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Abstract—The linear minimum mean-squared error (MMSE)
criterion is known to provide adaptive algorithms for interference
suppression in direct-sequence (DS) code-division multiple-ac-
cess (CDMA) systems. However, standard MMSE adaptation is
not robust to fast fading, being unable to compensate for rapid
channel variations. In this paper, we provide a framework for
deriving robust adaptive algorithms in this setting based on a new
differential MMSE (DMMSE) criterion, which is a constrained
optimization problem in which the quantity to be tracked is the
ratio of the data appearing in two successive observation intervals.
When applied to a DS-CDMA system with short spreading wave-
forms (i.e., with period equal to the symbol interval) operating
over a flat-fading channel, the DMMSE criterion avoids tracking
the fades, exploiting the negligible variation of the fading gain
over two consecutive symbols. For frequency-selective fading,
the DMMSE criterion is extended to provide a new eigenrake
receiver which provides interference suppression and diversity
combining without requiring explicit information regarding the
desired user’s propagation channel.

Index Terms—Adaptive equalization, code-division multiple
access (CDMA), differential minimum mean-squared error
(DMMSE), fading channels, interference suppression, multiuser
detection, near–far problem.

I. INTRODUCTION

I T HAS BEEN known for some time now that for direct-se-
quence (DS) code-division multiple-access (CDMA) sys-

tems with short spreading waveforms (i.e., in which the period
of the spreading waveform equals the inverse of the symbol
rate), the multiple-access interference (MAI) has a cyclosta-
tionary structure (at the symbol rate) which can be learned and
exploited by an adaptive receiver. The resulting adaptive mul-
tiuser-detection schemes provide large potential gains over con-
ventional matched-filter receivers without requiring explicit es-
timates of the MAI parameters. In particular, the linear min-
imum mean-squared error (MMSE) receiver for a desired user
can be implemented adaptively either using a training sequence
for that user [1]–[4], or (semi) blindly by using knowledge of
the desired user’s spreading waveform and propagation channel
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[5], [7], [20]. However, standard training-based adaptation is
known to break down in the presence of time-varying chan-
nels, typical of wireless environments [6]. On the other hand,
blind adaptation, as in [5], exhibits a higher misadjustment than
training-based adaptation under ideal conditions, and is vulner-
able to mismatch due to errors in the receiver’s estimate of the
desired user’s propagation channel.

In this paper, we present a new approach to adaptive interfer-
ence suppression over rapidly time-varying channels based on
the differential MMSE (DMMSE) criterion. This is a reformu-
lation of the classical linear MMSE criterion, wherein the quan-
tity being tracked can be interpreted as the ratio of two succes-
sive elements of the desired data sequence, rather than the raw
data sequence. It is shown that the DMMSE criterion leads to
adaptive interference-suppression techniques that are robust to
channel time variations. The key idea behind the DMMSE crite-
rion is the avoidance of the problem of channel compensation by
exploiting instead the observation that even for rapidly varying
channels, the channel fading gains in two consecutive observa-
tion intervals are approximately the same.

For flat-fading channels, the DMMSE criterion yields a
number of adaptive algorithms robust to channel time varia-
tions, with complexities comparable to (but slightly larger than)
that of analogous algorithms based on the MMSE criterion.
Under standard assumptions, the DMMSE correlator is shown
to be a scalar multiple of the MMSE correlator. Thus, it inherits
the well-known [2], [19] interference-suppression properties of
the MMSE correlator, including its immunity to the near–far
problem. For frequency-selective fading, the DMMSE criterion
provides the starting point for obtaining the eigenrake receiver,
which provides diversity as well as interference suppression,
implicitly acquiring the timing of the significant multipath
components for the desired user. As with standard MMSE
adaptation, the proposed adaptive algorithms require an initial
training period, in which the symbols transmitted by the desired
user are known to the receiver, and can subsequently operate in
decision-directed mode. The receiver does not require explicit
knowledge of the spreading waveforms and propagation chan-
nels for either the desired user or the interfering users. Since
DMMSE-based algorithms do not explicitly track the channel,
they must either be used with a noncoherent demodulation
technique (e.g., differential demodulation), or the channel in-
formation required for coherent demodulation must be obtained
by some other means (e.g., by using pilot symbols).

