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Abstract— We propose and demonstrate the feasibility of
multi-Gbps cellular downlinks using the mm-wave band. The
small wavelengths allows deployment of compact base station
antenna arrays with a very large number (32x32) of elements,
while a compressive approach to channel acquisition and
tracking reduces overhead while simplifying hardware design
(RF beamforming with four phases per antenna element). The
base station array transmits multiple compressive (< 32 x 32)
training beacons by choosing different sets of phases from
0°,90°,180°,270° at random at each of the elements. Each
mobile, equipped with a single antenna, reports the observations
corresponding to the different beacons (e.g., on an existing LTE
link at a lower frequency), allowing the array to estimate the
angles of departure. We observe that tracking overhead can be
reduced by exploiting the sparsity of the spatial channel to a
given mobile (which allows parametric estimation of departure
angles for the different paths), and the continuity in the user’s
mobility at microsecond timescales (for tracking the evolution of
departure angles). We first illustrate the basic feasibility of such
a system for realistic values of system parameters, including
range of operation, user mobility and hardware constraints.
We then propose a compressive channel tracking algorithm
that exploits prior channel estimates to drastically reduce the
number of beacons and demonstrate the efficacy of the system
using simulations.

I. INTRODUCTION

The rapid proliferation of smart phones and tablets in
recent years, and the accompanying exponential growth
in demand for wireless data, has strained existing mobile
networks to their limit. It is clear that orders of magni-
tude increases in cellular network capacity, especially on
the downlink, are required to sustain this growth. In this
paper, we propose and investigate an approach that could
potentially deliver such increases in downlink capacity via
orders of magnitude increases in bandwidth, by exploiting
vast amounts of spectrum in the millimeter(mm)-wave band
(we focus on the unlicensed 60 GHz band in this paper), and
spatial reuse, through a dense deployment of picocellular
base stations (e.g., on lampposts), each with range of the
order of 100-200m. The small carrier wavelength enables
realization of electrically large but physically small antenna
arrays (e.g., a 32 x 32 array easily fits within a square of
side 6 cm), which allows us to synthesize highly directive
beams from the base station (required to meet the link
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budget with sufficient margin for oxygen absorption and rain)
while providing flexible coverage. However, a fundamental
bottleneck is to adapt such large arrays so as to track
channel time variations due to user mobility. We present an
architecture which exploits the sparsity of mm-wave channels
to track such variations with low overhead.

There have been significant recent developments in indoor
60 GHz systems, which also employ directive transmission
and reception in order to overcome the higher path loss at
smaller carrier wavelengths. However, the adaptation algo-
rithms developed for indoor 60 GHz communication do not
apply to our outdoor system, which requires a significantly
higher level of directivity (and hence much larger arrays)
due to the significantly higher range, and must contend with
a higher degree of user mobility. While this complicates
the adaptation strategy at the base station, we employ an
asymmetric architecture which potentially allows the same
60 GHz radio in the mobile device to be used both indoors
and outdoors. 60 GHz is used only on the downlink, so that
the mobile’s 60 GHz radio can be operated in receive-only
mode. The mobile uses conventional cellular technologies
such as LTE to provide feedback (used by the base station
to adapt its array) and for uplink transmission. Another key
feature of our architecture that allows scaling to very large
base station arrays is the use of RF beamforming with coarse
phase control. Conventional architectures that dedicate one
RF chain per antenna element do not scale to such large
arrays. In this scenario, RF beamforming using a single
data stream, which is then upconverted and phase shifted
in RF before being supplied to individual antenna elements,
becomes extremely attractive. However, hardware scaling to
a large number of phase shifters is still difficult, hence we
consider highly simplified phase shifters that can apply, for
example, one among the four values { 0,+7,7}.

The starting point of our design is the observation that
mm-wave channels are sparse, owing to reduced diffraction
at smaller carrier wavelengths and substantial losses incurred
at each reflection. As a result, tracking the channel between
the array and the mobile is equivalent to estimating the
Direction of Departures (DoDs) of a few paths. Conventional
beam-scanning architectures attempt to do this by sending
out a sequence of highly directional beams, whose union
covers all possible directions by which the array can reach
any mobile. When a mobile receives a signal from any beam
— either along the Line-of-Sight (LoS) path or a reflected
path — it provides feedback to the array, thereby allowing
the array to maintain an inventory of paths to each mobile.
However, this approach does not work in our setting: forming
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Fig. 1. Schematic of the compressive adaptation architecture. The base
station emits a sequence of compressive beacons by choosing phases at
random. The mobiles feed back measurements corresponding to the beacons
from which the base station infers the channels.

such directional beams requires fine control of the phases,
which is unavailable, and the large number of directions to
be scanned leads to slow adaptation.

