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Abstract—This paper considers the problem of jointly pro-
cessing messages received over a forward link from a single
distant transmitter to a cooperative receive cluster connected
by a local area network with finite available throughput. For
N cooperating receivers, ideal distributed receive beamforming
with direct exchange of unquantized observations leads to an N -
fold gain in signal-to-noise ratio (SNR) for equal-gain additive
white Gaussian noise channels, with significant additional gains
over fading channels due to diversity. It is shown in this paper
that a significant portion of these gains can be obtained simply
by exchanging hard decisions among some or all of the nodes
in the receive cluster. Mutual information computations and
simulations of LDPC-coded systems show that optimal combining
of hard decisions tends to perform within 0.5-2 dB of ideal receive
beamforming. For the low per-node SNR regime of interest
with large receive clusters, asymptotic analysis of a suboptimal
combining technique termed “pseudo-beamforming” shows that
distributed reception with hard decision exchanges performs
within 1-2 dB of ideal receive beamforming.

Index Terms—Distributed reception, receiver cooperation, re-
ceive beamforming, cooperative communications, likelihood com-
bining.

I. INTRODUCTION

WE consider the scenario shown in Figure 1 with a single
transmitter and a cluster of N cooperative receive

nodes connected by a wireless local area network (LAN)
backhaul. The goal is to communicate common broadcast
messages over the forward link from the distant transmitter
to all of the receive nodes. As one example, the scenario
in Figure 1 could correspond to a long-range downlink in
which the receive cluster jointly processes messages from a
distant base station. We consider the problem of “distributed
reception” where some (or all) of the nodes in the receive
cluster combine their observations to increase diversity and
power gain and, consequently, improve the probability of suc-
cessfully decoding noisy transmissions. Distributed reception
can also result in increased communication range, increased
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Fig. 1. Distributed reception scenario.

data rates, and/or decreased transmit power. The ideal perfor-
mance in such a setting is obtained by receive beamforming,
which could be implemented, for example, by each receiver
broadcasting its unquantized (in practice, finely quantized)
observations over a local area network (LAN) followed by
maximal ratio combining at a fusion center or at each receiver.
Direct implementation of receive beamforming can require
unrealistic LAN throughput, however, even for modest forward
link information rates. In this paper, we show that simply
exchanging hard decisions among some or all of the nodes
in the receive cluster provides a straightforward but powerful
approach for fully distributed reception over a wireless LAN
with limited capacity, with a degradation of only 0.5-2 dB
relative to ideal receive beamforming.

The potential gains from our approach are best illustrated
by an example. Suppose that the forward link employs 16-
QAM modulation with an information rate of 1 Mbit/s and a
rate r = 1/2 code. The symbols are received at each receiver
at a rate of 500 Ksymbols/s. For ideal receive beamforming,
assuming N = 10 receivers and 16-bit quantization of the in-
phase and quadrature observations, the LAN would need to
support a throughput of at least 500 · 103 × 16 × 2 × 10 =
160 Mb/s, not including overhead. On the other hand, the
required LAN throughput for exchanging hard decisions would
be only 500 · 103 × 4× 10 = 20 Mb/s. Note that the required
LAN throughput of ideal receive beamforming is even worse
for low-order modulation schemes, e.g., QPSK, whereas the
required LAN throughput for exchanging hard decisions is not
affected by the modulation order.
Contributions: We consider coded modulation in the forward
link using standard QAM or PSK constellations. Our key
technical contributions are as follows:
• We observe that the broadcast nature of a one-hop wireless
LAN can be used to provide a framework for distributed
cooperative reception that is more robust than the classical
distributed detection paradigm of sending quantized obser-
vations to a centralized fusion center. For a small number
of cooperating nodes, our approach can provide significant
performance gains over centralized fusion. LAN throughput
requirements can be further reduced by limiting participation
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to a subset of the nodes, depending on the channel conditions.
• We employ mutual information computations and simu-
lations of LDPC-coded systems to demonstrate that opti-
mal combining of hard decisions prior to decoding leads
to performance within 0.5-2 dB of ideal receive beamform-
ing. Simulations of a suboptimal but analytically tractable
combining technique called “pseudo-beamforming” show that
it performs within 1-2 dB of ideal receive beamforming.
Soft decisions for the pseudo-beamformer are generated by
applying a central limit theorem (CLT) based approximation,
which is accurate even for a moderate number of receivers.
These results demonstrate the efficacy of distributed reception
with full and limited receiver participation.
• We analyze pseudo-beamforming in an asymptotic regime
with a large number of receivers and low signal to noise
ratio (SNR) per receiver, such that the SNR with ideal receive
beamforming is finite and bounded away from zero. We show
that the asymptotic degradation of performance relative to
ideal receive beamforming is 2/π (about 2 dB) for QAM
constellations (including QPSK) and π/4 (about 1 dB) for
large PSK constellations (8PSK or higher). This also provides
an asymptotic upper bound on the performance degradation of
optimal combining relative to ideal receive beamforming. Our
results for QAM can be viewed as a generalization of classical
results on the hard decision penalty for binary communication
in [1]–[3], while our results for larger PSK alphabets draw on
the relatively recent low-SNR analysis in [4].
Prior work: There is a large body of related literature dating
back more than three decades on the broad subjects of “mul-
titerminal inference” [5]–[7], “distributed hypothesis testing”
[8]–[10], and “distributed detection” [11]–[15]. In general, the
setting in these problems is to have multiple agents forward
quantized observations to a fusion center which then applies a
detection or estimation rule according to a certain performance
objective. Rate constraints limit the amount of information
each agent can forward to the fusion center or decision maker.
The problem we consider here is related to the classical
model of distributed detection with a parallel fusion network
[14] in that we assume communication over the wireless
LAN backhaul among receive nodes is reliable. However,
the key difference between the work reported in the present
paper and the extensive literature on signal processing for
distributed detection is that we focus on distributed detection
for the specific purpose of improving the reliability of coded
communication systems.

There is also by now a significant body of literature on
distributed detection for communication. Information-theoretic
studies on distributed reception for coded communication
[16]–[18] typically focus on deriving achievable rates and
capacity bounds for different relay forwarding strategies.
Numerical quantizer optimization for information exchange
in uncoded binary systems has been considered in [19],
[20]. Distributed iterative message passing in coded multiuser
binary systems is considered in [21], again using numerical
optimization of quantizers. Constructive link layer iterative
cooperation techniques coordinated by a cluster head are
considered in [22], [23]. This body of literature focuses
on a relatively small number of cooperating receivers, in
contrast to the large receive cluster asymptotics that are the
focus of the present paper. Furthermore, the papers with

constructive strategies [19]–[23] typically restrict attention
to binary modulation, whereas our framework encompasses
larger constellations (both QAM and PSK).

