user, and so on. Another
modulus, i.e.|b;[n]| = 1 (although CMA is known to work  approach is to run parallel versions of CMA, coupled
for constellations that do not satisfy this property as well). by additional constraints that are designed to make the
CMA chooses a linear receiver that minimizes the  outputs of different versions uncorrelated [3], [8]. The
deviation of the receiver output from a constant modulus; objective is to use the uncorrelatedness of the symbols
in particular, consider the cost functiaB{[|(c, r,)|* — b;[n] to force different versions to converge to different
1]?}. The hope is that this cost function causes “locking zero-forcing receivers. Of course, the number of versions
on” to the contribution of a particular (constant modulus) needed might be reduced because of the fact that signal
desired symbol while making the contribution of interfering vectorsu; with small orthogonal projections; correspond
symbols (ISI and MAI) as small as possible. However, to zero-forcing receivers which constitute shallow minima
the cost function does not distinguish between desired and(especially at moderate noise levels, due to the noise
interfering symbols, which leads to a number of local enhancement associated with smaj) of the CMA cost

minima. function. Disadvantages of both approaches include slow
For the equivalent synchronous model (12), for< convergence and complexity, due to the large number of
J < J, let S; denote the subspace spanned by all signal parallel versions needed for multiuser applications (many
vectors except fot, i.e.,S; is spanned by, - - -, u;_1, MAI symbols) or for highly dispersive channels (many ISI
Wit1, -, uy. Let vy = Pnguj denote the projection  symbols). As an overall comment, searching for the zero-

forcing receiver for the desired symbol using such general
120n the other hand, for nonlinear receivers, the idea of “stripping,” or techniques may be impractical for CDMA applications,
successive interference cancellation, might lead to reliable demodulation where the number of signal vectors as well as the number

even without linear independence if the energies of the signal vectors are .
sufficiently disparate. of correlator taps is large.
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Remark IV.4—More on Constraintdf the propagation
channel and spreading sequence of the desired transmission
is known, it is possible to use a nominal desired vector to
constrain the correlator as in the CMOE algorithm.
Since the CMA cost function prevents the output from
being forced to zero, CMA has the advantage of being
more robust to mismatch than the CMOE algorithm.
Preliminary results in this direction were reported in [19],
where constrained optimization of the Sato cost function
E||{c, r,,)—sgn{c, r,,))|?] was shown to be more robust to
mismatch than the CMOE algorithm. Thus, the constrained
optimization of cost functions other than the output energy
under multiple hypothesized nominals is an interesting
option to explore in the context of blind signal detection
for CDMA. The practicality of algorithms based on fourth-
order cost functions such as CMA, however, may be limited
by their poorer convergence compared to algorithms such
as CMOE, which are based on second-order cost functions.

V. CONCLUSIONS
We conclude with the following comments.

1) The equivalent synchronous model provides a simple
tool for design and performance analysis of interfer-
ence suppression techniques, for CDMA as well as
for any system with ISI and/or MAI. In particular, it

5)

6)

fading, shadowing, and time variations due to the
arrival and departure of interfering transmissions.
While the blind interference suppression techniques
considered here naturally extend to systems with
antenna arrays, optimizing the complexity and con-
vergence associated with such extensions requires
further study.

Blind HOS-based reception techniques developed in
the context of equalization or source separation ap-
ply directly to the equivalent synchronous model
presented here. As such, the applicability of source
separation methods based on fourth-order cumulants,
or of constrained versions of CMA, to the context
of CDMA deserves further investigation. A limiting
result stated in Section IV also leads to the fol-
lowing intriguing concept: HOS-based methods can
(in theory) identify a very large number of signal
vectors, and nonlinear successive interference can-
cellation methods can (in theory) reliably demodulate
them in the presence of sufficient power disparity, so
that the combination could potentially lead to blind
reception techniques for very high-capacity systems.
Of course, this is purely theoretical speculation, since
there are difficulties in the practical implementation of
both HOS-based methods and nonlinear interference
cancellation.

provides geometric insights into both SOS and HOS APPENDIX

methods.
2)

: ) ) We sketch here an informal proof of the result stated
For single path channels, blind SOS algorithms that jn section IV-A regarding the ultimate limits of HOS

give accurate timing estimates for all ranges of in- mnethods applied to the equivalent synchronous model (12).

terference amplitudes (including a severe near—far ror simplicity, consider binary signaling, i.e., the symbols
problem) are now available. These timing estimates b;[n] € {—1, 1}. In the limit of many observations and

can then be used to compute a near—far resistant

and evaluating the performance of extensions of these
algorithms for multipath channels.

While adaptive equalizers are often implemented us-
ing the relatively low-complexity LMS algorithm,
the latter may be inappropriate for rapidly time-

3)

varying systems and near—far settings. Thus, adaptiveV: = FTuotup £ Fusg,

receivers for CDMA applications will probably need

; >t arbitrarily complicated estimates, HOS methods give us the
demodulator. Further research is needed for obtaining yistribution of the received vectofs

}. In this limit noise

can be ignored, so that the received vectdrg} have
a discrete distribution given as follows. Since thet 1
symbols occurring in (12) are independenf, can take
27+1 values, given by

i=0,1,..., 27 1,
(30)

mentations, which is a challenge.
4)
than training-based adaptation based on the MMSE

ity 1/27+1 of occurrence. Ifm of the v; coincide, the

The blind adaptive receiver in 2) converges slower corresponding vector occurs with probability/27+!.
In the limit, the vectors{v,} where the discrete distri-

criterion. Thus, whenever possible, blind CMOE bution places its probability mass, as well the probabilities
adaptation should be switched to decision-directed of occurrence of thev;, are perfectly known. The smallest
MMSE adaptation. While standard decision-directed Possible probability of occurrence of a givenis 1/27+,
adaptation does not work for fading channels [80], whichimmediately yields the number of signal vectdrs1
modified decision-directed mechanisms that are more (if all such probabilities are larger than this, then the number

robust are now available [20], [80], [81]. Robust
receiver design using an appropriate combination of

of nonzero signal vectors must be less thaa 1).
Suppose first that thes; in (30) are all distinct, so

training, decision-directed adaptation, blind CMOE that there are2’+! distinct vectorsv;. Now, take all

adaptation, and subspace-based methods, remains ag’**(2/+ —

1) possible differences; — v, for i # j.

important topic for future research. The performance It can be checked that, for eadh< j < J, the term2u;
of any such receiver design must be validated occurs2” times, and the term-2u; occurs2” times. Other
in severely time-varying environments, including distinct linear combinations of the signal vectors occur less
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frequently. Thus, the signal vectorg are identified (upto
sign) as the most frequently occurring differences.
If the number of vectors; is smaller thar2”/+1, then

replicatem times any vector which has probability mass

[16]
(17]

m/2’+L before applying the argument in the previous [18]

paragraph. This concludes the proof.

Remark A.1—More CaveatElaborating further on re-
mark IV.1 on the limited practical applicability of the
result, note that estimating the distribution of tke,}

accurately would require an exorbitant number of samples,

[19]

[20]

and would be impossible in time-varying settings. In the [27]
presence of noise, the cluster points used in the proof are

the

local maxima of a continuous distribution which is a

mixture of Gaussian distributions, so that identification of
the cluster points and their probabilities is an issue. Finally,
the “algorithm” itself, involving all possible differences of

the cluster points, is too complex for practical applications.
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