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Abstract—We investigate the feasibility of reconstructing a
signal recorded at multiple sensors through dispersive channels,
with minimal prior information regarding the signal and the
channels. We first demonstrate the efficacy of a parallelizable
frequency domain algorithm which exploits the continuity of
the channels across frequency, operating over small, overlapped
frequency bins. The algorithm employs SVD-based estimatesof
the signal over each frequency bin (over which the channels
are modeled as quadratic), and then stitches these estimates
together based on consistency conditions across adjacent bins.
While this algorithm gives excellent signal reconstruction over
frequency bands that are one order of magnitude larger than the
channel “coherence bandwidth,” fundamental limitations arise
for larger frequency bands, in that it is possible to construct
multiple explanations consistent with the recorded data.

I. I NTRODUCTION

We investigate the fundamental problem of collaborative
sensing of events regarding which we have limited prior
knowledge. Without a prior model for the event signature,
a single sensor has no means of distinguishing signal from
noise. On the other hand, multiple sensors sensing a common
event are expected to have correlated observations, which can
potentially be pooled to obtain a reconstruction of the event
signature. Specifically, we focus on the following setting,that
is closely related to the classical problem of blind deconvo-
lution: Each sensor observes a noisy version of a signal (the
event signature) passed through a multipath channel, where
the channels are different for different sensors. The signal
and the multipath channels area priori unknown, but we
assume that there is a known upper bound on the channel delay
spread. We would like to reconstruct the signal by pooling the
observations from all the sensors, averaging out the noise and
undoing the effects of multipath propagation. We would also
like to understand whether there are fundamental ambiguities
in reconstruction that cannot be resolved under our model.
Approach: We adopt a frequency domain approach, inspired
by Orthogonal Frequency Division Multiplexing (OFDM)
schemes used to combat dispersive channels in communication
systems. The key to this approach is the observation that any
dispersive channel can be approximated by a constant over a
frequency band smaller than the channel coherence bandwidth.
This allows us to efficiently estimate the signal in each
band using a Singular Value Decomposition (SVD), thereby
breaking down the difficult problem of blind deconvolution
into a number of simpler subproblems. However, within each
band, the signal can be estimated only up to complex scaling.

We resolve these scaling ambiguities in two stages – first, we
refine the channel model and approximate it as a quadratic
function of frequency within a small frequency band. We
then exploit the continuity of the channels across adjacent
frequency bands to “stitch” together the signal estimates across
bands. We find that it is important to have significant overlap
between adjacent bands for this approach to succeed; it is
interesting to note that our inspiration for heavily overlapping
bands, after obtaining poor performance with non-overlapping
frequency bands as in OFDM, came from the front end of the
human auditory system, which employs similar overlapping
narrowband decomposition of the incoming signals [1].
Contributions: We devise and evaluate a two-stage algorithm
for reconstructing the event signature. Within each frequency
band, an alternating optimization algorithm is used for estimat-
ing the signal and the channels seen by each sensor, bootstrap-
ping with a signal estimate obtained by first approximating the
channels as constant. The signal (and channel) estimates are
then combined across bands using a “left-to-right stitching”
algorithm, based on enforcing consistency conditions on the
signal and channel estimates in the overlap region for adjacent
bands. Simulations and experiments on an acoustic testbed
show that the algorithm gives excellent performance, but that
there are occasional drops in correlation between the estimate
and the true signal as the signal bandwidth gets large. We
find that this is not an artifact of the algorithm, but is the
result of fundamental limitations, in that, for large signal
bandwidths (relative to the channel coherence bandwidth),
multiple explanations for the recorded data can be constructed,
while adhering to the assumed constraints on the channel
delay spreads. However, due to space limitations, we omit
detailed description of the procedure for constructing multiple
explanations in this paper.
Related Work: We previously investigated collaborative sens-
ing without a prior signal model in [2], but this work was
for line of sight (LOS) channels from the source to the
sensors. Source localization and implicit signal estimation
is investigated in [3], but these results are also for a LOS
channel model. The problem posed here falls within the
broader framework of blind multichannel identification and
equalization, on which there is a large body of literature (e.g.,
see [4], [5] for excellent reviews). Much of this work is not
applicable to our setting, since it assumes prior knowledgeof
source statistics, such as oversampled second order statistics
[6][7], or higher order moments [8]. However, prior work on