Note that, while we do not consider optimal quantization
strategies in this paper (receivers in our system either broad-
cast their hard decisions over the LAN or are silent), such
optimization could potentially further improve performance.
For example, literature on quantization for single receiver
coded systems [24], [25] shows that choosing quantization
criteria such as mutual information can yield significant per-
formance gains over standard mean squared error (MSE) based
quantization.

Another set of closely related papers correspond to dis-
tributed reception methods with least-reliable and most-
reliable bit exchanges [26]–[34]. In these methods, each
receiver attempts to locally decode the message and then,
in the case of least-reliable bit exchange, requests additional
information from another receiver on a fraction of the least
reliable outputs or, in the case of most-reliable bit exchange,
broadcasts information about a fraction of its most reliable
outputs. This process can be iteratively repeated to improve
the coded bit error rate. Disadvantages of this class of ap-
proaches include the overhead of indexing the bits regarding
which information is being exchanged (and the complexity of
maintaining a memory of which bit indices have been used)
as well as the latency caused by the iterative nature of the
procedure. Both are avoided by our approach, in which a
subset of nodes seeing the best channels simply broadcast
all of their hard decisions, along with the associated channel
magnitudes (assumed to be fixed over the duration of the
message). Decoding is only attempted after all of the hard
decisions have been received. To see the throughput advantage
of our approach, consider a scenario with a BPSK forward
link, a 10 node receive cluster, and a rate 1/2 block code
with (k, n) = (4050, 8100). Using (3), the hard decision
combining technique considered in this paper requires a total
LAN throughput of approximately 21 bits per forward link
information bit. From [30], assuming three iterations, 10%
most-reliable bits exchanged per iteration, and 5-bit reliability
quantization, the total required LAN throughput is approxi-
mately 51 bits per forward link information bit. Even with 1-
bit reliability quantization (hard decisions), the total required
LAN throughput of most-reliable bit exchange is 39 bits per
forward link information bit. This excess LAN throughput is
largely due to the fact that each exchanged bit requires a 12-bit
address to identify its bit index.

It is worth noting that there has been significant recent
interest in using distributed reception techniques across mul-
tiple base stations in cellular uplinks e.g., [35]–[39]. These
techniques are often called “coordinated multipoint” or CoMP.
The focus of these papers is typically on mitigating interfer-
ence, and high-fidelity information exchange between a small
number of cooperating base stations via a high-speed wired
or optical backhaul is assumed. This in contrast to our focus
on a backhaul-constrained, single transmitter scenario with a
large number of receivers.

An alternative approach to distributed reception, which
sidesteps the need for a LAN backhaul with capacity increas-
ing with the number of cooperating nodes, is for the coopera-
tive receivers to act as amplify-forward relays, controlling their
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phases so that their signals combine coherently in the air at
a designated destination node. While promising experimental
results have been reported recently with this approach [40],
significant further effort and customized design is required to
translate it into practice, in contrast to approaches utilizing
explicit information exchanges such as the one in this paper,
which can work with off-the-shelf radios.

The present paper represents a significant extension and
generalization of prior conference papers [33], [34] involving
a subset of the authors. These earlier papers contain numerical
computations showing that distributed reception with hard
decision exchanges for BPSK leads to a degradation of less
than 2 dB relative to ideal receive beamforming. In the present
paper, we provide a concise analytical characterization of
the asymptotic performance degradation with respect to ideal
receive beamforming for large QAM and PSK constellations.
Outline: The system model and distributed reception protocol
is described in Section II. Optimal and suboptimal combin-
ing rules are described in Section III. Section IV evaluates
the performance of optimal hard decision combining using
information-theoretic metrics, with numerical results showing
that the performance attained is typically within 1 dB of ideal
receive beamforming. Section V characterizes the asymptotic
performance of the suboptimal pseudo-beamforming com-
bining rule, thus also providing an asymptotic bound to
the performance of optimal combining. Section VI provides
numerical results demonstrating that we can indeed approach
the performance of ideal receive beamforming for practical
LDPC-coded systems. Section VII contains our conclusions.

II. SYSTEM MODEL

Referring to Fig. 1, we denote the total number of receivers
as N and assume that messages from the distant transmitter
to the receive cluster are (n, k) block coded where n and k
correspond to the block length and the message length, both
in bits, respectively. The forward link code rate is denoted
as r = k/n. A mechanism for detecting a correctly decoded
block (e.g., a CRC check) is also assumed at each receive
node. The forward link channels are assumed to be constant
over each block but may change from block to block. The
forward link complex channel from the distant transmitter
to receive node i for block m is denoted as hi[m] for
i = 1, . . . , N . The vector channel for block m is denoted
as h[m] = [h1[m], . . . , hN [m]]�.

The forward link alphabet is denoted as X = {x1, . . . , xM}.
The �th symbol in block m is denoted as X [m, �] and is
assumed to be drawn equiprobably from the alphabet. The
average energy per transmitted symbol is then

Es = E
[|X [m, �]|2] = 1

M

M∑
i=1

|xi|2. (1)

Given an additive white Gaussian noise channel with power
spectral density N0/2 in the real and imaginary dimensions,
the phase-corrected complex baseband signal received at the
ith receive node for the �th symbol of block m can be written
as

Ui[m, �] = |hi[m]|X [m, �] +Wi[m, �] (2)

where Wi[m, �] ∼ CN (0, N0) is spatially and temporally
independent and identically distributed (i.i.d.) proper complex

Gaussian baseband noise. We assume here that channels
magnitudes are scaled such that the noise variance is identical
at each receive node. Since the average received energy per
forward link symbol at node i is |hi[m]|2Es, the quantity
ρi[m] = |hi[m]|2Es

N0
corresponds to the signal-to-noise ratio

(SNR) at receive node i for symbols received in block m.
We assume that the receive cluster has a wireless LAN

backhaul that supports reliable broadcast from each node to
all other nodes and that the throughput of this LAN exceeds
the forward link information rate. To allow for uninterrupted
forward link transmissions, the LAN and the forward link are
assumed to operate on different frequencies so that the re-
ceive cluster can transmit/receive on the LAN while receiving
signals from the distant transmitter over the forward link.

A. Distributed Reception Protocol

While our focus is on how to combine the information
exchanged over the LAN, for concreteness, we specify in
this section a particular distributed reception protocol for
hard decision exchanges. After each node receives and locally
demodulates a block, the following steps are performed by the
receive cluster over the LAN:

1) To determine the set of participating1 nodes P ⊆
{1, . . . , N} and also to enable combining of the hard
decisions, all N nodes exchange estimates of their
channel magnitudes |hi[m]|.

