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ABSTRACT

Compressive information acquisition is a natural approach for
low-power hardware front ends, since most natural signals are
sparse in some basis. Key design questions include the impact
of hardware impairments (e.g., nonlinearities) and constraints
(e.g., spatially localized computations) on the fidelity of infor-
mation acquisition. Our goal in this paper is to obtain specific
insights into such issues through modeling of a Large Area
Electronics (LAE)-based image acquisition system. We show
that compressive information acquisition is robust to stochas-
tic nonlinearities, and that appropriately designed spatially lo-
calized computations are effective, by evaluating the perfor-
mance of reconstruction and classification based on the infor-
mation acquired.

Index Terms— Compressed sensing, stochastic nonlin-
earities, image acquisition, low-power front ends, hardware
impairments.

1. INTRODUCTION

Fig. 1. Using the compressive framework as a front end for
learning applications.

Since most natural signals are sparse in some basis, com-
pressive projections [1] are a promising general-purpose

approach for low-power front ends for acquisition of infor-
mation for downstream estimation/learning tasks (Fig. 1).
They can be realized using inner products with binary coeffi-
cients, which is attractive for hardware implementation, and
are expected to be resilient to a broad class of impairments.
Successful signal reconstruction has been demonstrated un-
der theoretical models of impairments such as outliers [2] [3]
and severe quantization [4] [5], and successful image classi-
fication was demonstrated in recent experiments on a Large
Area Electronics (LAE)-based image acquisition platform
[6], despite significant nonlinearities.

In this paper, we carry out a case study of the LAE-based
system in [6] to obtain insight into tradeoffs in designing
compressive hardware. To our knowledge there is no other
prior work on compressive acquisition in such low-power,
high-variability hardware. We model and evaluate the effect
of the stochastic nonlinearities in this system, and use the
model to explore alternative design choices [7]. While we
consider a large-area system, we believe that a similar ap-
proach would be highly effective in the design of nanoscale
hardware: as semiconductor processes are scaled down, sig-
nificant stochastic impairments begin to appear in the com-
putational fabric [8]. Our key results are as follows:

1. We develop a synthetic model for the effect of stochas-
tic nonlinearities in the LAE-based system, which al-
lows us to investigate the impact of potential modifi-
cations in hardware design via simulations. We pro-
vide insight into the effect of these impairments by fur-
ther simplifying the synthetic model via a (slightly op-
timistic) Gaussian approximation.

2. The LAE-based system employs row-by-row compres-
sive sensing, with the same matrix employed for all
rows. Based on recent theory [7], we expect this to be
suboptimal. However, we show that row-by-row com-
pressive projections, which are far easier to implement
than projections on the entire image, are competitive in
performance, as long as the compressive matrices used
are independent across rows.

Section 2 provides a brief review of the compressed sens-
ing principle. Section 3 describes the LAE-based image ac-
quisition system. Section 4 presents a synthetic model of the



measurement process, followed by analysis of stochastic non-
linearities and row-wise computations. Finally in Section 5
we provide conclusions.

2. BACKGROUND

A generic approach to dimension reduction for high-dime-
nsional data with an unknown low-dimensional structure is
to use compressive transformations that pseudo-randomly
project observations to a low-dimensional subspace. Con-
sider a signal x 2 RN with a K-sparse representation in basis
 : x =  s, where ksk0  K, and linear measurements
y 2 RM (where M < N ) of the form y = �x = � s.

Compressive sensing theory [1] states that if M =

O(K log(N/K)) and � satisfies the Restricted Isometry
Property (RIP), then pairwise distances are preserved, i.e,
kxi � xjk ⇡ kyi � yjk (where xi, xj are two instances of
the signal x, and yi, yj are the corresponding measurements),
and x can be reconstructed from y.

In particular, when elements of the sensing matrix � are
chosen ±1 with equal probability and basis  is orthonor-
mal, � satisfies the RIP [9]. Hence compressive signal rep-
resentations can be obtained at low complexity using binary
matrix transformations. As shown by Eftekhari et al. [7], it
is also possible to satisfy the RIP with compressive projec-
tions which operate on portions of the original vector (i.e.,
with block diagonal �), which is attractive for hardware im-
plementations and is directly relevant for our case study, as
discussed later.

3. IMAGE ACQUISITION SYSTEM

A practical example of a low-power compressive front end is
the LAE-based image acquisition platform [6] in Fig. 2. Im-
ages are projected onto an array of photoconductor sensors
and illumination levels are sensed as voltages. The matrix of
sensors is then scanned row-by-row, and each row x is fed into
a compression block. The compression matrix, which is the
same for each row, consists of ±1 elements, implemented via
highly variable, low-performance thin-film transistors (TFTs)
(hardwired to either a +1 or a �1 line). The compressed sig-
nal y is collected for all rows and then digitized for classifica-
tion and reconstruction tasks.

There are two sources of noise in the measurement pro-
cess (Fig. 3): variations in the image sensors, and variations
in Id � Vgs curves across TFTs in the compression block.

