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Abstract—We investigate the feasibility of reconstructing a We resolve these scaling ambiguities in two stages — first, we
signal recorded at multiple sensors through dispersive chanels, refine the channel model and approximate it as a quadratic
with minimal prior information regarding the signal and the function of frequency within a small frequency band. We

channels. We first demonstrate the efficacy of a parallelizdb th loit th tinuity of the ch | di ¢
frequency domain algorithm which exploits the continuity o en explol e continuity © € channels across adjacen

the channels across frequency, operating over small, ovexpped frequency bands to “stitch” together the signal estimatesss
frequency bins. The algorithm employs SVD-based estimatesf bands. We find that it is important to have significant overlap

the signal over each frequency bin (over which the channels petween adjacent bands for this approach to succeed; it is
e modeled as quadratic), and then stitches these estimate jnteresting to note that our inspiration for heavily oveping
g_ether_based on consistency condlt_|ons across adja_ceninb. bands, after obtaining poor performance with non-oveitepp
While this algorithm gives excellent signal reconstructio over ' ;
frequency bands that are one order of magnitude larger thanhe ~ frequency bands as in OFDM, came from the front end of the
channel “coherence bandwidth,” fundamental limitations aise human auditory system, which employs similar overlapping
for larger frequency bands, in that it is possible to constrict narrowband decomposition of the incoming signals [1].
multiple explanations consistent with the recorded data. Contributions: We devise and evaluate a two-stage algorithm
for reconstructing the event signature. Within each freqye
band, an alternating optimization algorithm is used foinest-

We investigate the fundamental problem of collaborativieg the signal and the channels seen by each sensor, bpetstra
sensing of events regarding which we have limited priging with a signal estimate obtained by first approximathmey t
knowledge. Without a prior model for the event signaturehannels as constant. The signal (and channel) estimates ar
a single sensor has no means of distinguishing signal frahen combined across bands using a “left-to-right stitghin
noise. On the other hand, multiple sensors sensing a comnadgorithm, based on enforcing consistency conditions @n th
event are expected to have correlated observations, whith signal and channel estimates in the overlap region for adfac
potentially be pooled to obtain a reconstruction of the évebands. Simulations and experiments on an acoustic testbed
signature. Specifically, we focus on the following settittsat show that the algorithm gives excellent performance, bat th
is closely related to the classical problem of blind decenvthere are occasional drops in correlation between the at&im
lution: Each sensor observes a noisy version of a signal (thed the true signal as the signal bandwidth gets large. We
event signature) passed through a multipath channel, whérel that this is not an artifact of the algorithm, but is the
the channels are different for different sensors. The s$ignesult of fundamental limitations, in that, for large signa
and the multipath channels age priori unknown, but we bandwidths (relative to the channel coherence bandwidth),
assume that there is a known upper bound on the channel detayitiple explanations for the recorded data can be contstiiic
spread. We would like to reconstruct the signal by poolirg thwhile adhering to the assumed constraints on the channel
observations from all the sensors, averaging out the naoide alelay spreads. However, due to space limitations, we omit
undoing the effects of multipath propagation. We would alstetailed description of the procedure for constructingtiple
like to understand whether there are fundamental ambéguitexplanations in this paper.
in reconstruction that cannot be resolved under our model.Related Work: We previously investigated collaborative sens-
Approach: We adopt a frequency domain approach, inspiradg without a prior signal model in [2], but this work was
by Orthogonal Frequency Division Multiplexing (OFDM)for line of sight (LOS) channels from the source to the
schemes used to combat dispersive channels in commumicaensors. Source localization and implicit signal estiorati
systems. The key to this approach is the observation that asyinvestigated in [3], but these results are also for a LOS
dispersive channel can be approximated by a constant ovesh@annel model. The problem posed here falls within the
frequency band smaller than the channel coherence bardwidiroader framework of blind multichannel identification and
This allows us to efficiently estimate the signal in eachqualization, on which there is a large body of literaturg.(e
band using a Singular Value Decomposition (SVD), therelsee [4], [5] for excellent reviews). Much of this work is not
breaking down the difficult problem of blind deconvolutiorapplicable to our setting, since it assumes prior knowleafge
into a number of simpler subproblems. However, within eadource statistics, such as oversampled second ordetistatis
band, the signal can be estimated only up to complex scalifi§][7], or higher order moments [8]. However, prior work on