2) The |P| = K ≤ N nodes with the largest channel
magnitudes participate by broadcasting all of their hard
decisions, denoted as Vj [m, �] ∈ X for all j ∈ P , over
the LAN. As messages are received over the LAN, each
receive node (including those that do not participate)
combine this quantized information with their local
unquantized information. This combined information is
then provided as an input to a soft-input decoder at each
receive node, including those that do not participate.

3) If any receive node successfully decodes the message,
it broadcasts the decoded message over the LAN to
the other receive nodes in the cluster. If two or more
nodes successfully decode the message and attempt to
broadcast the successfully decoded block, it is assumed
the LAN has a mechanism for contention resolution.

Note that this example protocol has a fixed LAN throughput
requirement which depends on the modulation order and the
number of participating nodes, as discussed below, and a
fixed latency since decoding only occurs once. Other protocols
could be used to reduce the average LAN throughput at the ex-
pense of making the latency variable and potentially increasing
the average latency. For example, each node could attempt to
decode the message prior to step 1. If any node is successful,
the successfully decoded message could be broadcast over
the LAN to the other receive nodes in the cluster and the
remaining steps could be skipped. As another example, the
hard decisions could be broadcast by each receiver in order

1Due to poor channel conditions or LAN capacity constraints, some nodes
in the receive cluster may not broadcast hard decisions. A “participating” node
is a node that broadcasts its hard decisions for the block over the LAN to the
other nodes in the receive cluster. Non-participating nodes do not broadcast
hard decisions but do receive messages from other nodes in the receive cluster,
and combine this information with their local unquantized observations in
attempting to decode the block.
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of decreasing channel magnitude and each receiver could
attempt to decode as each new block of hard decisions is
received. It is straightforward to see that the outage probability
performance of these methods is identical to the example
protocol. Moreover, in the regime with a large number of
receive nodes and low per-node SNRs, the probability of any
node successfully decoding the message prior to step 1 is very
small and the possibility of significantly increasing the average
decoding latency by attempting to decode the message with
each subsequent exchange of hard decisions is high.

The required one-hop LAN throughput if all nodes in the
receive cluster participate, in units of LAN bits per forward
link information bit, is

ηLAN =
No1 +Nn+ k + o2

k
≈ N

r
+ 1

where No1 is the overhead of exchanging channel magnitude
estimates and determining which nodes will participate in
step 1, Nn is the total number of bits transmitted over the
LAN in step 2, k is the number of bits in the decoded block
in step 3, and o2 is the contention overhead in disseminating
the successfully decoded block. The approximation results
from the assumption that n and k are sufficiently large
such that the overheads are negligible. If the LAN does not
provide sufficient throughput to allow all of the nodes in the
receive cluster to broadcast their hard decisions, the number
of participating nodes K ≤ N can be selected to satisfy the
LAN throughput constraint. Since the number of participating
nodes only affects step 2, we can write

ηLAN =
No1 +Kn+ k + o2

k
≈ K

r
+ 1 ≤ CLAN (3)

where CLAN is the maximum normalized LAN throughput.
Given r and CLAN, it follows that selecting

K ≤ min{N, r(CLAN − 1)}
satisfies (3).

Note that the number of bits required to exchange channel
magnitude estimates in step 1 is typically negligible with
respect to the total number of bits transmitted over the LAN
in step 2 under our assumption that n is large. If N � K ,
however, it is possible that the number of bits transmitted
over the LAN in step 1 may be non-negligible. One way
to reduce the overhead of exchanging channel magnitudes
in this scenario is to have each receive node only transmit
its channel magnitude in step 1 if it exceeds some threshold.
Since N is large in this scenario, the threshold could be set
according to the cumulative distribution function (CDF) of the
channel fading statistics such that Prob(|hi[m]| > τ) ≈ K

N .
The overhead in step 1 then becomes ≈ Ko1 and is negligible
since Ko1 � Kn.

It is worth noting that even when K = 0, the distributed
reception protocol described here achieves diversity order N .
This is because, regardless of the number of participating
nodes, all N nodes attempt to decode the block in step 3
and, if any node is successful, the decoded message is reliably
broadcast over the LAN. The exchange of hard decisions by
K ≥ 1 participating nodes in step 2 is therefore for the
purpose of achieving an effective SNR gain, as with receive
beamforming. When K ≥ 1, each node in the receive cluster
combines the hard decisions received over the LAN with its

local observations. Two combining approaches are described
in the following section.

III. COMBINING STRATEGIES

We first consider optimal combining, which uses the mixed
continuous/discrete observation vector to compute posterior
likelihoods for each symbol. We then describe pseudo-
beamforming, which (in analogy with receive beamforming)
computes a scalar statistic as a linear combination of the
hard decisions and uses a Gaussian approximation to compute
the posterior likelihoods for each symbol. Both combining
techniques use the channel magnitudes exchanged in the first
step of the protocol. Pseudo-beamforming leads to some com-
putational savings, but another important reason for consider-
ing it is because the asymptotic analysis of its performance
degradation relative to ideal receive beamforming is tractable
in the regime with a large number of receive nodes and low
per-node SNR. Since the performance of pseudo-beamforming
bounds the performance of optimal combining, this analysis
also quantifies the maximum penalty due to hard decisions in
this asymptotic regime, where exact performance evaluation
of optimal combining is intractable.

For notational convenience, we omit the block and symbol
indices in the remainder of this section.

A. Optimal combining

The optimal combiner computes the posterior probabilities
for each transmitted symbol based on the mixed continu-
ous/discrete vector observation containing all of the available
information at each receiver. These are then used to generate
bit-level log-likelihood ratios (LLRs) for subsequent process-
ing by a soft-input decoder.

Consider, from the perspective of receive node j, optimal
combining of hard decisions Vi ∈ X for i ∈ P\j with the local
unquantized observation Vj = Uj . The posterior probability of
symbol X = xm ∈ X given the vector observation V can be
written as

Prob(X = xm|V = v) =
pV |X(v|X = xm)Prob(X = xm)

pV (v)

=
pVj |X(vj |X = xm)

∏
i∈P\j pVi|X(vi|X = xm)∑M

�=1 pVj |X(vj |X = x�)
∏

i∈P\j pVi|X(vi|X = x�)

where the second equality uses the equiprobable symbol as-
sumption and the fact that the elements of V are conditionally
independent. To compute the posterior probabilities, each
receive node must compute pVj |X(vj |X = x�) (using the
local unquantized observation) and pVi|X(vi|X = x�) for all
i ∈ P\j (using the hard decisions received over the LAN) for
all � = 1, . . . ,M . These computations are possible since the
channel magnitudes {|h1|, . . . , |hN |} are known to all of the
nodes in the receive cluster.