We have previously reported preliminary results on DMMSE-
based reception in conference publications [6], [8], [9]. In this
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paper, we provide a comprehensive treatment that includes a de-
tailed development of the theoretical properties of the DMMSE
solution for CDMA systems with short spreading sequences, the
introduction of the eigenrake receiver for frequency-selective
channels, and simulation results that explore various aspects of
DMMSE-based reception.

There are several other recent papers that address the problem
of adaptive interference suppression over time-varying chan-
nels. An algorithm similar to DMMSE, but without a crucial
constraint required to obtain the linear MMSE receiver, was
proposed in [10]. This algorithm is not robust in itself, and
periodically needs to switch to a fallback mode in which the
blind algorithm of [5] is used. It was shown in [6] that this
problem can be avoided by appropriately scaling the correlator
updates. As we point out here, this fix actually corresponds to
one possible approximate implementation of the DMMSE cri-
terion. In [11], decision-directed adaptation based on recon-
struction of the transmitted symbols after differential demodula-
tion is explored. When channel estimates are available, typically
via the use of pilots, an alternative approach, which we term
channel-compensated MMSE, is to incorporate these estimates
into the data sequence being tracked by standard MMSE adap-
tation. A number of variants of this basic idea have appeared
in the literature [12]–[15]. Both DMMSE and channel-compen-
sated MMSE relieve the adaptive mechanism of the burden of
channel tracking, but DMMSE does so without requiring ex-
plicit channel estimation. A detailed comparison of all of these
different approaches for adaptation over time-varying channels
is not undertaken here, since our objective is to provide an ini-
tial exposition of the DMMSE criterion.

There has also been substantial work in recent years on non-
adaptive, noncoherent multiuser detection (e.g., see [16]–[18],
and the references therein). For these schemes, the complexity
increases with the number of users. The linear decorrelation
techniques in [16] have linear complexity, and the optimal
detection techniques in [17] and [18] have exponential com-
plexity, while a suboptimal decision-feedback scheme in [17]
has quadratic complexity. Furthermore, these techniques re-
quire knowledge of the signaling waveforms of all users, even
though the channel gains are unknown (additionally, knowledge
of the individual users’ signal strengths is required in [18]).
In contrast, the DMMSE-based implementations proposed
here require knowledge only of a short sequence of training
symbols for the desired user, with complexity independent of
the number of users.

The remainder of this paper is organized as follows. In Sec-
tion II, the DMMSE criterion is discussed in the context of
a complex baseband system model. Section III presents algo-
rithms for adaptively obtaining the DMMSE correlator in the
presence of flat fading. DMMSE reception for frequency-selec-
tive channels is presented in Section IV, where a new eigenrake
receiver is proposed. Numerical results are given in Section V,
and Section VI contains our conclusions.

II. DMMSE RECEPTION OVER FLAT-FADING CHANNELS

We consider a discrete-time, complex baseband, synchronous
CDMA system with flat fading. There are users, with the

desired user labeled user 1. Let denote the -dimensional
vector of samples obtained from the th observation interval,
given by

(1)

where, for , is the signal vector for user ,
is the stream of symbols transmitted by user , and
is the sequence of complex fading gains seen by user

. The complex vector is discrete-time, additive white
Gaussian noise (AWGN) with variance per dimension (the
DMMSE formulation applies to colored noise as well, but white
noise is considered here for simplicity). For Rayleigh fading,
the gains are modeled as a wide-sense stationary, zero
mean, circular Gaussian random process. It is convenient to in-
troduce the faded symbol sequence ,

, for each user. We make the following assumptions.

1) Symbols are zero mean, and independent across time and
users: for all , , and is independent
of for or .

2) Symbols are independent of fading gains: is inde-
pendent of for any , , , .

3) For each user , the sequence of fading gains is
wide-sense stationary.