To overcome these problems, we propose a compressive
adaptation architecture, as shown in Figure 1. The array
transmits a sequence of beacons, each of which is produced
by choosing a different set of phases randomly from the
set {£1,£7}. Since the phases are chosen randomly, the
transmission is not focused in any particular direction. As a
result, all the mobiles hear each beacon and feed back the
complex baseband samples corresponding to the different
beacons to the array (perhaps over an existing LTE link).
The array uses this feedback to estimate the channel to all
the mobiles in parallel. We keep the overhead, given by
the number of beacons, small using two key ideas. First,
we leverage the fact that the channel is sparse and use the
recent advances we have made in compressive estimation
(based on ideas from compressed sensing, but avoiding
the pitfalls of “basis mismatch” that arise with a naive
application of compressed sensing) to lower the number of
beacons. We then exploit the fact that the motion of the
mobile is continuous at the timescales of communication
to track changes in DoDs, instead of re-estimating them,
thereby reducing the overhead even further. The compressive
estimation algorithm is built on the observation that the array
response along each path to the mobile is sinusoidal. At
startup, we acquire the frequencies and gains corresponding
to the different paths in a sequential manner. In each round
of the sequential algorithm, we pick the sinusoid that best
matches the observations from a coarse grid and then refine
the gains and the frequencies in an iterative manner. As
the mobile moves and the frequencies of the different paths
change, we track the variations using frequency estimates
from prior rounds of beaconing to bootstrap the refinement
algorithm. We also provide theoretical insight by estimat-
ing the number of beacons required for successful channel
acquisition and tracking, thereby quantifying the benefits of
using prior channel estimates over re-acquiring the channel
repeatedly.

Note that the small physical dimension of the array poten-

tially allows multiple arrays with the same orientation to be
deployed (e.g., along each “face” of a cube-like form factor).
One array could then be dedicated to compressive beaconing,
while others could use the channel estimates obtained thereby
to form data-bearing beams towards the users. We do not
discuss such details any further, and focus on the basic
problem of channel tracking.
Related Work: Indoor channel measurements [1] indicate
that mm-wave channels are sparse with only a few reflected
paths in addition to the line of sight (LoS) path. Electronic
beamsteering for steering around obstacles in the LoS path
has been demonstrated, and 32-element arrays are now
included in indoor 60 GHz products [2], [3]. Existing outdoor
mm-wave links (with ranges up to 2.5 km) [4], on the
other hand, use fixed, highly directive antennas which require
careful manual pointing. Our work differs from both these
scenarios, in that we wish to employ much higher directiv-
ities than for existing indoor mm-wave systems, while pro-
viding flexible beamsteering unlike existing outdoor point-
to-point mm-wave links. While algorithms and protocols for
RF beamforming have been developed for indoor settings [5],
these involve involve explicit beam scanning and do not scale
to the large arrays or rapid mobility of interest to us.

For regularly spaced arrays, the problem of estimating
DoDs maps to one of estimating spatial frequencies (one-
dimensional for a linear array, two-dimensional for the two-
dimensional array considered here). The sparsity of the mm-
wave channel naturally evokes the idea of using compres-
sive sensing to estimate these spatial frequencies. How-
ever, a naive application of standard compressive sensing,
discretizing the set of possible frequencies and then using
¢1 reconstruction, can lead to large reconstruction errors
when the frequencies actually come from a continuum [6].
We proposed a compressive estimation approach that avoids
such pitfalls in [7] [8], and demonstrated its efficacy for
frequency estimation given a noisy mixture of sinusoids. Our
compressive tracking framework builds on this recent work,
but goes further in terms of exploiting continuity in time for
reducing beaconing overhead. Our work in [7] [8] and in the
present paper also draws upon ideas from [9] [10].

While mm-wave cellular links have been proposed before
[11], to the best of our knowledge, this is the first attempt
to describe and evaluate a detailed system architecture that
addresses the fundamental bottleneck of channel tracking in
such settings.

II. LINK BUDGET & CHANNEL MODEL

We consider an architecture with interspersed rounds of
channel sounding and data communication, where the DoD
estimates from the channel sounding stage are used to beam-
form in the subsequent communication round. We compute
a realistic link budget for both the data communication and
channel sounding phases, taking into account the mandatory
regulations and design constraints. This gives us an estimate
of the distances that a mm-wave base station array can serve.



We then specify the channel and measurement models that
we will use in the rest of the paper.