Since the local observation at receive node j is unquantized,
we have vj = uj and hence

pVj |X(vj |X = x�) =
1

πN0
exp

(
−|vj − |hj |x�|2

N0

)
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for complex alphabets and

pVj |X(vj |X = x�) =
1√
πN0

exp

(
− (vj − |hj|x�)

2

N0/2

)

for real alphabets. For i ∈ P\j, note that pVi|X(vi|X = x�)
are the channel transition probabilities of the discrete mem-
oryless channel (DMC) induced by the hard decisions at
node i. For example, with a BPSK forward link with alphabet
X = {x1, x2}, we have

pVi|X(vi = xm|X = x�) =

{
1− pi m = �

pi m �= �

with crossover probability

pi = Q

(
|hi|
√

2Es
N0

)
.

In general, the process of forming hard decisions results in a
DMC with M inputs and M outputs. The DMC transition
probabilities pVi|X(vi = xm|X = x�) for many typical
modulation formats, e.g., BPSK, QPSK, M -PAM, and M2-
QAM, with hard decisions can be exactly determined using
standard analysis techniques. Transition probabilities for M -
PSK with hard decisions and M > 4 require approximations
or numerical evaluation.

Since each receive node uses its local unquantized obser-
vation in combination with the hard decisions from the other
receive nodes, the posterior probabilities Prob(X = xm|V =
v) are different at each receive node. This may lead to a
situation where some receive nodes can correctly decode the
block while others cannot. The distributed reception protocol
described in Section II-A allows any node that successfully
decodes the message to broadcast the decoded message over
the LAN to the full receive cluster. A block is unsuccessfully
received only if all of the receive nodes are unable to decode.

B. Pseudo-beamforming

Recall that an ideal receive beamformer can be realized by
scaling each continuous phase-corrected channel output Uj

by its corresponding normalized channel magnitude and then
summing, i.e.,

Ybf ≡ Yi =
∑
j∈P

√
ρiUj = α

∑
j∈P

|hj |Uj (4)

where ρi = |hi|2Es

N0
and α =

√
Es

N0
. Pseudo-beamforming is

a simple but suboptimal combining technique where (4) is
performed on the hard decisions from each node. Specifically,
the pseudo-beamformer combiner output is

Ypbf ≡ Yi =
∑
j∈P

√
ρiVj = α

∑
j∈P

|hj|Vj (5)

where Vj ∈ X for all j. Note that, since the unquantized
local observation at each node is not used in the combiner,
the pseudo-beamformer combiner output is the same at every
receive node, so that all nodes either succeed or fail in de-
coding the block, under our assumption that the hard decision
exchanges over the LAN are reliable.

Since the random variables {V1, . . . , VN} are conditionally
independent given the transmitted symbol, a CLT-based argu-
ment (which, in practice, tends to be a good approximation
even for a moderate number of receivers) can be used to
infer the conditional Gaussianity of the pseudo-beamformer
output Ypbf . To allow for different channel gains for different
receivers, we apply the Lindeberg variant of the CLT, with
the necessary conditions required to satisfy it in our context
specified in the following Lemma.

Lemma 1. Let σ2
j (X) = var[Re(Vj) |X ] and μj(X) =

E[Re(Vj) |X ]. If, for all j ∈ P ,

∑
�∈P

|h�|2
|hj |2σ

2
� (X) → ∞ (6)

as |P| → ∞ then

A =
Re(Ypbf)− α

∑
j∈P |hj |μj(X)√

α2
∑

j∈P |hj |2σ2
j (X)

d→ N (0, 1) (7)

when conditioned on X and h where
d→ means convergence

in distribution.

A proof of Lemma 1 is provided in Appendix A. The
regularity condition in (6) can be thought of intuitively as
requiring the channels to not vanish and for the local hard
decisions to have some uncertainty as new nodes are added to
the set of participating nodes.

An analogous application of Lemma 1 also implies the
conditional asymptotic Gaussianity of the imaginary part of
Ypbf . Indeed, for the forward link alphabets considered in this
paper, applying a two-dimensional version of the Lindeberg
CLT implies the joint Gaussianity of the real and imaginary
parts. The posterior likelihoods for each symbol (and bit) can
therefore be easily computed once we specify the conditional
second order statistics of the pseudo-beamformer output. In
order to simplify these computations, we set the conditional
covariances between the real and imaginary parts of the
pseudo-beamformer output to zero (this holds asymptotically
at low per-node SNRs), which amounts to approximating the
effective noise at the output of the pseudo-beamformer as
standard complex WGN.

The conditional means and variances of the pseudo-
beamforming decision statistics are computed from the chan-
nel transition probabilities and known channel gains, i.e.,

E [Ypbf |X = xm] = α
∑
j∈P

|hj |E [Vj |X = xm]

= α
∑
j∈P

|hj |
M−1∑
�=0

x�p
(j)

m,�

and

var [Ypbf |X = xm] = α2
∑
j∈P

|hj |2var [Vj |X = xm]

= α2
∑
j∈P

|hj |2
(
E
[|Vj |2 |X = xm

]− |E [Vj |X = xm] |2)

= α2
∑
j∈P

|hj |2
(

M−1∑
�=0

p(j)

m,�|x�|2 − |E [Vj |X = xm] |2
)
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where p(j)

m,� = Prob(node j decides x� |X = xm) and where
we have used the fact that {V1, . . . , VN} are conditionally
independent. Numerical results in Section VI show that this
approach provides effective decoding performance, in agree-
ment with the asymptotic performance predictions in Sec-
tion V (within 1-2 dB of ideal receive beamforming), even
for a small number of nodes.
Remark: The pseudo-beamformer output (5) is a particular
linear combination of the hard decisions {V1, . . . , VN} using
the coefficients {|h1|, . . . , |hN |}. In principle, one could im-
prove performance by optimizing these coefficients, e.g., to
maximize the output SNR, still motivated by the CLT-based
approximation for the output. The resulting coefficients would
depend on the particular channel realizations in a complicated
fashion, however. We do not consider this approach further,
since it offers little gain relative to the simple combining rule
(5), which is shown to provide excellent performance in the
numerical results in Section VI. In addition, it is worth noting
that (5) can actually be shown to be asymptotically optimal
for the low per-node SNR regime considered in Section V.

IV. INFORMATION-THEORETIC PERFORMANCE ANALYSIS

FOR OPTIMAL COMBINING

In this section, we develop an expression for the mutual
information of distributed reception with optimal hard decision
combining and provide numerical results demonstrating its
performance gap relative to ideal receive beamforming.