4) The fading gains for different users are independent: for
, is independent of for all , .

While the preceding conditions are stronger than necessary for
proving the basic properties of the DMMSE solution, they sim-
plify the proofs of these properties, while preserving the insight
into why the DMMSE correlator suppresses interference.

As in much of the multiuser detection literature (see [19] and
the references therein), we restrict attention to a synchronous
CDMA system for developing the basic properties of the pro-
posed methods. It is known (e.g., see [20] and [19, Ch. 2]) that
interference-suppression algorithms based on the synchronous
model apply to an asynchronous CDMA system by reducing
the latter to an “equivalent synchronous discrete-time model”
which depends on the receive filter, sampler, and the length of
the observation interval used for each symbol decision (see [20]
for a tutorial description of how this is done). Simulation results
on the application of DMMSE to asynchronous systems can be
found in [6] and [8]. However, the theorems in Section II-B
would need slight modifications for their hypotheses, as well as
conclusions for an asynchronous system. For simplicity of de-
velopment, we omit such modifications from this paper.

In general, a linear receiver computes a decision statistic of
the form , where denotes the complex
conjugate transposed for a vector . The standard linear MMSE
receiver minimizes the mean squared error (MSE) between the
desired user’s symbol sequence and the receiver output,
given by . The MMSE correlator is given
by the formula

(2)

where and .
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For Rayleigh fading in the model (1), assuming that is
uncorrelated with and for , we obtain that

(3)

This implies that when averaged over the desired
user’s Rayleigh fading coefficient. Adaptive implementations
[21] of the MMSE correlator may be viewed as replacing statis-
tical expectations with empirical averages; for example, replace-
ment of the statistical expectation in (2) by a block-based em-
pirical average leads to the block least-squares implementation,
while replacement by an exponentially weighted average corre-
sponds to the recursive least squares (RLS) algorithm. Thus, if
the averaging time constant used by an MMSE-based adaptive
algorithm is comparable to or larger than the coherence time of
the fading, as is the case in many outdoor mobile wireless envi-
ronments, we should expect poor performance by virtue of (3).
For example, a normalized Doppler spread1 of 0.01 corresponds
to a coherence time of 100 symbols, and could result from oper-
ating at a symbol rate of 20 Ksymbols/s, a carrier frequency of
2 GHz, and a relative velocity between transmitter and receiver
of approximately 100 km/h. In this setting, RLS adaptation em-
ploying an exponential forget factor of 0.99, which effectively
averages over hundreds of symbols (i.e., an interval of the order
of the coherence time), fails (see the simulation results in Sec-
tion V). Decreasing the averaging time in the adaptive algorithm
would alleviate this problem, but would then provide insufficient
averaging to overcome the effect of noise and interference.

Most commercial systems employ known pilot codes or pilot
symbols in order to track the channel and perform coherent de-
modulation. In this case, the receiver may be able to estimate
the fading gain ,2 and the MMSE criterion can be modi-
fied so as to track the faded symbol using the cost func-
tion .
This eliminates the need to compensate for the fading gain. As-
suming now that is uncorrelated with for ,
the channel-compensated solution is given by

(4)

where

(5)

so that the overall solution is proportional to .
The channel-compensated MMSE solution can be interpreted

as a standard MMSE solution in a time-invariant setting, except
that the data being tracked is the faded symbol , rather than
the symbol . From well-known properties of the MMSE
solution [2], we can infer that channel-compensated MMSE is
effective in interference suppression. This approach to dealing
with channel time variations has been considered in several re-
cent publications [12]–[14], [22], [23].

1The normalized Doppler spread is the product f T of the maximum
Doppler frequency f and the symbol period T .

2Of course, accurate channel estimation prior to interference suppression may
not be easy, especially when there is a near–far problem.

A. DMMSE Criterion

In contrast to the channel-compensated MMSE approach in
(4) and (5), the DMMSE criterion does not require explicit esti-
mation of the fading gains for the desired user. It relies instead
on the assumption that , even for “fast”
fading environments, to obtain a correlator equivalent to the
channel-compensated MMSE correlator. The formal statement
of the DMMSE criterion is as follows.