A. Link budget

Data communication: Suppose that we wish to establish
a link with bandwidth 1 GHz using a 32 x 32 array whose
elements are spaced \/2 apart. The Federal Communications
Commission (FCC) sets a limit on the power density in the
neighborhood of the array, which translates to the following:
the Effective Isotropic Radiated Power (EIRP), which is the
maximum power transmitted in any direction, can be no
larger than 40 dBm [12]. Suppose further that the transmitter
has estimated the direction to the receiver and beamforms
in this direction to communicate. Since a 32 X 32 array
provides a beamforming gain of roughly 30 dB, the total
power supplied to the transmit elements must be smaller than
10 dBm (the power per element is about 30 dB lower). In
order to maximize the link range, we set the total transmit
power to the largest permissible value of 10 dBm.

The path loss between a transmitter and a receiver that are
a distance r apart is given by
= 7)\2 e BT
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where A is the carrier wavelength and the exponential at-
tenuation factor ;1 = 16 dB/km accounts for losses in the
mm-wave band due to oxygen absorption.

Since the receiver is on a mobile device with limited area,
it is essential to keep it simple. Consequently, we assume
that the receiver only provides us directivity gains on the
order of 10 dBi, which can be realized easily using an array
consisting of a few moderately directional elements.

Assuming that a link SNR of 6 dB suffices for communi-

cation, we find that we can establish links over 150 m with
the parameters described above, with a link margin of 10dB.
Thus, a base-station array can serve mobiles over distances
on the order of traditional picocells.
Channel Sounding: The channel sounding phase differs
from the communication phase in two fundamental ways.
First, since the array transmits beacons by choosing the
phases at different elements randomly, we no longer have a
30 dB beamforming gain. Secondly, we can no longer assume
that receiver beamforms towards the transmitter and provides
a 10 dBi directivity gain. The straightforward reason is that,
at network startup, when the receiver has no knowledge of
the transmitter’s direction, it clearly cannot form a beam
towards the array. More importantly, though, we would like
the system to have the flexibility of estimating new paths that
arise as the mobile moves and maintain an inventory of all
paths to the mobile. Since these new paths need not fall into
the mobile’s beam towards the transmitter, the receiver is
forced to be omnidirectional even if it has some knowledge
of the direction to the array (say, from a prior round of
training). As a result, the 10 dBi receiver directivity gain
that we assumed in the communication phase is not available
during channel sounding. Thus, the channel sounding stage
loses about 40 dB beamforming gain relative to the data
communication phase.

G(r)

Suppose now that we send M compressive beacons to
estimate the channel. For the estimate to have sufficient
accuracy for beamforming in the communication stage, we
find, from the Cramer-Rao Lower Bound (CRLB) on the
estimation error variance, that the match-filtered signal-to-
noise ratio (SNR) per path (SNR aggregated across all M
measurements) needs to be around 20 dB. Furthermore, we
find that we need M = 30 beacons for successful tracking
(we explain why in Section IV). This implies that, for reliable
channel estimation, each compressive beacon measurement
must have an SNR of 6 dB. This SNR is similar to the value
we obtain in the communication phase with beamforming
gains. Thus, we need to choose the transmit power and
sounding bandwidth in the training phase so that we compen-
sate for the lack of the 40 dB beamforming gain. Channel
sounding can be done with a much smaller bandwidth to
reduce the noise power considerably. For example, we choose
the sounding bandwidth to be f; = 1 MHz which leads to a
30 dB improvement in noise power over the communication
stage. This choice implies that the total transmitted power
must increase to 20 dBm in the channel sounding stage. This
can be done in one of two ways. The first option is to allow
the transmit array elements to have a dynamic range of 10
dB, so that the array can be used both for channel sounding
and communication. The alternative is to place two separate
arrays side-by-side for sounding and communication, with
the nominal transmit powers of these arrays set to 20 dBm
and 10 dBm respectively.

B. Channel & Measurement Models

Consider a square array with N7 p X N1 p elements (we use
Ni1p = 32) that is placed in the x — z plane. The mm-wave
channel between the array and the mobile is sparse, typically
consisting of the LoS path and single reflections off walls
and the road. We denote the number of such paths by L. Let
(0k, ) denote the inclination and azimuthal angles of the
kth path respectively. The complex gain along the kth path,
including reflection losses and phase shifts, is denoted by gy.
The channel between the array and the mobile, denoted by
H c CN1oxNip g given by summing up the standard array
responses along the L paths. Specifically, the (m, n)th entry
in H is

L
hmn - ngej(wz’km+wz'kn)v
k=1

where w, ;, = 27(d/\) sinby, cos ¢y and w, = 27(d/N)
sin#; sin¢,. We see that each path contributes a two-
dimensional sinusoid to the channel and, therefore, call w, j
and w, ; as the spatial frequencies associated with the kth
path, which we denote by the vector wy.