Consider optimal hard decision combining at receive node
j. Given equiprobable channel inputs X drawn from X , the
channel realization h, the vector channel output V ∈ V
with elements arbitrarily quantized or unquantized the mutual
information Ih(X ;V ) can be expressed as shown in (8) at
the top of the next page, where p(v|m) = pV |X(v|X = xm)
[41]. Note that all distributions in (8) are conditioned on h and
the conditional expectation is over the vector channel output
V given a scalar channel input X = xm. Since the elements
of V are conditionally independent, we can write

p(v|m) = pV |X(v|X = xm)

= pVj |X(vj |X = xm)
∏

i∈P\j
pVi|X(vi|X = xm)

and it follows that∑M−1
�=0 p(v|�)
p(v|m)

=

∑M−1
�=0 pVj |X(vj |X = x�)

∏
i∈P\j pVi|X(vi|X = x�)

pVj |X(vj |X = xm)
∏

i∈P\j pVi|X(vi|X = xm)

=

M−1∑
�=0

pVj |X(vj |X = x�)

pVj |X(vj |X = xm)

∏
i∈P\j

pVi|X(vi|X = x�)

pVi|X(vi|X = xm)
.

At node j, since the marginal observation Vj is unquantized,
the expectation in (8) must be approximated numerically,
either by numerical integration or by Monte-Carlo simulation.

Figure 2 shows an example of the mutual information
for distributed reception with BPSK and 16-QAM forward
link modulation, N = 10 receive nodes, and fixed channels
h = [1, . . . , 1]�. These results were obtained through Monte-
Carlo simulation of (8) where 104 i.i.d. noise realizations
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Fig. 2. Mutual information for a distributed reception system with BPSK
and 16-QAM forward links, N = 10 receive nodes, full participation, and
h = [1, . . . , 1]�. Distributed reception (a) is the case when the hard decisions
are optimally combined with local unquantized observations. Distributed
reception (b) is the case when the hard decisions are optimally combined
with local hard decisions.

were generated at each receive node. All receive nodes are
assumed to participate in the distributed reception protocol.
Since the forward link channels to each receive node are
the same in this example, the performance of distributed
reception with hard decision exchanges is the same for all
receive nodes (this is not the case for general h, however).
This example shows that distributed reception with optimal
hard decision combining can provide significant capacity gains
with respect to single-receiver processing and that simply
exchanging hard decisions among the nodes in the receive
cluster can result in performance within approximately 1.8 dB
of ideal receive beamforming for a BPSK forward link and
within approximately 0.8 dB of ideal receive beamforming
for a 16-QAM forward link with fixed, equal-gain channels.

The results in Figure 2 also compare “distributed reception
(a)” where the hard decisions from other nodes are optimally
combined with local unquantized observations versus “dis-
tributed reception (b)” where the hard decisions from other
nodes are optimally combined with local hard decisions. While
the latter approach is clearly suboptimal, it may be simpler
in practice to optimally combine local hard decisions with
hard decisions from other nodes since the local posterior
likelihoods can be computed in the same manner as the
posterior likelihoods of the hard decisions received over the
LAN. The performance loss of using local hard decisions is
relatively minor in this example due to the fact that forward
link channels are all identical.

Figure 3 shows an example of the outage probability for
distributed reception with 16-QAM forward link modulation,
full participation, and i.i.d. Rayleigh fading channels with
hi

i.i.d.∼ CN (0, 1). These results were also obtained through
Monte-Carlo simulation of (8) with 5000 i.i.d. channel re-
alizations for each node and 1000 i.i.d. noise realizations
per channel realization. This example shows that distributed
reception with optimal hard decision combining and local
hard decisions (“distributed reception (b)”) performs within
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Ih(X ;V ) = log2(M) +
1

M

M−1∑
m=0

∫
V
p(v|m) log2

{
p(v|m) 1

M

pV (v)

}
dv

= log2(M)− 1

M

M−1∑
m=0

E

[
log2

{∑M−1
�=0 p(V |�)
p(V |m)

}∣∣∣X=xm

]
(8)
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Fig. 3. Outage probability for a distributed reception system with a 16-
QAM forward link, N ∈ {1, 2, 5, 10} receive nodes, full participation, and
i.i.d. Rayleigh fading channels. Distributed reception (a) is the case when the
hard decisions are optimally combined with local observations. Distributed
reception (b) is the case when the hard decisions are optimally combined
with local hard decisions.

approximately 0.8 dB of ideal receive beamforming, which
is consistent with the results in Fig. 2. Better performance is
achieved by using local unquantized observations (“distributed
reception (a)”). The effect of the local unquantized observation
is more significant in this example, especially for small values
of N , due to the fading channels.

V. ASYMPTOTIC ANALYSIS OF PSEUDO-BEAMFORMING

In this section, we establish asymptotic results on the per-
formance degradation of pseudo-beamforming relative to ideal
receive beamforming for M -PAM (and hence M2-QAM) and
M -PSK forward link modulation formats. In Section III-B,
Lemma 1 established that Ypbf is asymptotically Gaussian
as the number of participating receivers K → ∞, hence
it is reasonable to quantify the performance of the pseudo-
beamformer in terms of its SNR. We now quantify the SNR
loss of pseudo-beamforming relative to that of ideal receive
beamforming in an asymptotic regime where K is large and
the per-node SNR tends to zero, but such that the SNR of
ideal receive beamforming is bounded away from zero.

We begin with Lemma 2, which derives expressions for
E[Re(Vj) |X ] and var[Re(Vj) |X ] for M -PAM forward-link
modulation for a given receiver at low SNR.

Lemma 2. For M -PAM forward link modulation with
equiprobable symbols and alphabet X = {x1, . . . , xM} =

{(−M + 1)a, . . . ,−a, a, . . . , (M − 1)a} at low SNR,

E[Re(Vj) |X = x�] ≈
(
2(M − 1)ρj√

2π

)
x� (9)

where ρ2j :=
|hj |2a2

N0/2
and

var[Re(Vj) |X = x�] ≈ (M − 1)2a2 (10)

for all � ∈ {1, . . . ,M}.

A proof of this Lemma 2 provided in Appendix B. Note that
(10) is actually an upper bound on the conditional variance of
the hard decisions at receive node j since

var[Re(Vj) |X = x�] ≤ E[Re(Vj)
2 |X = x�]

≤ max
m

x2
m

= (M − 1)2a2.

Corollary 1 combines the results of Lemma 1 (which
requires large K) and Lemma 2 (which requires low per-node
SNR) to relate the SNR of pseudo-beamforming to that of
ideal receive beamforming for M -PAM forward-link modu-
lation in an asymptotic regime when the aggregate receive
beamforming SNR is finite and bounded away from zero.

Corollary 1. Given M -PAM forward link modulation with
equiprobable symbols. For low per-node SNRs, if (6) holds as
|P| → ∞, then

SNRM−PAM
pbf ≈ 2

π
SNRbf .