“deterministic subspace methods” [9] considers exactly the
same scenario as the present paper, and prove that signal
reconstruction is possible if the channels do not have common
zeros. Unfortunately, the time domain algorithm in [9] does
not scale to large datasets or large delay spreads, and, as the
authors acknowledge, is sensitive to knowledge of channel
length. To the best of our knowledge, the approach proposed
in our paper is the first to provide a scalable solution to this
problem (by breaking a complicated time domain problem
into simple frequency domain subproblems), while requiring
only coarse assumptions on channel length (to estimate the
coherence bandwidth).

II. SYSTEM MODEL

We consider a networkS sensors, where the source signa-
ture, denoted byx[n], is recorded at theith sensor after having
passed through a dispersive channelhi[n] that is time-limited
to P taps. Denoting the recorded samples byyi[n], we have,

yi[n] = (x ⋆ hi)[n] + ni[n], n = 0, 1, 2, . . . , N − 1 (1)

where ⋆ denotes thelinear convolution operation between
the sequences{x[n], n = 0, 1, . . . , N − 1} and {hi[n], n =
0, 1, . . . , P − 1}. The noise samplesni[n] are modeled as
Gaussian random variables with varianceσ2 and are assumed
to be independent across sensors and time. We denote the
N -point DFT’s of yi[n], x[n] and hi[n] by Yi[k], X [k] and
Hi[k] (k = 0, 1, . . . , N − 1), respectively. We use boldface
notation to denote vectors containing samples of these signals
in the time and frequency domains (e.g.,yi denotes theN -
dimensional vector of samples at thei sensor, andYi the
vector of corresponding DFT samples). Approximating the
linear convolution in (1) by a circular convolution and taking
the DFT of (1), we obtain

Yi[k] = X [k]Hi[k] +Ni[k], k = 0, 1, 2, . . . , N − 1 (2)

whereNi[k] are independent, complex Gaussian random vari-
ables with varianceσ2.
Benefits of Frequency Domain Processing:The discrete fre-
quency coefficientsHi[k] are approximately constant overL =
BcohT contiguous samples, whereBcoh is the coherence band-
width of the channel (in Hertz) andT is the recording duration
(in seconds). Accordingly, we process the frequency domain
samples of the recorded signalYi[k] in blocks ofL contiguous
samples. With aT = 4 second recording and a coherence
bandwidthBcoh = 5 Hz – numbers typical of an indoor
acoustic setting – each block consists of onlyL = 20 samples.
On the other hand, processing in the time domain involves
substantially larger blocks: over the same recording interval,
a sampling frequencyfs = 16 kHz results in 64000 samples.
Thus, exploiting parallelism in the frequency domain breaks
the problem into a number of subproblems of manageable di-
mensions, whose solutions then need to be “stitched” together.
Notation: We denote thelth element of a vectorU by
U[l]. We process the recorded samples in frequency bands
consisting ofL contiguous indices, and index the frequency
bands by b. If frequency bandb corresponds to indices

{i1, i1 + 1, . . . , i1 + L − 1}, then U[Ib] denotes the vector
of corresponding samples fromU: U[Ib] = (U[i1] U[i1 +
1] . . . U[i1 + L− 1]).

III. S IGNAL ESTIMATION ALGORITHM

We have already noted that even a complicated time domain
channel exhibits a relatively simple structure – a quadratic
function of frequency – over a small enough frequency band.
Additionally, we note that the channel response varies con-
tinuously with frequency. We reconstruct the source from the
recorded signals in two stages by exploiting these observa-
tions, as summarized below.
• Stage 1:We split the entire frequency range into small

bands over which the channel response may be approximated
by a quadratic. We bootstrap by approximating the channel as
constant over bandb, which allows us to employ an SVD to
estimate the source in bandb efficiently. This source estimate
provides the starting point for an alternating optimization pro-
cedure that refines the estimates of the quadratically varying
channels and the source signal.
The alternating optimization consists of multiple iterations of
two basic steps:

1) Given an estimate of the source signal in bandb, find
the best estimates of channel responses to each sensor that are
quadratic functions of frequency.