Suppose that the array transmits a compressive beacon by
choosing phases a,,, uniformly at random from {+1,+j}.
The complex baseband sample received at the mobile y is
then

Ogm;nSNlD_]-a (1)

Nip—1Nip—1

Yy = Z Z amnhmn"i'zv
m=0 n=0



Fig. 2. Geometry corresponding to the maximum change in w.. The user
moves from point a to b along the z axis at a speed of vmax in the time
interval 1/fp between two consecutive channel sounding rounds

where z ~ CN(0,0?) is the measurement noise, which is
assumed to be independent across different beacons. We vec-
torize the matrices /(W= +™+w=k") and q,,, appropriately
and denote the resulting vectors by x(wy) and a respectively.
With this notation, we can rewrite the above equation as

L
y=al ngx(wk) + 2.
k=1

Thus, if the arrays transmits a sequence of M bea-
cons a(l),a(2),...,a(M) and we stack the observations

y(1),y(2),...,y(M) in a vector y, we get the measurement
model
L
y = grAx(wi) + 2, 0]
k=1

where A = [a(1) --- a(M)]T and z = [2(1) --- z(M)]T
is the measurement noise distributed as C'N(0,0%I,). To
simplify the explanations, we have assumed here that the
gains along the different paths g do not change as the
M measurements are made. This may not be reasonable if
the mobile moves fast and experiences Doppler shifts along
the different paths. However, generalizing the algorithm to
handle Doppler shifts is straightforward and we postpone the
description of this extension to Section V.

III. COMPRESSIVE CHANNEL TRACKING

We now describe the algorithm used at the base station to
track the channel variations as the mobile moves around. The
base station emits compressive beacons of the form shown
in Figure 1 in multiple rounds, with each round consisting
of M beacons. Suppose that at the end of round r, the base
station has estimates of the gains and the frequencies along
the L paths to the mobile. Using the measurements made by
the mobile corresponding to the M beacons in round r + 1,
the base station updates the gains and the frequencies along
different paths, with the estimates from round r serving to
bootstrap the process. We first explain how to choose the time
between successive rounds of beacons and then describe the
algorithm.

Frequency of beacons: The spatial frequency estimate
made at the end of the rth round of beaconing becomes
progressively less accurate with time as the mobile moves

around, leading to lower beamforming gains and, in turn,
reduced link SNRs. Therefore, we choose the time between
two rounds of beaconing to ensure that the beamforming
loss is small. We denote the rate of beaconing (inverse of
the time between two rounds of beacons) by fp. Consider a
mobile at point @ in Figure 2, at a distance of R along the
normal to the array. In the time interval between two rounds
of beacons, the mobile can move at most v,,q./f5, where
Umaz 1S the maximum speed of the mobile. The maximum
change in one of the spatial frequencies w, or w, occurs
when the mobile moves parallel to the = or z-axes and
is at most V4. /(fpR) (assuming that the change in the
angle subtended at the array A6 is small enough for the
approximation tan Af =~ A6 to hold). Thus, the spatial
frequency changes at most by (27rd/\) X Upae/(fBR). We
choose fp large enough to ensure that the change in spatial
frequency is much smaller than the width of the main-
lobe (27/Nip), thereby minimizing beamforming losses.
In particular, we find that for reasonable choices of the
parameters (Vyq; = 45 mi/h = 20 m/s, N1p = 32 and
R > 15 m), a beacon frequency fp = 75 Hz suffices.

A. Tracking Algorithm: Spatial Frequency Refinement

We denote the estimates of the gains and spatial fre-
quencies at the end of the rth round of beaconing by
{gk,dlk k=1,... ,L}, Wy = (djm,k,a)z,k) (to keep the
notation simple, we do not index the estimates by r). As-
sume, for simplicity, that no additional path props up between
the rth and the r 4 1th round of beaconing (we will soon
explain how to handle this) and that the true gains and spatial
frequencies of the L paths at the start of the r + 1th round
are given by {gr,wr : k=1,..., L} respectively. Suppose
that we make M compressive measurements satisfying (2)
in the 7 + 1th round. Since we have ensured that the spatial
frequencies do not change much across successive rounds,
we can perform a Taylor’s series expansion of the array
response X (wy,) around the estimate from the previous round
x(wy), retain only the linear terms in the expansion and
obtain

8X(d)k)