Proof: Define hP ∈ CK as the channel vector of the
participating nodes. Lemma 1 establishes that, if (6) holds
as |P| → ∞, then Ypbf becomes conditionally Gaussian as
|P| → ∞. Specifically, conditioning on X = x�, we have

Ypbf ∼ N
⎛
⎝α∑

j∈P
|hj |μj(x�), α

2
∑
j∈P

|hj |2σ2
j (x�)

⎞
⎠

where μj(x�) = E[Re(Vj) |X = x�] and σ2
j (x�) =

var[Re(Vj) |X = x�]. Lemma 2 gives closed-form expres-
sions for these conditional means and variances. From (9) and
(10), we have

Ypbf ∼ N
(
α
2a(M − 1)√

N0π
‖hP‖2x�, α

2(M − 1)2a2‖hP‖2
)

where we have substituted ρ2j =
|hj|2a2

N0/2
and ‖hP‖2 =∑

j∈P |hj |2. Hence, since M -PAM has a real alphabet, we
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can write

SNRM−PAM
pbf =

E
{
(E[Re(Y )|X ])2

}
var[Re(Y )|X ]

≈ 4‖hP‖2Es
N0π

=
2

π
SNRbf

where Es = E[X2].
Corollary 1 predicts a 10 log10(2/π) ≈ −1.96 dB asymp-

totic loss for M -PAM with respect to ideal receive beam-
forming. These results apply directly to M2-QAM, which
can be viewed as M -PAM signaling along the in-phase and
quadrature components. This result is consistent with the
results derived for binary signaling in [2] and is numerically
verified in Section VI.

While Corollary 1 applies to QPSK (which can be viewed
as 4-QAM), a separate analysis is required for larger PSK
constellations. Lemma 3 derives asymptotic expressions for
E[Vj |X ] and var[Vj |X ] for M -PSK forward-link modulation
at low per-node SNRs.

Lemma 3. For M -PSK forward link modulation with M ≥ 4,
M even, equiprobable symbols drawn from the alphabet X =
{x1, . . . , xM} =

{
a, aej2π/M , aej4π/M , . . . , aej(M−1)2π/M

}
,

we have at low SNR that

E[Vj |X = x�] ≈
(
Mρj sin(π/M)

2
√
π

)
x� (11)

where ρ2j :=
|hj|2a2

N0
and

var[Vj |X = x�] ≈ a2 (12)

for all � ∈ {1, . . . ,M}. Moreover, in the low SNR regime,

var[Re(Vj) |X = x�] ≈ a2

2
,

var[Im(Vj) |X = x�] ≈ a2

2
, and

cov[Re(Vj), Im(Vj) |X = x�] ≈ 0

for all � ∈ {1, . . . ,M}.

A proof of this lemma is provided in Appendix C. As in
(10), the conditional variance expression (12) is actually a
straightforward upper bound since the magnitude of each M -
PSK symbol is a.

Corollary 2 combines the results of Lemma 1 (which
requires large K) and Lemma 3 (which requires low per-node
SNR) to relate the asymptotic SNR of pseudo-beamforming
to that of ideal receive beamforming for M -PSK forward-link
modulation.

Corollary 2. Given M -PSK forward link modulation with
equiprobable symbols and alphabet X = {x1, . . . , xM} ={
a, aej2π/M , aej4π/M , . . . , aej(M−1)2π/M

}
. For low per-

node SNRs, if (6) holds as |P| → ∞, then

SNRQPSK
pbf ≈ 2

π
SNRbf (13)

and
lim

M→∞
SNRM−PSK

pbf ≈ π

4
SNRbf (14)

Proof: The proof here follows the proof of Corollary 1
except that it uses the low per-node SNR results of Lemma 3
rather than Lemma 2. Define hP ∈ CK as the channel vector
of the participating nodes. Lemma 1 establishes that, if (6)
holds as |P| → ∞, then Ypbf becomes conditionally Gaussian
as |P| → ∞. Specifically, conditioning on X = x�, we have

Ypbf ∼ CN
⎛
⎝α∑

j∈P
|hj |μj(x�), α

2
∑
j∈P

|hj |2σ2
j (x�)

⎞
⎠

where μj(x�) = E[Vj |X = x�] and σ2
j (x�) = var[Vj |X =

x�]. Lemma 3 gives closed-form expressions for these condi-
tional means and variances. From (11) and (12), we have

Ypbf ∼ CN
(
α
aM sin(π/M)

2
√
N0π

‖hP‖2x�, α
2a2‖hP‖2

)

where we have substituted ρ2j =
|hj|2a2

N0
and ‖hP‖2 =∑

j∈P |hj |2. Hence, since M -PSK has a complex alphabet,
we can write

SNRM−PSK
pbf = E

{ |E[Y |X ]|2
var[Y |X ]

}

=
M2 sin2(π/M)‖hP‖2Es

4N0π

=
M2 sin2(π/M)

4π
SNRbf .

For M = 4, we have M2 sin2(π/M)
4π = 2

π which establishes
(13). In the limit as M → ∞ we can use a small angle
approximation to compute M2 sin2(π/M)

4π → π
4 , which estab-

lishes (14).
Corollary 2 agrees with Corollary 1 for the particular

case of QPSK, since QPSK can be viewed as 4-QAM.
It is straightforward to show SNRM−PSK

pbf is increasing in
M , hence Corollary 2 also implies that the performance
loss of pseudo-beamforming with respect to ideal receive
beamforming decreases as the forward-link modulation order
increases. This is only true for M -PSK, however, since the
M -PAM results in Corollary 1 do not depend on M . As the
M -PSK modulation order becomes large, the performance
loss of pseudo-beamforming with respect to ideal receive
beamforming goes to 10 log10(π/4) ≈ −1.05 dB This result
is numerically verified in Section VI.

VI. NUMERICAL RESULTS

This section provides numerical results that demonstrate the
efficacy of distributed reception with hard decision exchanges
using pseudo-beamforming and optimal hard decision com-
bining. We consider distributed reception with hard decision
exchanges in a block-fading scenario in terms of block error
rate (BLER) versus the transmit energy per symbol. The chan-
nels are assumed to be spatially and temporally i.i.d. block
fading with hj [m] ∼ CN (0, 1). The rate r = 1/2 LDPC code
was selected from proposed codes for DVB-S2 in [42], [43]
with n = 8100 and k = 4050.

Figure 4 shows the block error rate of distributed reception
versus Es/N0 for a BPSK forward link with N = 1, 2, 5, 10
and full participation (K = N ). These results were obtained
over 5000 channel/noise realizations per receive node and
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Fig. 4. Block error rate of distributed reception with hard decision exchanges
versus energy per symbol for a BPSK forward link with full participation.

are equivalent to the results obtained for 2-PAM, Gray-
coded QPSK, and Gray-coded 4-QAM. We see that the gap
between ideal receive beamforming and pseudo-beamforming
is approximately 2 dB, even for smaller values of N , and
that optimal hard decision combining tends to perform closer
to ideal receive beamforming, especially at smaller values of
N , due to the use of unquantized local information and exact
posterior likelihood calculations.