I. INTRODUCTION



“deterministic subspace methods” [9] considers exactly tHiq,i; + 1,...,i; + L — 1}, then U[[] denotes the vector
same scenario as the present paper, and prove that sigriatorresponding samples frold: Ul[l,] = (Ul[i1] Ui +
reconstruction is possible if the channels do not have commy ... Uli; + L — 1]).

zeros. Unfortunately, the time domain algorithm in [9] does I, SIGNAL ESTIMATION ALGORITHM
not scale to large datasets or large delay spreads, andg as th ' ) . )
authors acknowledge, is sensitive to knowledge of channel'Ve have already noted that even a complicated time domain
length. To the best of our knowledge, the approach proposqgﬁnnel exhibits a relatively simple structure — a quadrati
in our paper is the first to provide a scalable solution to thfgnction of frequency — over a small enough frequency band.
problem (by breaking a complicated time domain prob|er1>,dditionally, we note that the channel response varies con-
into simple frequency domain subproblems), while reqgirinfinuously with frequency. We reconstruct the source from th
only coarse assumptions on channel length (to estimate fRgorded signals in two stages by exploiting these observa-

coherence bandwidth). tions, as summarized below.
e Stage 1:We split the entire frequency range into small
Il. SYSTEM MODEL bands over which the channel response may be approximated

We consider a networl§ sensors, where the source signady a quadratic. We bootstrap by approximating the channel as
ture, denoted by:[n], is recorded at théh sensor after having constant over bané, which allows us to employ an SVD to
passed through a dispersive chanhgh] that is time-limited estimate the source in bamdefficiently. This source estimate
to P taps. Denoting the recorded samplesibly:|, we have, provides the starting point for an alternating optimizato-
cedure that refines the estimates of the quadratically ngryi

yiln] = (@ x hi)[n] + nifn],  n=0,1,2,....N =1 (1) channels and the source signal.
where » denotes thdinear convolution operation betweenThe alternating optimization consists of multiple iteoats of
the sequence$z[n],n = 0,1,...,N — 1} and {h;[n],n = two basic steps:

0,1,...,P — 1}. The noise samples;[n] are modeled as 1) Given an estimate of the source signal in bandind
Gaussian random variables with varianceand are assumed the best estimates of channel responses to each sensorehat a
to be independent across sensors and time. We denote GHadratic functions of frequency.
N-point DFT’s of y;[n], z[n] and h;[n] by Y;[k], X[k] and 2) Given channel estimates to each sensor in batioht
H;[k] (k = 0,1,...,N — 1), respectively. We use boldfaceare guadratic functions of frequency, find the best estiroate
notation to denote vectors containing samples of thesalsigrthe source within this band.
in the time and frequency domains (e.g;, denotes theV- e Stage 2:Since the signal as well as channels are unknown,
dimensional vector of samples at thiesensor, andY; the there is a scaling ambiguity in the signal estimate produiced
vector of corresponding DFT samples). Approximating theétage 1. Thus, in order to reconstruct a signal with bandwidt
linear convolution in (1) by a circular convolution and tagi larger than the channel coherence bandwidth, the estimates
the DFT of (1), we obtain from different bands must be scaled consistently. This is ac
complished by using overlap between successive bands and ex