Owyg

+(Wz,k: _wz,k:)aX(d)k)>- (3)

x(wy) =~ <X(@Jk) + (We, b — Do k)

Oow,,

Using (3) in (2), the measurements y satisfy
L L
Y= grAx(@r) + Y gr(Wak — Gak)A
k=1 k=1
L ox(@r)

+ Y (W — @2 ) A5 15, “
k=1 #

ox(wr,)
Owy,

where z includes the measurement noise and the modeling
error resulting from the omission of higher order Taylor
series terms. Since the wavelength is on the order of a
few millimeters, the phase of the gain terms g; undergoes
a complete rotation even for miniscule movements of the



mobile. Thus, the gain g is drastically different from the
estimate after the previous round §i. Therefore, we cannot
linearize the gain g in (3) around its previous estimate and
we need to compute it afresh.

The compressive tracking algorithm is based on the
following observation: the model (4) is not linear in the
unknown quantities { gy, wy —wy, }. However, when we fix all
the gains {gx}, the observations are linear in the frequency
refinements wy — wj, and vice versa. Therefore, we propose
an alternating optimization procedure, fixing one set of
variables and then the other, to refine the frequencies and
update the gains.

For notational simplicity, we denote the frequency refine-
ment wy — Wi by Ay in the following discussion.

Fix frequency refinements, update gains: In this stage, we
set the frequency refinements Ay = 0 and update the gains.
Setting the frequency refinements to zero in (4), we get

L
y = ngAx(GJk) +z
k=1
Defining H = A [x(w1) ---

g=lg - g1]
by

x(wr,)] and a vector of gains
, the least squares estimate of g is given

&= (1) 1y,

Fix gains, refine frequencies: Suppose that we are given
a vector of gain estimates § = [§1 --- QL]T. Using these
gains in (4) and noting that Zézl JrAx(wy) = Hg, we get

y-—Hg = ngAi kA +Z JeDz A2 )
k=1
Let Q=[Az1 -+ Agp Asq -+ AZJ;]T be the vector of

frequency refinements we wish to compute. Setting y, =

y —Hg and

Ox(w1) .
Owy

ox(wr)
Owy

ox@n)

Ox(wr)
9 ow,

ow,,

D:A[gl

we see that the least squares estimate of the frequency re-
finements is the minimizer of the cost function ||y, — D €2|*.
Since the frequency refinements are constrained to be real,
the solution to this optimization problem is given by

= (Q"Q)' Q"t,,

o_ (RO} | _(R{y)
s{py) 7 \S{w)
‘We update the frequency estimates by adding the refinements
to the estimates from the prior round. We can go through

multiple rounds of the alternating optimization procedure to
improve the accuracy of refinements.

where

B. Deleting non-existent paths & adding new paths

When users move around in a cluttered urban setting, paths

that are visible in the rth sounding round could be occluded
in subsequent rounds and vanish. Similarly, paths that were
occluded in earlier rounds may materialize in the rth round.
We now explain how to prune non-existent paths and add
new paths.
Deleting weak paths: Let {gx, @y k=1,...,L} be
the gains and spatial frequencies estimated by the tracking
algorithm in the rth sounding round. We remove paths
that have little evidence in the measurements: if |gx]|° <
02/(MN), the k-th path is deleted. We do this because the
energy contributed by such paths to the measurements on
the average E ||, Ax(wy)||> (over the ensemble of random
measurement matrices) is smaller than the noise variance o2.
Adding new paths: Let y, = y — ZQ;L JrAx(wy) be
the residual measurement after the refinement stage of the
tracking algorithm. If the residual energy ||y.||? is large, it
is likely that a new path has risen between the array and the
mobile. We can, therefore, use this as a criterion to add new
paths.

The residual y,. is restricted to an M — L dimensional
subspace that is orthogonal to the space spanned by the
estimated frequencies G = span{x(wg) : k=1,...,L}
Let us denote this M — L dimensional subspace by G*.
Thus, if there were no new paths, and the only contribution
to y, was from noise (which is restricted to G) the expected
energy in the residual E|ly,||? = (M — L)o?. We can,
therefore, add a path when ||y, ||? is much larger than this
value. In our simulations, we use |ly,||? > 4(M — L)o?. In
such a scenario, we add a new path in a two stage process:
ﬁrst, we correlate the residual measurement y, against the
responses x(w,) corresponding to spatial frequencies from
an oversampled DFT grid wy € {27k/(SNip) k =

., 8N1p —1}? (with the oversampling factor S set to 2)
and pick the frequency that maximizes the correlation. We
then refine all the L + 1 frequency and gain estimates using
the iterative algorithm described above.