Figure 5 shows the block error rate of distributed reception
versus Es/N0 for Gray-coded 16-QAM and 16-PSK forward
links with N = 1, 2, 5, 10 and full participation (K = N ).
Here we see that the gap between ideal receive beamforming
and pseudo-beamforming is approximately 1 dB for both M -
PSK (consistent with Corollary 2) and 16-QAM (better than
the 2 dB performance loss predicted by Corollary 1). Optimal
combining tends to perform within approximately 0.5 dB of
ideal receive beamforming for the settings shown in Figure 5.
These trends closely match the information-theoretic outage
probability results in Figure 3, except for a 1-2 dB shift in the
curves that can be attributed to the gap between the LDPC
code and the Shannon limit for the equivalent binary input
channel that it sees.

Figure 6 shows the block error rate of distributed reception
versus Es/N0 for a BPSK forward link with partial partici-
pation. The set of participating receive nodes is selected as
the K receive nodes with the largest channel magnitudes
from the total pool of N receive nodes for (K,N) ∈
{(5, 10), (5, 20), (10, 10), (10, 20)}. Only results for optimal
hard decision combining are plotted, but results for pseudo-
beamforming exhibit the same trends. We see that partial par-
ticipation can lead to significant reduction in LAN throughput
requirements, while incurring a modest performance loss; for
example, using the best K = 5 receive nodes from a N = 10
node pool with respect to full participation (K = N = 10)
incurs only about 1 dB loss while cutting the required LAN
throughput approximately in half. Furthermore, for fixed K
(e.g., based on the available LAN throughput), the block error
rate improves as N increases because of the added selection
diversity.
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Fig. 5. Block error rate of distributed reception with hard decision exchanges
versus energy per symbol for Gray-coded 16-QAM and 16-PSK forward links
with full participation.
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Fig. 6. Block error rate of distributed reception with hard decision exchanges
and optimal combining versus energy per symbol for a BPSK forward
link with partial participation. Approximate normalized LAN throughputs
according to (3) are also shown.

VII. CONCLUSIONS

We have shown, using information-theoretic computations,
simulations of LDPC-coded systems, and asymptotic analysis,
that distributed reception with hard decision exchanges suffers
a relatively small penalty relative to ideal receive beamform-
ing. From a practical perspective, this implies that excellent
performance can be achieved with off-the-shelf hardware
(e.g., a receive cluster connected via WiFi), with a significant
reduction in LAN throughput requirements relative to sharing
lightly quantized observations.

The results reported here open up a number of important
questions for future research. First, it is natural to explore
distributed compression strategies for further reducing LAN
throughput requirements without increasing latency and while
exploiting the unique features of our problem; unlike conven-
tional distributed compression, where the goal is to reduce
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distortion, our goal is for at least one node in the network
to decode the block correctly (with as small a degradation
in link margin relative to ideal receive beamforming as pos-
sible). Along these lines, it is of interest to explore simple
quantization schemes other than simple hard decisions and
quantization schemes that require less than log2(M) bits per
symbol, e.g., [44]. Second, while we have shown that reliable
communication is possible at arbitrarily low per-node SNRs
(as long as the number of nodes is large enough), it becomes
a challenge in such regimes to accomplish synchronization
and channel estimation at each receive node, and cooperation
may be required prior to demodulation as well. Third, it is
of interest to extend our results to more complex propagation
environments with frequency selective fading. Applying our
flat fading model to each subcarrier in an OFDM system is a
natural approach, but significant effort is required in protocol
design and optimization on information exchange accounting
for the variations in channel quality across both subcarriers
and cooperating nodes. Finally, it is of interest to explore
cooperative demodulation of spatially multiplexed streams (a
key concept in hierarchical cooperation for scaling ad hoc
networks [45]) under constraints on LAN throughput.
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APPENDIX A
PROOF OF LEMMA 1

Proof: Define

Qj := |hj |Re(Vj)− E[|hj |Re(Vj) |X ]

= |hj |
(
Re(Vj)− E[Re(Vj) |X ]

)
and note that

E[Qj |X ] = 0

var[Qj |X ] = |hj |2σ2
j (X) < ∞

with σ2
j (X) := var[Re(Vj) |X ]. Also observe that

{Q1, . . . , QN} are conditionally independent.
We now apply the Lindeberg CLT [46] to show that the

real part of the pseudo-beamformer output is conditionally
Gaussian as the number of participating nodes grows large. For
notational convenience, and without loss of generality since
the node ordering is arbitrary, we assume P = {1, . . . ,K}
and define

TK =

K∑
j=1

Qj , S2
K = var(TK |X) =

K∑
j=1

|hj |2σ2
j (X)

The Lindeberg CLT requires that for every ε > 0

lim
K→∞

1

S2
K

K∑
j=1

E
{
Q2

j · I(|Qj | ≥ εSK) |X}→ 0

where I is the indicator function equal to one if the argument
is true and zero otherwise. We have

I(|Qj | ≥ εSK) = I

( |Re(Vj)− E[Re(Vj) |X ]|
ε

≥ SK

|hj |
)

= I

⎛
⎝ |Re(Vj)− E[Re(Vj) |X ]|

ε
≥
√√√√ K∑

�=1

|h�|2
|hj |2σ

2
� (X)

⎞
⎠ .

For any fixed ε > 0, there exists γ < ∞ such that
|Re(Vj)−E[Re(Vj) |X]|

ε < γ for all j, since Vj ∈ X are hard
decisions for an alphabet with finite energy. Hence the left
hand side of the inequality is uniformly upper bounded for
all j. Also, from the conditions in the Lemma, the right
hand side of the inequality in the indicator function grows
without bound as K → ∞. Hence, for any fixed ε, the
indicator function goes to zero for all j as K → ∞ and
the Lindeberg condition holds. It follows from the Lindeberg
CLT that, conditioned on X and h, we have TK

SK

d→ N (0, 1)

as K → ∞, where
d→ denotes convergence in distribution.

This is the desired result in (7).

APPENDIX B
PROOF OF LEMMA 2

Proof: An M -PAM constellation has a real-
valued alphabet given as X = {x1, . . . , xM} =
{(−M + 1)a, . . . ,−a, a, . . . , (M − 1)a} where a is
the scaling constant selected to satisfy the energy
constraint E[X2] = Es. The conditional mean
of the hard decisions at node j can be written
as E[Re(Vj) |X = x�] =

∑M
m=1 xmpm,�, where

pm,� := Prob(decide Vj = xm |X = x�). Assuming
standard M -PAM hard decision regions and an AWGN
channel with magnitude |hj | and noise variance N0/2, we
can express these probabilities as

pm,� = Q ((2|�−m| − 1)ρj)−Q ((2|�−m|+ 1)ρj)

for m ∈ {2, . . . ,M − 1} and

pm,� = Q ((2|�−m| − 1)ρj)

for m ∈ {1,M} for � ∈ {1, . . . ,M} where ρ2j :=
|hj|2a2

N0/2

and Q(x) :=
∫∞
x

1√
2π

e−t2/2 dt is the tail probability of the
standard Gaussian density. In the low per-node SNR regime,
ρj → 0 and the arguments to the Q-functions will be small.
We can approximate the Q-function for small arguments as

Q(x) =
1

2
−
∫ x

0

1√
2π

e−t2/2 dt ≈ 1

2
− x√

2π
.