Yi[k] = X[k]Hi[k] + Nik], k=0,1,2,...,N—1 (2) ploiting the continuity of the channel. Finally, we use ttstie
whereN;[k] are independent, complex Gaussian random vafated scale factors along WiFh the signal estima_tes frorgeSta_l
ables with variance=2. 1 to reconstruct the source signal. We now provide the detail
Benefits of Frequency Domain Processingthe discrete fre- A Frequency domain channel model
quency coefficient#l; [k] are approximately constant over=
B, T contiguous samples, whefg.,, is the coherence band- .
width of the channel (in Hertz) arifl is the recording duration |- -ho">¢ of a tapped delay line chari@) = >_;, 10 (t—7%)

. . iS_given by,

(in seconds). Accordingly, we process the frequency domain
samples of the recorded sigrig[k] in blocks of L contiguous H( fy+6) = Z pe =930 [1 — (j2m7y)d — (272 72)0% + .. ]
samples. With a" = 4 second recording and a coherence k

bandwidth B.,, = 5 Hz — numbers typical of an indoor _ (:_3)
acoustic setting — each block consists of ofly 20 samples. BY ¢hoosing[d| < 1/7maz, Where 7,4, = maxy, [7x| is

On the other hand, processing in the time domain involv&3e delay spread, cubic and higher powersdef can be
substantially larger blocks: over the same recording vaer ignored m_the above expansion. Therefore, the channel can
a sampling frequency, = 16 kHz results in 64000 samples.be approximated as a quadratic function of frequency over a
Thus, exploiting parallelism in the frequency domain beeal®Mall frequency band.

the problem into a number of subproblems of manageable @i- Stage 1: Estimation Within A Band

mensions, whose solutions then need to be “stitched” tegeth
Notation: We denote thel'” element of a vectorU by
U[l]. We process the recorded samples in frequency ba
consisting of L contiguous indices, and index the frequency
bands byb. If frequency bandb corresponds to indices Yilk| = H;[kE]| X [k] + Ni[k], k€ I.

At a frequency close tgy, say f = fo + 6, the frequency

Consider a band spanning the discrete frequencigs=
ﬂéféT, AT + 1, AT +2,...,(f1 + Beon)T}. The frequency
Omain samples at sensbin this band are given by



Initial Guess: Approximating approximate the channel re-

sponse to sensadras a constani; within this band, we have
P i (b—1)A Bandb—1  (b—1)A+ Buy

Y,[I,) ~ H;X[I,] + N[I,], (4) DO

right .. .
whereN([I,] ~ C'N(0,I). Since the processing in each banc < Gipo1 i XL samples >
is identical, we drop the identity of the band from our natati bA bA + Beon
in the following. Denoting the Maximum Likelihood (ML) OO XXX
estimates of the signal by and the channel for sensoiby .

A ; left . 1 . .
G, respectively, we have, G} : xL samples
s
S () = : I _ Q2
(S.Gy) argg}ggzg 1Yi[1,) — GiS|| ) Band b
A é (1 - X)Bguh

where S is the number of sensors. As shown in [2], the

ML estimate of the signal is the eigenvector with the Fig. 1. Overlapping frequency bands

Iargest eigenvalue of the nonnegative definite maivix =
S Y [L)(Y[I])H . The corresponding channel estimates L )

are given by(;; = S, [1,]/||S|)2. These ML estimates are "+ L-0-R Stitching Algorithm

unique only up to scalingzS and (1/z)G; give exactly ~ We estimate the weights, by choosing adjacent bands

the same value for the cost function in (5) for any nonzete have significant overlap with one another, and enforcing

complex scalat. consistency in the overlapped region.

Alternating Optimization: We now use the preceding signal Reconciling multiple estimates of the same quantity:

estimate to refine the channel estimates, modeling theia-varConsider adjacent bands— 1 and b, as shown in Figure

tion over the bin as quadratic. These refined channel estgnail. Denote the frequencies common to barbds 1 and b

in turn, yield an updated signal estimate. by Feommon 1-€ Feommon = [bA, (b — 1)A + Beop] with
Step (a) — Given signal, estimate channBased on our & = (1 — X)Bcn. The parameter € (0,1) controls the
quadratic approximation, thigh channel is written as amount of overlap between adjacent bands.