IV. BENEFITS OF TRACKING

Since the compressive measurements that the mobile feeds
back to the base station count as overhead, we would like
to keep them to a minimum. We quantify the overhead
by using ideas from compressive parameter estimation to
provide an estimate of the number of measurements required
by the proposed channel tracking algorithm. We do this in
two stages. First, we describe concepts from compressed
sensing, such as e-isometry and the Johnson-Lindenstrauss
(JL) lemma, that help us quantify the number of measure-
ments needed for compressive estimation to be successful
in very general scenarios. We then apply these concepts
to our tracking problem to quantify the feedback overhead.
These ideas also let us compute the number of measure-
ments required to re-estimate the channel in each round of
beaconing without using any prior estimates. By comparing
the estimates required for tracking and re-estimation, we find



that exploiting past channel knowledge reduces the feedback
overhead considerably.

A. e-isometry and JL Lemma

We begin by describing the intuition behind the conditions
necessary for successful compressive parameter estimation
and concretize these ideas using the concepts of e-isometry
and the JL lemma. Suppose that we wish to estimate a
quantity u € P (a subset of CV) using M compressive
measurements (M < N) of the form y = Au + z, with
z ~ CN(0,0%I). The ML estimate of u is given by

0 = argmin |ly — Av||
veP

= argmin ||[A(u—v) + 2| 5)
veP

If the number of measurements is too small, then it is
possible for ||A(u — v)|| &~ 0 even when |u — v| is
large. In such cases, with a small amount of noise, the
optimizing solution @ could be drastically different from
the true parameter u. This problem can be avoided if the
measurement matrix A does not distort the geometry of the
estimation problem too much. Specifically, if the distances
between points in P are preserved under the action of A, so

that
[A(u—v)|| ~

the optimizing solution with compressive measurements will
be close to the solution with all the measurements (this can
be seen easily from (5) at high SNR by neglecting z and
using the distance preserving property of A). The e-isometry
property captures the idea of distance preservation for a set
of points precisely.

e-isometry: The matrix A is said to satisfy the e-isometry
property for the set YW C C if for some constant C' > 0,

lu—v] uvePr,

| Ax]|
x|

Thus, for the parameter estimation problem described
above, A would need to provide e-isometry for all points
intheset W={u—v : Vu,veP}hL
JL Lemma: When the set W is finite and the elements
of A are chosen i.i.d from suitable distributions, the JL
lemma shows that A provides an e-isometry for points in
W with high probability if the number of measurements
M = O(e2log|W|). In particular, this result holds when
the elements of A are chosen uniformly at random from
{£1,45} and we use it to quantify the number of measure-
ments needed for tracking the channel. We also note that
the number of measurements required depends only on the
cardinality of the set WV and not on its geometric structure.

Cl—¢ < <C(l1+e), VxeW. (6)

B. Quantifying the measurements needed for tracking

Suppose that we are tracking the channels of () mobiles
and the channel to each mobile consists of L taps (if the
number of taps are different, then the following arguments
generalize if we set L to be the maximum number of taps
across mobiles). Let {&wy, } denote the estimates of the spatial

frequencies to one of the () mobiles after the rth round
of beacons. We denote the set of true gains and spatial
frequencies of the same mobile at the start of round r + 1
by {gx,wr} respectively. From (4), we see that the tracking
algorithm tries to pick gains f; and frequency refinements
Az and A, j that minimize the residual ||Ar||, with

Ox(wr)
r= x(w x(wg) + , 7
Z gex(wr) (kz:l fex(Wk) + felap—— D (N
8X(L:Jk)
A, .
ow Ow,
Suppose we make enough measurements so that A provides
an e-isometry for the set ¥V defined as follows:
ox(wr,)
Owy

+fr

L

W= { Z (akx(wk) + bkx(c?)k) + ck
k=1

aX(GJk)

d
ek Oow,

) . Yag, b, ¢k, dy, E(C}. ()
Then, for any choice of the true gains gg, the gain estimates
fr and the frequency refinements A i, A, 1 in (8), we will
have ||r|| = || Ar||. Arguing as we did for the general param-
eter estimation problem, this guarantees that the estimation
problem’s geometry is preserved and that we have made
enough measurements to estimate the gains and frequency
refinements accurately. Note though that this condition only
suffices to estimate the channel to the specific mobile under
consideration and that we need a similar condition for each
of the 2 mobiles. Thus, A needs to provide e-isometry for
a set Wr that is a union of Q) sets W; 1 < i < @, each of
which has the general form in (8) i.e. Wp = UQ mobiles VVi-