Hence, for small ρj , we can express the conditional mean
as shown in (15) — (17) where we have used the facts that
xm = −xM−m+1 for all m ∈ {1, . . . ,M} and |�− 1| − |�−
M | = 2�−M − 1 for all � ∈ {1, . . . ,M} in the first equality
and the fact that x� = (2�−M − 1)a for all � ∈ {1, . . . ,M}
in the second equality.

The conditional variance of the hard decisions at receive
node j can be computed similarly as shown in (18) — (20)
where we have used the fact that x2

1 = (M − 1)2a2 and
we have discarded all terms with ρj and ρ2j in the final
approximation since ρj → 0 in the low per-node SNR regime.
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E[Re(Vj) |X = x�] ≈
(
1

2
− (2|�− 1| − 1)ρj√

2π

)
x1 +

M−1∑
m=2

2ρj√
2π

xm +

(
1

2
− (2|�−M | − 1)ρj√

2π

)
xM (15)

=

(
2(2�−M − 1)ρj√

2π

)
xM (16)

=

(
2(M − 1)ρj√

2π

)
x� (17)

var[Re(Vj) |X = x�] = E[Re(Vj)
2 |X = x�]− (E[Re(Vj) |X = x�])

2 (18)

≈ 2

(
1

2
− (2|�− 1| − 1)ρj√

2π

)
x2
1 + 2

M/2−1∑
m=2

2ρj√
2π

x2
m −
(
2(M − 1)ρj√

2π

)2

x2
� (19)

≈ (M − 1)2a2 (20)

E[Vj |X = x1] =

M∑
m=1

xmpm,1 (21)

≈
M∑

m=1

aej2π(m−1)/M

{
1

M
+

1√
π
cos

(
2π(m− 1)

M

)
sin
( π

M

)
ρj

}
(22)

=
2aρj sin(π/M)√

π

M/2∑
m=1

cos2
(
2π(m− 1)

M

)
(23)

=

(
Mρj sin(π/M)

2
√
π

)
x1 (24)

APPENDIX C
PROOF OF LEMMA 3

Proof: An M -PSK constellation has a complex-
valued alphabet given as X = {x1, . . . , xM} ={
a, aej2π/M , aej4π/M , . . . , aej(M−1)2π/M

}
with Es = a2.

Since the constellation is symmetric, we focus on X = x1.
The probability of deciding Vj = xm given X = x1 can be
expressed as

pm,1 =

∫ (2m−1)π/M

(2m−3)π/M

fΘ|X(θ |X = x1) dθ

for m ∈ {1, . . . ,M} with the conditional phase distribution
given as [4]

fΘ|X(θ |X = x1) =

1

2π
e−ρ2

j +
ρj√
π
cos(θ)e−ρ2

j sin2(θ)
(
1−Q(

√
2ρ2j cos

2(θ)
)

where ρ2j :=
|hj |2a2

N0
. In the low per-node SNR regime, we

can calculate a first-order Taylor series expansion of pm,1 at
ρj = 0 by computing

pm,1

∣∣∣∣
ρj=0

=

∫ (2m−1)π/M

(2m−3)π/M

fΘ|X(θ |X = xm)

∣∣∣∣
ρj=0

dθ

=
1

M

and

∂

∂ρj
pm,1

∣∣∣∣
ρj=0

=

∫ (2m−1)π/M

(2m−3)π/M

∂

∂ρj
fΘ|X(θ |X = x1)

∣∣∣∣
ρj=0

dθ

=

∫ (2m−1)π/M

(2m−3)π/M

cos(θ)

2
√
π

dθ

=
1

2
√
π

[
sin

(
(2m− 1)π

M

)
− sin

(
(2m− 3)π

M

)]

=
1√
π
cos

(
2π(m− 1)

M

)
sin
( π

M

)
Hence, in the low per-node SNR regime with ρj small, we
have

pm,1 ≈ 1

M
+

1√
π
cos

(
2π(m− 1)

M

)
sin
( π

M

)
ρj .

Under the assumption that M ≥ 4 is even, we can now
compute the conditional expectation shown in (21) — (24).
By symmetry, it is easy to see that E[Vj |X = x�] =(

Mρj sin(π/M)

2
√
π

)
x�.

The conditional variance can be computed similarly as

var[Vj |X = x�] = E[|Vj |2 |X = x�]− |E[Vj |X = x�]|2

≈ a2 −
(
Mρj sin(π/M)

2
√
π

)2

a2

≈ a2

for all � ∈ {1, . . . ,M} where we have discarded the term with
ρ2j in the final approximation since ρj is small under the low
per-node SNR assumption
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var[Re(Vj) |X = x�] = E[Re(Vj)
2 |X = x�]− (E[Re(Vj) |X = x�])

2 (25)

≈ 1

M

M∑
m=1

a2 cos2
(
2π(m− 1)

M

)
−
(
Mρj sin(π/M)

2
√
π

)2

(Re(x�))
2 (26)

≈ a2

2
(27)

var[Im(Vj) |X = x�] = E[Im(Vj)
2 |X = x�]− (E[ImVj |X = x�])

2 (28)

≈ 1

M

M∑
m=1

a2 sin2
(
2π(m− 1)

M

)
−
(
Mρj sin(π/M)

2
√
π

)2

(Im(x�))
2 (29)

≈ a2

2
(30)

cov[Re(Vj), Im(Vj) |X = x�] = E
[(
Re(Vj)− E[Re(Vj) |X = x�]

)(
Im(Vj)− E[Im(Vj) |X = x�]

) |X = x�

]
(31)

≈ 1

M

M∑
m=1

a2 cos

(
2π(m− 1)

M

)
sin

(
2π(m− 1)

M

)
(32)

= 0 (33)

To show that the real and imaginary parts of Vj each
have variance a2

2 and zero covariance in the low per-node
SNR regime, we can write the conditional variance of the
real and imaginary parts as shown in (25) — (30) for all
� ∈ {1, . . . ,M}. The covariance in the low per-node SNR
regime can also be computed as shown in (31) — (33) for all
� ∈ {1, . . . ,M}.
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