The DMMSE Criterion: Choose a correlator that solves the
following problem.

Problem P1: Minimize over

(6)

subject to

(7)

The intuition behind the preceding optimization problem is as
follows. Given the difficulty in tracking , we aim to design
an adaptive receiver that achieves a more modest goal, that of
suppressing the interference and recovering the faded sequence

up to an arbitrary complex multiple, . A
correlator that achieves this goal will satisfy

so that, assuming , we have

This implies that (6) is the natural cost function to minimize.
However, the solution to an unconstrained minimization of (6)
is the zero correlator, the avoidance of which requires the im-
position of a suitable constraint. As stated in Theorem 1 in the
next section, the specific constraint (7) on the average output
energy leads to an optimization problem whose solution, under
mild assumptions, is the linear MMSE solution.

B. Basic Properties

We state two theorems below. Theorem 1 supplies the basis
for adaptive algorithms based on the DMMSE criterion. The-
orem 2 states that under natural uncorrelatedness conditions, the
DMMSE solution is a scalar multiple of the channel-compen-
sated linear MMSE solution in (4).

Theorem 1 (DMMSE Solution): Assuming that the desired
user employs a constant modulus alphabet, the general solution
to problem P1 is the eigenvector corresponding to the largest
eigenvalue of the following generalized eigenvalue problem:

(8)

where

(9a)

(9b)
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Proof: Expanding the cost function in (6), we obtain that
, where

(10)

Under our assumptions, is independent of , and
is independent of . Normalizing the symbol energy

without loss of generality, we see that the first
two terms in (10) are each equal to . The third and fourth terms
correspond to the matrix defined in (9b), so that

The cost function (6) therefore reduces to

(11)

where we have used the constraint (7) to obtain the second
equality. It is now clear that the DMMSE problem of mini-
mizing under the constraint (7) is equivalent to the fol-
lowing problem:

Maximize subject to (12)

The Lagrangian for this problem is

Setting the gradient of with respect to the complex conjugate
of to zero yields

Multiplying both sides of this equation by , and using the
constraint , we obtain

Since the right-hand side above is the quantity to be maximized,
the optimal solution is the eigenvector corresponding to the
largest eigenvalue. This completes the proof.

Remark 1 (General Structure of DMMSE Solu-
tion): Theorem 1 does not depend on the flat-fading model in
(1). Rather, it is a general characterization of the structure of
the DMMSE solution, analogous to the well-known formula (2)
for the MMSE solution. Note that is Hermitian nonnegative
definite and is Hermitian, so that there are a number of
well-known algorithms [24] that can be brought to bear on the
“symmetric-definite” generalized eigenvalue problem in (8).

Next, we invoke the specific features of the CDMA model
(1), and show that the DMMSE correlator is equivalent to the
channel-compensated MMSE solution in (4), and hence, sup-
presses interference.

Theorem 2 (DMMSE Interference Suppression): Suppose
that the fading gains in consecutive intervals for the
desired user are positively correlated; that is, defining

, we require that .
Then the solution to optimization problem P1 is a scalar mul-

tiple of and is, therefore, equivalent to the channel-
compensated MMSE solution. That is, it is a scalar multiple of

the MMSE solution for demodulating the desired user’s faded
symbol, . The DMMSE solution therefore
inherits the interference-suppression properties of the MMSE
solution.

Proof: Theorem 1 applies, since the conditions imposed
here are a subset of those of Theorem 1. We now com-
pute the matrix in Theorem 1 for the model (1). Letting

and plugging in the
model (1), we obtain

Under the independence assumptions of our model, it is easy to
verify that

unless . Thus, we obtain that

Similarly, .
We therefore obtain from (9b) that

(13)

Since this is a rank-one matrix, there is a unique nonzero eigen-
value for the generalized eigenvalue problem (8), which can be
rewritten as

Multiplying each side by , it is clear that the generalized
eigenvector corresponding to the nonzero eigenvalue is a scalar
multiple of . The condition ensures that the
unique nonzero eigenvalue is positive. If this were not the case,
then the largest eigenvalue for the solution to the DMMSE
problem would be zero. The latter corresponds to the zero
correlator, which is useless for demodulation. The necessity
of for obtaining a useful DMMSE correlator is, of
course, not surprising, since the formulation of the DMMSE
criterion is based on the assumption that the fading gains in
successive intervals are approximately equal. This concludes
the proof.