2) Given channel estimates to each sensor in bandb that
are quadratic functions of frequency, find the best estimateof
the source within this band.
• Stage 2:Since the signal as well as channels are unknown,

there is a scaling ambiguity in the signal estimate producedin
stage 1. Thus, in order to reconstruct a signal with bandwidth
larger than the channel coherence bandwidth, the estimates
from different bands must be scaled consistently. This is ac-
complished by using overlap between successive bands and ex-
ploiting the continuity of the channel. Finally, we use the esti-
mated scale factors along with the signal estimates from Stage
1 to reconstruct the source signal. We now provide the details.

A. Frequency domain channel model

At a frequency close tof0, sayf = f0 + δ, the frequency
response of a tapped delay line channelh(t) =

∑

k µkδ(t−τk)
is given by,

H(f0+δ) =
∑

k

µke
−j2πf0τk

[

1− (j2πτk)δ − (2π2τ2k )δ
2 + . . .

]

(3)
By choosing |δ| ≪ 1/τmax, where τmax = maxk |τk| is
the delay spread, cubic and higher powers ofδτk can be
ignored in the above expansion. Therefore, the channel can
be approximated as a quadratic function of frequency over a
small frequency band.

B. Stage 1: Estimation Within A Band

Consider a bandb spanning the discrete frequenciesIb =
{f1T, f1T + 1, f1T + 2, . . . , (f1 + Bcoh)T }. The frequency
domain samples at sensori in this band are given by

Yi[k] = Hi[k]X [k] +Ni[k], k ∈ Ib.



Initial Guess: Approximating approximate the channel re-
sponse to sensori as a constant̄Hi within this band, we have

Yi[Ib] ≈ H̄iX[Ib] +N[Ib], (4)

whereN[Ib] ∼ CN(0, σ2
I). Since the processing in each band

is identical, we drop the identity of the band from our notation
in the following. Denoting the Maximum Likelihood (ML)
estimates of the signal bŷS and the channel for sensori by
Ĝi, respectively, we have,

(Ŝ, Ĝi) = argmin
S,Gi

S
∑

i=1

||Yi[Ib]−GiS||
2 (5)

where S is the number of sensors. As shown in [2], the
ML estimate of the signal̂S is the eigenvector with the
largest eigenvalue of the nonnegative definite matrixM =
∑S

i=1
Yi[Ib](Yi[Ib])

H . The corresponding channel estimates
are given byĜi = ŜHYi[Ib]/||Ŝ||

2.These ML estimates are
unique only up to scaling:zŜ and (1/z)Ĝi give exactly
the same value for the cost function in (5) for any nonzero
complex scalarz.
Alternating Optimization: We now use the preceding signal
estimate to refine the channel estimates, modeling their varia-
tion over the bin as quadratic. These refined channel estimates,
in turn, yield an updated signal estimate.
Step (a) – Given signal, estimate channel:Based on our
quadratic approximation, theith channel is written as

Gi[l] = Ai +Bil + Cil
2 l = 0, 1, . . . , L− 1 (6)

Given a signal estimatêS in a frequency band, the corre-
sponding ML estimate of the channel to theith sensor is
obtained by estimating the parameters(Ai, Bi, Ci) by solving
the following linear least squares problem:

(Âi, B̂i, Ĉi) = argmin
Ai,Bi,Ci

L−1
∑

l=0

∣

∣

∣

∣

Yi[Ib, l]− Ŝ[l](Ai +Bil + Cil
2)

∣

∣

∣

∣

2

(7)

Step (b) – Given channel, estimate signal:Now, suppose we
have channel estimateŝGi[l] = Ai + Bil + Cil

2. Then the
ML signal estimatêS[l] satisfies a “maximal ratio combining”
rule:

Ŝ[l] =

∑S

i=1
Ĝ∗

i [l]Yi[Ib, l]
∑S

i=1
|Ĝi[l]|2

(8)

Output of Stage 1:After a few rounds of alternating optimiza-
tion, the estimated signal and channel are approximately equal
to scaled versions of the true signal and channel. Denoting the
true signal and channels in bandb by X[Ib] andHi[Ib] and
their estimates bŷSb andĜi,b, we have

zbŜb ≈ X[Ib] 1/zbĜi,b ≈ Hi[Ib] (9)

wherezb is an arbitrary complex scalar.