Denote the channel to sensar within F_.,mon DY
Gi[l] = A+ Bil+Cil* 1=0,1,...,L —1 (6) Hi common- We obtain two estimates &1; .o.mmon from Stage
R 1: The first estimate is obtained from bahe- 1 by picking
Given a signal estimat®& in a frequency band, the corre-the rightmost xL entries ofG;;—_1. The chosen entries are
sponding ML estimate of the channel to thi sensor is shown by crossed squares in Figure 1 and we denote this
obtained by estimating the parametérs, B;, C;) by solving estimate b;G”ght The second estimate is obtained from band

the following linear least squares problem: b by picking thele ftmost xL entries ofG,; and is denoted
by Glifl-f !, From equation (9), these estimates are related as,

Ay, By, Cy) = i1, 1] A; + Bil + Cil? Arigh Sl

( ~ e lZ ol =S+ B G| (172 )G~ B omon ~ (/)G (10)

@) Similarly, we denote thée ftmost XL entries ofS; by Sleft

rzqht
Step (b) — Given channel, estimate signidbw, suppose we and therightmost xL entries ofSy_1 by §}"}" and obain

have channel estimateS;[l] = A; + B;l + C;l. Then the (via (9)), right et
ML signal estimateS|[!] satisfies a “maximal ratio combining” —18,=1 & 28, (11)
rule: . We combine the constraints in (10) and (11) to obtain a single

: Zle GHIY [y, 1] constraint of the form,

Sl = S — (8)

2 i |Gl ZpWp p—1 R Zp—1Up—1,b (12)

Output of Stage 1:After a few rounds of alternating optimiza-where the vectorsy,, ; andw,_;;, are given byu,, | =
tion, the estimated signal and channel are approximatelgled(s ieft, C;;lgﬁtl, e égigbfitl) andwu, 15 = (égi_gft,élfft,

to scaled versions of the true signal and channel. Dendtiag t Glejt)

., Gy
true signal and channels in bahdby X([7,] and Hi[1,] and  \ye estimate the scale factofs,} based on (12) in two stages.
their estimates b)‘sb and Gl », We have

First, we estimate the “relative” scale factay;,_; 2 2/ 21
N A between bands andb — 1 as
stb ~ X[Ib] 1/ZbGi,b ~ Hi [Ib] (9)

H
W1 W10 (13)
wherez, is an arbitrary complex scalar. Yob-1 = [lap,p—1]]?



We then set;; = 1 (without loss of generality) and estimate Cshiigrgglo e
the scale factors in other bands recursively: Chirp200 | 0.82 0.7
Sines50 0.87 0.72
2b = 2p—1Mp—1 b>1 Sines200|  0.68 0.56

We call this theL-to-R stitching algorithnsince the weights TABLE |

are estimated in a recursive fashion. startina from low freBESULTS OFL-TO-R PROCESSING AND SINGLE TAP APPROXIMATION OF
’ g THE RECORDED SIGNALS

guencies (left end of the spectrum) and proceeding on to high

frequencies (right end of the spectrum). Note that, if tiyaal

energy in a given frequency band is too low, neither the signa

nor the channel estimates will be reliable, which can sdyeranaximum energy i.en = 0.1. Note that there is always a
disrupt the stitching procedure. We therefore identify dsn “global” delay ambiguity in the estimate: we can delay the
with low signal energy and omit them from our processingignal by 7 and correspondinghadvanceall the channels
giving them a weight of zero when reconstructing the signddy = to explain the received data. Therefore, we quantify
Details are omitted due to lack of space. the performance of the L-to-R Stitching algorithm by the
normalized crosscorrelation, denoteddy ¢+, r, between the