4. SYNTHETIC MODEL

We model the nonlinear measurement process as follows:

1. Transform each row of the image x to the range [l, h] of
photoconductor output voltages (with nominal values
of l = 10V, h = 22V).
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system based on large-area electronics (LAE).  Typically, 
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I. INTRODUCTION 

LAE technology is based on processing semiconductor 
thin-films at low temperatures. This enables large numbers 
of sensors to be formed on substrates such as glass or 
plastic, which can be physically large, enabling integration 
of millions of sensors. However, processing sensor data 
requires CMOS ICs, since active thin-film devices, such 
as TFTs, suffer from low performance and high variability, 
making them unable to implement complex functions. 
This necessitates thousands of interfaces between LAE 
and CMOS, even when accessing sensors via an active 
matrix, thus limiting scalability in the number of sensors. 
In this paper, we present an approach that substantially 
reduces the number of interfaces, by performing image 
compression via a random-projection matrix composed of 
highly variable, low-performance TFTs.   

Fig. 1 shows the system block diagram. In an NR×NC 
active-matrix array of sensors, scanning row-by-row 
reduces the sensor interfaces from NR×NC to ~NC (plus a 
few row-scanning control signals). The NC-interface signal, 
designated as the vector ݔറ, is fed into a compression block, 
which further reduces it to an M-interface signal ݕറ, giving 
a compression factor of NC/M. Transmitted to the CMOS 
domain, ݕറ  can then be used to reconstruct the image; 
though, in this work our primary interest is in applications 
requiring classification of the sensed image.   

 
Fig. 1. Architecture of image sensing and compression system. 
 

Previously, we presented a system [2] that directly 
applies TFT-implemented machine-learning classifiers to 
sensor data. However, this requires specialized circuitry to 
program and store analog voltages in the TFT classifiers. 
Conversely, the proposed system needs only very simple, 
variation-tolerant TFT circuits with no programming, and, 
applied in conjunction with an active matrix, achieves 
greater reduction in the number of interfaces.  

II. OVERVIEW OF THE APPROACH 

Many image compression algorithms (e.g. JPEG) utilize 
a transform domain, such as the 2-D discrete-cosine 
transform (DCT), where the image information is sparse 
(i.e. has a small number of nonzero transform coefficients). 
However, DCT computation is too complex to implement 
using TFTs.  Instead, we perform compression via a 
random-projection matrix.  That is, the compressed output 
 റ is derived from linear combinations corresponding toݕ
multiplication of the signal ݔറ with a matrix, designated as 
઴. The elements of ઴ are set to ±1 randomly with a 
uniform probability. Theoretical work has shown that 
compression via such random projections can preserve the 
inner product between vectors, which is precisely the 
information needed by certain classification algorithms [3]. 
This suggests that image detection can be performed 
directly on the compressed outputs. Compression is now 
reduced to simple add/subtract operations over the signal 
samples with an implied tolerance to random variations, 
making implementation via TFT circuits possible.  
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Fig. 2. Architecture of image acquisition system [6].

2. Add piecewise uniform noise (based on experimental
data on image sensor variations):

x̃ =

8
><

>:

u (l, l +�) x  l +�

u (x��/2, x+�/2) l +�  x  h��
u (h��, h) h��  x

(where u(a, b) denotes a realization of the uniform ran-
dom variable U(a, b), and the parameter� has a nomi-
nal value of 5V).

3. Perform random scaling from a set of 80 functions (rep-
resenting Id�Vgs curve variations) and then compress:

y = �fR(x̃)

Overall, this results in the following synthetic model for each
row of the image:

y = �fR(x+ n(x)) (1)
4.1. Verification with measured data

We first attempt to verify the synthetic model via compar-
isons of reconstruction and classification performance with
measured data. Measurements are available for 1500 MNIST
images, resized to 80 ⇥ 80. (For more details on the physi-
cal setup, see [6]). We perform classification on the measured
and synthetic data via RBF-SVM with 1000 training and 500
test images, and reconstruction via the GPSR algorithm [10]
with the assumption that the data is sparse in the 2D-DFT
basis. Reconstruction performance (Fig. 4) is qualitatively
similar for both measured and synthetic data, while classifi-
cation performance (Fig. 5) indicates that the synthetic model
is pessimistic.

Now we proceed to analyze the impact of hardware im-
pairments. We divide our analysis into two parts: impact of
row-by-row compression, and stochastic nonlinearities.

4.2. Row-by-row compression

Eftekhari et al. [7] study block diagonal compressive matri-
ces operating on portions of the signal, and show that RIP
properties depend on the characteristics of the basis in which
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MOTIVATION: 
• Large-area electronics (LAE) enables large, diverse and flexible sensor arrays
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Fig. 3. Sources of noise in the measurement process: (a) Vari-
ations in the output voltage of image sensors for low and high
input illumination (effect of shot noise on photodetection not
visible due to the 12V range in the y-axis), (b) Id vs. Vgs

curve for TFTs in the compression block, showing variation
over 80 devices.

the signal is sparse. These results are directly relevant here,
since we consider row-by-row compressive measurements for
an image. Specifically, we consider 3 types of binary com-
pression matrices (Fig. 6): (1) Compression on the full im-
age; (2) row-by-row compression with independent matrices
across rows; (3) row-by-row compression with the same com-
pressive matrix for each row.