Fig. 1. Overlapping frequency bands

C. L-to-R Stitching Algorithm

We estimate the weightszb by choosing adjacent bands
to have significant overlap with one another, and enforcing
consistency in the overlapped region.

Reconciling multiple estimates of the same quantity:
Consider adjacent bandsb − 1 and b, as shown in Figure
1. Denote the frequencies common to bandsb − 1 and b
by Fcommon i.e. Fcommon = [b∆, (b − 1)∆ + Bcoh] with
∆ = (1 − χ)Bcoh. The parameterχ ∈ (0, 1) controls the
amount of overlap between adjacent bands.

Denote the channel to sensori within Fcommon by
Hi,common. We obtain two estimates ofHi,common from Stage
1 : The first estimate is obtained from bandb− 1 by picking
the rightmost χL entries ofĜi,b−1. The chosen entries are
shown by crossed squares in Figure 1 and we denote this
estimate byĜright

i,b−1
. The second estimate is obtained from band

b by picking theleftmost χL entries ofĜi,b and is denoted
by Ĝ

left
i,b . From equation (9), these estimates are related as,

(1/zb−1)Ĝ
right
i,b−1

≈ Hi,common ≈ (1/zb)Ĝ
left
i,b (10)

Similarly, we denote theleftmost χL entries ofŜb by Ŝ
left
b

and therightmost χL entries ofŜb−1 by Ŝ
right
b−1

and obtain
(via (9)),

zb−1Ŝ
right
b−1

≈ zbŜ
left
b (11)

We combine the constraints in (10) and (11) to obtain a single
constraint of the form,

zbub,b−1 ≈ zb−1ub−1,b (12)

where the vectorsub,b−1 andub−1,b are given byub,b−1 =

(Ŝleft
b , Ĝ

right
1,b−1

, . . . , Ĝ
right
S,b−1

) and ub−1,b = (Ŝright
b−1

,Ĝleft
1,b ,

. . . , Ĝleft
S,b ).

We estimate the scale factors{zb} based on (12) in two stages.
First, we estimate the “relative” scale factorγb,b−1 , zb/zb−1

between bandsb andb− 1 as

γb,b−1 =
uH
b,b−1

ub−1,b

||ub,b−1||2
(13)



We then setz0 = 1 (without loss of generality) and estimate
the scale factors in other bands recursively:

zb = zb−1γb,b−1 b ≥ 1

We call this theL-to-R stitching algorithmsince the weights
are estimated in a recursive fashion, starting from low fre-
quencies (left end of the spectrum) and proceeding on to high
frequencies (right end of the spectrum). Note that, if the signal
energy in a given frequency band is too low, neither the signal
nor the channel estimates will be reliable, which can severely
disrupt the stitching procedure. We therefore identify bands
with low signal energy and omit them from our processing,
giving them a weight of zero when reconstructing the signal.
Details are omitted due to lack of space.

IV. RESULTS

We now present experimental results from our indoor
testbed, as well as simulation results, to quantify the perfor-
mance of the L-to-R stitching algorithm.