_ ~ sourcex and its estimat&, maximized over all possible time-
We now present experimental results from our indo@hifts - of the estimate:

testbed, as well as simulation results, to quantify thegoerf (D)7
X)X

mance of the L-to-R stitching algorithm. PL—to—R = Max TR (14)
T X X

IV. RESULTS

A. Experimental Results whereD is the delay operator that shifts the vectoby one

_We recorded acoustic data using th_ree Samson COI_3U U§<§nple. We note that < pr_ro—r < 1 With pr_jo_p = 1
microphones. We played the source signal from four d'ﬁereﬁ‘\dicating a perfect match betweenandx. We compare the
locations to emulate recordings.with alar_gernumber of micr| _to-R output against a solution that ignores multipath and
phones. We thus had 12 recordings (3 microphondssource  gpproximates the channel to consist only of a single tapzeSin
locations) of the source through dispersive channels. Wel ushe optimal estimate with this approximation is given by an
two types of source signals: (Dhirp signals they have the gyp of the received signals [2], we refer to this estimate as
general formz .y, (t) = cos (27 (fo + %t) t) ;0 < the “SVD estimate” and denote its correlation with the truth
t < T. We chosefy = 1000 Hz, T = 4 seconds and by psvp.
varied f; to characterize the effect of signal bandwidth on We compare these estimates in Table | and make the
the reconstruction. Specifically, we choge= 1050 Hz (we following observations: (1) The L-to-R algorithm consisiyg
call this signal Chirp50) andf, = 1200 Hz (we call this performs better than the SVD estimate. Therefore, accognti
signal Chirp200) for signal bandwidths of 50 Hz and 200 Hior the multipath channel and piecing together estimates
respectively. (28inusoidal signalsThese signals, denoted byfrom different bands yields a better reconstruction eveer ov
Sines50 and Sines200, consist of sinusoids spaced 2 Hz aparall signal bandwidths~ 50 Hz). (2) We observe that the
for bandwidths of 50 Hz and 200 Hz respectively. We usedraconstruction is very good when the signal bandwidth islisma
sampling frequency of 16 kHz to record the data. and worsens as the bandwidth increases. For example, the
Preprocessing: The low frequency components in thereconstruction is nearly perfect when the source is Chirp50
recorded signals contain substantial energy from backgtouwith pr_;,_ g = 0.97. In contrast, when the bandwidth of the
hum. Since this is registered at all sensors, it counts gaasi chirp signal is increased to 200 Hzz 4, g drops to 0.82.
rather than spatially uncorrelated noise. In order to @intr We illustrate the gains provided by the L-to-R stitching
the source signal, we filter out the received signal energy atgorithm visually, by plotting the true Chirp200 wavefgrm
the bands from 0-950 Hz to eliminate the hum. We coarselye corresponding recorded signals at four sensors and the
synchronize the recorded waveforms in a data-driven fashi@stimated signal in Figure 2. The true chirp waveform, in the
by matched filtering each of them against a reference (recbrdopmost plot, has a constant envelope. Signals recordediat f
signal at one of the sensors) and then shifting them in tinsensors are shown in subsequent plots, and they clearlytdo no
based on the matched filter output. Finally, the recordirigs fzave a constant envelope. The reconstructed waveform show
one of the twelve “sensors” - corresponding to a particulan the last plot, exhibits significantly smaller variatiomsits
source-microphone arrangement - had a very good correlatenvelope and resembles the signal to a greater degree.
with the true signal, indicating that it had a near Line-igt$ To understand the drop in correlation with increasing
channel to the source. Since our goal is to understand tlits linbandwidth, we correlate the reconstructed waveforms over
of recovering signals in the face of significant multipatte wdifferent “subbands” of width 50 Hz each, with tith subband
exclude this sensor from further processing. spanning the frequencig$000 + 50(¢ — 1), 1000 + 50i] Hz.
Parameters & Results:We chooseB.., = 5 Hz, the overlap From Table Il, we see that the fit over subbands of width 50 Hz
between adjacent bangs= 50% and we declare a band to beis very good (the chirp signal is reconstructed nearly méisfe
good if its energy is greater than/10)*" of the band with over each 50 Hz-band with;,_+,_r ~ 0.98). However, we
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Fig. 2. The topmost plot shows the true Chirp200 wavefornth wiconstant
envelope. The following four plots show the recorded wanefat different
sensors. Notice that these waveforms undergo “deep fades’na longer
have a constant envelope. The final plot shows the recotetu€hirp200
waveform, whose envelope shows lesser variation, illtisgahe benefits of
the L-to-R algorithm.