The results in [7] show that matrices of types 2 and 3 can
satisfy RIP with high probability, but the minimum number of
measurements required scales linearly with the coherence of
the sparsifying basis for type 2, and with its block coherence
for type 3. We skip definitions due to lack of space (see [7]).

While we do not exactly know the sparsifying basis for
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Fig. 4. Images reconstructed from 5x compression: synthetic
vs. measured data.
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Fig. 5. Classification performance: synthetic vs. measured
data.
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images, we can gain design intuition by assuming that images
are sparse in the 2D-DFT basis. The 2D-DFT basis has small
coherence and large block coherence (see Appendix), so that
type 2 matrices (independent across rows) are expected to
perform better than type 3 matrices (used in the experimen-
tal system). We test this hypothesis by plotting the CDF of
k�xk/kxk over 60,000 MNIST images (Fig. 7). We see that
k�xk/kxk deviates from 1 when the compressive matrix is
the same for each row, but that use of independent matrices
leads to near-RIP behavior.

Next we compare the 3 matrices with respect to GPSR
reconstruction (Fig. 8) and linear SVM classification, using
60,000 images for training and 10,000 for testing (Fig. 9). Re-
construction and classification results show the same trend as
for geometry preservation, especially at higher compression
factors.
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Fig. 7. CDF of k�xk/kxk over 60,000 MNIST images (up-
scaled to 80⇥ 80)
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Fig. 8. Images reconstructed from 5x compression with dif-
ferent matrix types.
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Fig. 9. Classification performance for different matrix types.

4.3. Stochastic nonlinearities

In order to derive insight into how the nonlinearities are
impacting performance, we analyze the synthetic noise
z = �fR(x + n(x)) � �f0(x) by plotting a histogram
over 60,000 MNIST images (Fig. 10). We observe the close
match with a Gaussian, and therefore propose a simplified
noise model: y = �f0(x) + nGauss. The variance of nGauss is
estimated from the histogram.

To verify our simplified model, we compare reconstruc-
tion and classification performance (Figs. 11 and 12), via
GPSR reconstruction and linear SVM classification with
60,000 MNIST images for training and 10,000 for testing.
(Images are compressed using matrix type 2). Classification
results indicate that the Gaussian model is slightly optimistic,
but it is still a reasonable approximation that provides insight
into the effect of stochastic impairments.
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Fig. 11. Images reconstructed from 5x compression (matrix
type 2): synthetic vs. Gaussian model.

1x 5x 10x
Compression factor

0

5

10

15

20

25

30
Error Rates (in %)

Synthetic (TFT) model
Gaussian model

Fig. 12. Classification performance: synthetic vs. Gaussian
model.

5. CONCLUSIONS

We show that compressive projections are robust to real-world
hardware nonlinearities via our case study of an LAE-based
image acquisition system. Our synthetic model, together with
guidance from recent theory on block diagonal compressive
matrices [7], enables us to explore design tradeoffs. Specif-
ically, spatially localized compressive projections, which are
easier to implement, can be highly effective, as long as the
compressive matrices are appropriately designed (e.g., inde-
pendent across rows of an image).
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Appendix: Coherence and block-coherence of the 2D
Fourier basis

Consider an image X 2 RL⇥L. If W is the 1D-DFT
matrix of size L ⇥ L, the 2D-DFT of X is F2(X) =

WXW . Vectorizing, we get vec(F2(X)) = vec (WXW ) =

(W ⌦W ) vec (X) (using the property vec (ABC) =�
C

T ⌦A

�
vec(B), where ⌦ is the Kronecker product).

Hence the 2D-DFT matrix of size L2 ⇥L

2 is W2 = W ⌦W .
Now we compute the coherence and block-coherence as

defined in [7]. Assume that W2 is of size N ⇥ N and there
are J blocks in the compressive matrix. The coherence of W2

is µ(W2) =
p
N maxi,j |W2(i, j)| = 1.

The block-coherence �(W2) is defined as
p
J times the

maximal spectral norm when any column of W2 is reshaped
into an (N/J)⇥J matrix. Now the entries of the first column
of W2 all equal 1/

p
N , so when reshaped into matrix form

its spectral norm is 1. Hence the block-coherence of W2 is
�(W2) =

p
J .



7. REFERENCES

[1] Candès E. J. and Wakin M. B., “An introduction to com-
pressive sampling,” IEEE Signal Processing Magazine,
vol. 25, no. 2, pp. 21–30, 2008.

[2] Razavi S. A., Ollila E., and Koivunen V., “Robust
greedy algorithms for compressed sensing,” in Signal
Processing Conference (EUSIPCO), 2012 Proceedings
of the 20th European, 2012, pp. 969–973.
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