A. Experimental Results

We recorded acoustic data using three Samson C03U USB
microphones. We played the source signal from four different
locations to emulate recordings with a larger number of micro-
phones. We thus had 12 recordings (3 microphones× 4 source
locations) of the source through dispersive channels. We used
two types of source signals: (1)Chirp signals: they have the
general formxchirp(t) = cos

(

2π
(

f0 +
f1−f0

T
t
)

t
)

, 0 ≤

t ≤ T . We chosef0 = 1000 Hz, T = 4 seconds and
varied f1 to characterize the effect of signal bandwidth on
the reconstruction. Specifically, we chosef1 = 1050 Hz (we
call this signal Chirp50) andf1 = 1200 Hz (we call this
signal Chirp200) for signal bandwidths of 50 Hz and 200 Hz
respectively. (2)Sinusoidal signals:These signals, denoted by
Sines50 and Sines200, consist of sinusoids spaced 2 Hz apart
for bandwidths of 50 Hz and 200 Hz respectively. We used a
sampling frequency of 16 kHz to record the data.
Preprocessing: The low frequency components in the
recorded signals contain substantial energy from background
hum. Since this is registered at all sensors, it counts as “signal”
rather than spatially uncorrelated noise. In order to control
the source signal, we filter out the received signal energy in
the bands from 0-950 Hz to eliminate the hum. We coarsely
synchronize the recorded waveforms in a data-driven fashion,
by matched filtering each of them against a reference (recorded
signal at one of the sensors) and then shifting them in time
based on the matched filter output. Finally, the recordings at
one of the twelve “sensors” - corresponding to a particular
source-microphone arrangement - had a very good correlation
with the true signal, indicating that it had a near Line-of-Sight
channel to the source. Since our goal is to understand the limits
of recovering signals in the face of significant multipath, we
exclude this sensor from further processing.
Parameters & Results:We chooseBcoh = 5 Hz, the overlap
between adjacent bandsχ = 50% and we declare a band to be
good if its energy is greater than(1/10)th of the band with

Signal ρL−to−R ρSVD

Chirp50 0.97 0.84
Chirp200 0.82 0.7
Sines50 0.87 0.72
Sines200 0.68 0.56

TABLE I
RESULTS OFL-TO-R PROCESSING AND SINGLE TAP APPROXIMATION OF

THE RECORDED SIGNALS.

maximum energy i.e.η = 0.1. Note that there is always a
“global” delay ambiguity in the estimate: we can delay the
signal by τ and correspondinglyadvanceall the channels
by τ to explain the received data. Therefore, we quantify
the performance of the L-to-R Stitching algorithm by the
normalized crosscorrelation, denoted byρL−to−R, between the
sourcex and its estimatêx, maximized over all possible time-
shifts τ of the estimate:

ρL−to−R = max
τ

(Dτ x̂)Tx

||x|| ||x̂||
(14)

whereD is the delay operator that shifts the vectorx by one
sample. We note that0 ≤ ρL−to−R ≤ 1 with ρL−to−R = 1
indicating a perfect match betweenx and x̂. We compare the
L-to-R output against a solution that ignores multipath and
approximates the channel to consist only of a single tap. Since
the optimal estimate with this approximation is given by an
SVD of the received signals [2], we refer to this estimate as
the “SVD estimate” and denote its correlation with the truth
by ρSVD.

We compare these estimates in Table I and make the
following observations: (1) The L-to-R algorithm consistently
performs better than the SVD estimate. Therefore, accounting
for the multipath channel and piecing together estimates
from different bands yields a better reconstruction even over
small signal bandwidths (∼ 50 Hz). (2) We observe that the
reconstruction is very good when the signal bandwidth is small
and worsens as the bandwidth increases. For example, the
reconstruction is nearly perfect when the source is Chirp50,
with ρL−to−R = 0.97. In contrast, when the bandwidth of the
chirp signal is increased to 200 Hz,ρL−to−R drops to 0.82.

We illustrate the gains provided by the L-to-R stitching
algorithm visually, by plotting the true Chirp200 waveform,
the corresponding recorded signals at four sensors and the
estimated signal in Figure 2. The true chirp waveform, in the
topmost plot, has a constant envelope. Signals recorded at four
sensors are shown in subsequent plots, and they clearly do not
have a constant envelope. The reconstructed waveform, shown
in the last plot, exhibits significantly smaller variationsin its
envelope and resembles the signal to a greater degree.