choose the overlap between adjacent bins tq ke 70%. We
compute theaverageand minimumvalues of the correlation
between the estimate and the truth over 100 trials and gispla
the results in Table IV. The average performance of the L-
to-R algorithm is very good and the trends in the results
agree well with experiments. Additionally, we observe that
the worst-case performance of the L-to-R algorithm, givgn b
Pmin,L—to—r Talls faster (from 0.94 to 0.81 over the same
range of bandwidths). Multiple explanations for the reeatd
data are the reason for such occasional glitches; details ar
omitted due to lack of space.

Signal | pav,.L—R | Pav,svD || Pmin,L—R | Pmin,svD
Chirp50 0.977 0.925 0.939 0.722
Chirp200 0.942 0.713 0.827 0.535
Chirp300 0.925 0.664 0.807 0.462

TABLE IV

PERFORMANCE OF THEL-TO-R STITCHING ALGORITHM AND THE SVD
ESTIMATE WITH CHIRP AND “RANDOM” SIGNALS OF VARYING
BANDWIDTHS.

V. CONCLUSIONS

find that the delay between the reconstructed signal (over 50/e have shown, both through experiments and simulations,
Hz-bands) and the true signal in these bands varies acrtsa a frequency domain approach is effective for collatiea
bands (see Table Ill). This naturally leads to the conjectuestimation of an unknown signal observed in an unknown
that these delay variations across 50 Hz bands cause tha sigiispersive environment. The correlation between the estich
contributions from these bands to combine “incoherently8jgnal and the true signal is excellent over bandwidthsahat

thereby affecting the quality of the reconstruction ovesirgér

10-20 times the channel coherence bandwidth. However, fun-

band. We have shown that such delay variations are indeimental ambiguities are possible over larger bandwidghs b
the cause of fundamental ambiguities, and can be usedthe introduction of small delay differences across bandhschwv

systematically construct multiple explanations of theorded

result in multiple combinations of signal and channels tizat

data. Due to space limitations, details of such constrostioexplain a given set of observations (systematic constaif

are omitted from the paper.

Signal Band 1| Band 2 | Band 3 | Band 4
Chirp200 | 0.982 0.952 0.983 0.987
Sines200| 0.882 0.859 0.869 0.847

TABLE Il
FIT BETWEEN SOURCE AND ESTIMATE IN BANDS OF WIDTH50 Hz IS
VERY GOOD. BAND 7 SPANS THE FREQUENCIES
[1000 + 50(% — 1), 1000 + 50i] Hz.

Band 1| Band 2 | Band 3 | Band 4
Chirp200 287 203 123 172
Sines200| 320 214 156 164
TABLE Il

DELAY BETWEEN THE TRUE SOURCE AND THE ESTIMATE OVER BANDS OF
WIDTH 50 Hz (IN SAMPLES@ fs = 16 KHZ). BAND ¢ SPANS THE
FREQUENCIES1000 + 50(z — 1), 1000 + 50¢] Hz.

B. Simulation Results

To quantify the performance of the algorithm statistiqall)m

multiple explanations is possible, but has not been distliss
here due to lack of space). It remains an open issue as to
whether and how additional knowledge about the signal and/o
channels can be best leveraged to alleviate these ambgguiti
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