We cannot use JL lemma directly on the set Wr to infer
the number of measurements as each of the sets W, have
an infinite number of elements. We sidestep this problem as
follows: first, we discretize the set WWr finely and use the JL
lemma to infer the number of measurements needed for A
to provide an e-isometry for the discretized set. Since the JL
lemma depends only the number of points in the discretized
version of Wr, and not its structure, we do not need the true
frequencies wy, in this process. We then use the covering and
bootstrapping arguments in [10] to extend this to an isometry
for the infinite set VWr. We omit the details of this argument.
From this, we conclude that A provides an e-isometry for
Wr with M = O (e ?Llog (Q¢~')) measurements.

C. Quantifying the measurements needed for re-estimation

Suppose that we are required to estimate the gains and
the frequencies to each of the () mobiles in the rth round
of beaconing without using any prior estimates. It is hard
to quantify the number of measurements needed in this
scenario when the frequencies come from a continuum.
While the number of measurements can be specified in
terms of the condition number and volume of the manifold
M = {3, gpx(ws) w € [0,27]?} [9], computing
these quantities is not straightforward. However, we can get
a rough idea of the number of measurements needed for



re-estimation by restricting the frequencies to a discrete set

F that is an S oversampled version of the DFT grid i.e.
2 27 (SNip—1) 2

]-'.: {0, = s ”(Tlu‘i)} . Suppose that the true

gains and frequencies are g, and wy and that we make M

measurements satisfying

L
y= ngAX(wk)+Z, w, € F.

k=1

Since we do not have any prior estimates, the ML estimator
tries to choose gains fi € C and frequencies ) € F that
minimize the residual

J =y — Afex ()|

) HA (2 gux(we) = kamk)) 2

Arguing as before, we see that, for successful compressive
estimation, A needs to provide an e-isometry for the set

. 9)

L
Wa = {ngx(wk)—ka(ﬂk) : Vi, fr € Cowi, QU € F
k=1

Note that in (9), we are optimizing over all frequencies €2, €
F, unlike the tracking phase, where we pick frequencies in
the vicinity of the prior estimate wy. As a result the set W4
is much larger than the corresponding set with the tracking
algorithm Wr. Using the JL lemma and covering arguments
from [10], we find that M/ = O (e*QLlog (Ne’l)) compres-
sive beacons are necessary for A to provide an e-isometry
for Wa, where N = N7, is the total number of antenna
elements.

We see that the overhead with the tracking algorithm
grows logarithmically with the number of mobiles @), while
the overhead with re-estimation grows logarithmically with
the number of antenna elements N. Since the number of
antennas N = 1024 is much larger than the number of
mobiles (@) =~ 10s of users in a picocell), we see that using
prior estimates in tracking the channel provides substantial
gains.

V. ESTIMATING DOPPLER SHIFTS

We have assumed so far that the channel gains g;, remain
unchanged within one round of beacons consisting of M
measurements. However, this may not be realistic when the
mobile moves reasonably fast. Indeed, the phase of the gains
gi increases linearly with time due to Doppler shifts and the
rate of increase can be as large as (2wvpqz)/(fsA) radians
per sample (fs is the bandwidth used for the compressive
sounding phase). For reasonable choices of these parameters
— Umaz = 20 m/s, fg =1 MHz — we find that the phase
can change by 7 /4 radians in the time taken to make M = 30
measurements. We generalize our algorithm to handle such
Doppler shifts briefly.

Suppose, as before, that the spatial frequencies along the
kth path to a mobile are (wy i, w, ) and the Doppler shift
along this path is w; . Denoting the phases chosen by the

base station for the the pth beacon by a(p) € {£1, 45}V,
the corresponding received sample satisfies

L
y(p) = &7 (a<p>Tngx<wm,k,wz,k>> +2(p). (10)
k=1

Suppose
to (10).

that we make M measurements according
In order to make the generalization clear,
we use wji to denote the triplet of frequencies
(Wg,k, Wz kywe ). Denoting the contribution of the
kth path to the M measurements by s(wg), we have
s(wp) = [a(1)Tx(wep,wz ) a(2)Tx(wg ks Wz i )edtn

a(M)Tx(w$7k,wzyk)ej(M_l)“t’k}T Thus, the M
measurements satisfy the model

L
y:ngs(wk)—i—z. (11)
k=1

Suppose now that we have an estimate of the spatial
and Doppler frequencies wy from a prior round of bea-
cons. As before, we perform a Taylor series expansion (11)
around wy and retain only the linear terms. We obtain an
equation similar to (3) with an extra term corresponding to
the refinement of the Doppler frequency. From this point,
the tracking algorithm proceeds exactly as before, with
the only difference being that we compute three frequency
refinements per path (two spatial refinements, one Doppler
refinement) instead of two.