To understand the drop in correlation with increasing
bandwidth, we correlate the reconstructed waveforms over
different “subbands” of width 50 Hz each, with theith subband
spanning the frequencies[1000 + 50(i − 1), 1000 + 50i] Hz.
From Table II, we see that the fit over subbands of width 50 Hz
is very good (the chirp signal is reconstructed nearly perfectly
over each 50 Hz-band withρL−to−R ≈ 0.98). However, we
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Fig. 2. The topmost plot shows the true Chirp200 waveform, with a constant
envelope. The following four plots show the recorded waveforms at different
sensors. Notice that these waveforms undergo “deep fades” and no longer
have a constant envelope. The final plot shows the reconstructed Chirp200
waveform, whose envelope shows lesser variation, illustrating the benefits of
the L-to-R algorithm.

find that the delay between the reconstructed signal (over 50
Hz-bands) and the true signal in these bands varies across
bands (see Table III). This naturally leads to the conjecture
that these delay variations across 50 Hz bands cause the signal
contributions from these bands to combine “incoherently”,
thereby affecting the quality of the reconstruction over a larger
band. We have shown that such delay variations are indeed
the cause of fundamental ambiguities, and can be used to
systematically construct multiple explanations of the recorded
data. Due to space limitations, details of such constructions
are omitted from the paper.

Signal Band 1 Band 2 Band 3 Band 4
Chirp200 0.982 0.952 0.983 0.987
Sines200 0.882 0.859 0.869 0.847

TABLE II
FIT BETWEEN SOURCE AND ESTIMATE IN BANDS OF WIDTH50 HZ IS

VERY GOOD. BAND i SPANS THE FREQUENCIES

[1000 + 50(i − 1), 1000 + 50i] HZ.

Band 1 Band 2 Band 3 Band 4
Chirp200 287 203 123 172
Sines200 320 214 156 164

TABLE III
DELAY BETWEEN THE TRUE SOURCE AND THE ESTIMATE OVER BANDS OF

WIDTH 50 HZ (IN SAMPLES@ fs = 16 KHZ). BAND i SPANS THE

FREQUENCIES[1000 + 50(i − 1), 1000 + 50i] HZ.

B. Simulation Results

To quantify the performance of the algorithm statistically,
we simulate a setting withS = 6 sensors where the channel to
each sensor consists of 15 taps. The taps are placed uniformly
within a delay spread ofτmax = 20 ms (Bcoh ≈ 5 Hz) and
the tap values are uniformly distributed between -2 and 2. We
add independent Gaussian noise so that the SNR is 5 dB and

choose the overlap between adjacent bins to beχ = 70%. We
compute theaverageand minimumvalues of the correlation
between the estimate and the truth over 100 trials and display
the results in Table IV. The average performance of the L-
to-R algorithm is very good and the trends in the results
agree well with experiments. Additionally, we observe that
the worst-case performance of the L-to-R algorithm, given by
ρmin,L−to−R falls faster (from 0.94 to 0.81 over the same
range of bandwidths). Multiple explanations for the recorded
data are the reason for such occasional glitches; details are
omitted due to lack of space.

Signal ρav,L−R ρav,SVD ρmin,L−R ρmin,SV D

Chirp50 0.977 0.925 0.939 0.722
Chirp200 0.942 0.713 0.827 0.535
Chirp300 0.925 0.664 0.807 0.462

TABLE IV
PERFORMANCE OF THEL-TO-R STITCHING ALGORITHM AND THE SVD

ESTIMATE WITH CHIRP AND “RANDOM ” SIGNALS OF VARYING

BANDWIDTHS.

V. CONCLUSIONS

We have shown, both through experiments and simulations,
that a frequency domain approach is effective for collaborative
estimation of an unknown signal observed in an unknown
dispersive environment. The correlation between the estimated
signal and the true signal is excellent over bandwidths thatare
10-20 times the channel coherence bandwidth. However, fun-
damental ambiguities are possible over larger bandwidths by
the introduction of small delay differences across bands, which
result in multiple combinations of signal and channels thatcan
explain a given set of observations (systematic construction of
multiple explanations is possible, but has not been discussed
here due to lack of space). It remains an open issue as to
whether and how additional knowledge about the signal and/or
channels can be best leveraged to alleviate these ambiguities.
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