VI. RESULTS

We simulate the performance of the tracking algorithm in
an urban canyon, where the road and the buildings along its
side reflect signals transmitted from the base-station array.
Transmitter: The base station array is mounted on a lamp-
post of height 6m that is located at a distance of 7m from
one of the walls of the 28m wide canyon. We transmit
multiple rounds of compressive beacons using a 32 x 32, A/2
spaced array, whose elements are assumed to be isotropic.
Each beacon is formed using randomly chosen array weights
from {+1, 45}, has a total transmit power (and EIRP) of
20dBm and a bandwidth of fg = 1MHz. We use M = 30
compressive beacons in each round of sounding and set the
frequency of the channel sounding rounds to fp = 75 Hz.

We now describe the rationale behind our choice of the
bandwidth fs and the number of beacons M. The matched
filter SNR (SNR aggregated across measurements) grows
linearly with the time spent beaconing M/ fs. The proposed
tracking algorithm requires a matched filter SNR of 20 dB
so that the estimate has sufficient accuracy for use in the
data communication stage. This SNR requirement can be
translated back to the time spent on beaconing M/fs ~
30us. Now, since the M measurements that the mobile feeds
back to the array count as overhead, we would like to keep
M as small as possible. However, in order to guarantee e-
isometry, M has to be sufficiently large [for tracking, from
Section IV, M = O (e 2Llog (Qe™'))]. Therefore, we
choose M as small as possible to guarantee e-isometry and



Fig. 3. Scenario of the simulation with the base station array mounted at a
height of 6m and a distance of 7m from one of the walls of the 28m wide
urban canyon. () = 8 mobile users move along different trajectories in the
canyon over the 5s duration of the simulation.
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Fig. 4. CCDF of the square of tracking errors of the spatial frequencies
along with their corresponding CCDF of the CRLB on error variance of
spatial frequencies for the 8 concurrently simulated mobile users. The
channel between the array and each mobile user consists of 4 angular taps
corresponding to the LoS path and the three first order reflected paths.

then pick the bandwidth fg to satisfy M/ fs ~ 30us, leading
to M = 30 measurements and fg = 1 MHz.

Channel: The spatial channel between the array and a mobile
consists of four paths: the LoS path and three first order
reflections, from the road and the two walls. We assume that
the reflections are lossless.

Receivers: We consider both pedestrian and vehicular mobile
users who are within 100m from the array. The maximum
speed of any mobile is 45mi/h. We plot the urban canyon
and the trajectories of the users in Fig. 3.

The proposed algorithm correctly identified and tracked

all four paths to each of the users. The Complementary
Cumulative Distribution Function (CCDF) of the squared
tracking errors is plotted in Fig. 4 along with the CCDF
of the Cramer-Rao-Lower-Bound (CRLB) on the error vari-
ance. Since the curves virtually fall on top of one another,
the estimation accuracy of the tracking algorithm is nearly
optimal.
Overhead: The time spent in each round of beacons is
M/ fs = 30us and the time between two successive rounds
is 1/fp = 1/75s. Thus, the overhead in terms of the time
spent on channel sounding ]\1/[/ f’j: = 0.23% is minuscule.

Since the tracking algorithm requires significantly fewer
beacons than a re-estimation based scheme, the feedback

overhead on the link from the mobile to the array is also
very small (30 channel measurements per user every 1/ fp =
13ms).

VII. CONCLUSIONS

We have introduced a novel asymmetric architecture for
multi-Gbps mm-wave cellular downlinks which has the po-
tential of relieving the smart phone induced capacity crisis
facing mobile networks. The key challenge is channel track-
ing between a base station array with a very large number
of elements and the mobiles it serves. We show that this can
be accomplished with low overhead with an architecture that
tracks the channels to different mobiles in parallel, exploiting
the sparsity of the mm-wave channel, the continuity in a
mobile’s trajectory at the timescales of communication and
recent advances in the theory of compressive estimation.

Important topics for future investigation include the coor-
dination of multiple base stations to share space, time and
frequency resources, the details of the protocol-level interac-
tion between the mm-wave downlink and the LTE uplink, and
the design of handoff mechanisms for handling blockages.
At the physical layer, transceiver design for communication
over large bandwidths remains an area of active research;
for example, handling the increase in dynamic range due to
channel dispersion subject to constraints on analog-to-digital
conversion precision at high sampling rates.
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