Remark 2 (Tracking Fading Unnecessary With
DMMSE): Note that the signal vector is indepen-
dent of the fading gains , and does not vary over time.
Furthermore

depends only on the average power of the faded symbol se-
quences , so that its computation does not require
tracking of (any unknown gains embedded in) these sequences.
However, when the interfering users see multipath channels,
each independent multipath component will appear as a sep-
arate virtual interferer, causing performance degradation. A
centralized multiuser detector that tracks the gains of each
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multipath component could potentially avoid this, at the cost of
higher implementation complexity. Another scenario in which
it may be beneficial to track instantaneous interference gains
is when the distribution of the fading power can vary more
widely around its mean than is the case for Rayleigh fading. In
this case, a receiver suppressing interference vectors based on
their average powers may perform significantly worse than one
employing instantaneous powers.

Remark 3 (Alternative Interpretation of DMMSE): For the
flat-fading model (1), under the conditions of Theorems 1 and
2, the DMMSE criterion may be alternatively interpreted as con-
strained maximization of the desired output energy, as follows
[25]:

Maximize subject to

To see this, insert the formula (13) for from the proof of
Theorem 2 into the alternative formulation (12) of the DMMSE
criterion in the proof of Theorem 1.

This amounts to maximizing the desired signal power at the
output, subject to a constraint on the output energy, which in-
cludes the energy due to the desired signal, the interference, and
the noise. There is an interesting duality between this and the
blind constrained minimum output energy detector in [5], which
resulted from minimizing the output energy , subject to

[25].
Remark 4 (Whitening Interpretation): The MMSE solution

can be shown [2] (or by a simple application of the ma-
trix-inversion lemma; see the Sherman–Morrison–Woodbury
formula in [24]) to be a scalar multiple of , where

(14)

is the correlation matrix for the interference and noise. The de-
cision statistic can be rewritten

as . Since the transformation whitens
the sum of the interference and noise, the MMSE solution is
simply the matched filter in the whitened domain. Since a direct
estimate of is not available, the equivalence (up to scalar
multiple) of and implies that , based on the
correlation matrix for the signal plus interference, can be used as
the whitening transformation. This interpretation is useful when
discussing the effects of the constraint in the next section, and
in extending the DMMSE criterion to multipath fading channels
in Section IV.

C. Properties of Unconstrained DMMSE

Having explored the basic properties of the DMMSE crite-
rion, we can now comment in more detail on the role of the con-
straint . It is most convenient to discuss this under
the assumption that the received signal has been prewhitened.
Using to denote the whitened version of , we have

(15)

(16)

(17)

(18)

From (14), we now have that . Thus, as
long as (the noise and interference correlation matrix in the
whitened domain) is positive definite, we have that is
positive definite. This can be used to show that .

Now, consider the DMMSE cost function (without the con-
straint) in the whitened domain, specializing (11) and (13)

(19)

The gradient of the preceding cost function (with respect to )
is given by , so that a gradient-descent update
is of the form

(20)

It is now easy to see what happens in the absence of the con-
straint. Recall that in the whitened domain, the desired MMSE
solution is simply . From (20), the component of orthog-
onal to gets attenuated exponentially as , which
is exactly the desired behavior. However, the component of
along is also shrinking (but more slowly). This happens be-
cause the desired signal vector has norm strictly less than one
in the whitened domain. To see this, suppose that .
Then

where , since . Thus,
while points in the right direction, its norm is shrinking
to zero (although this shrinkage can be slow if is close to
one). We will see the consequence of this on adaptive imple-
mentations when we discuss the scaled RLS algorithm in Sec-
tion III-A.2.

D. Demodulation Based on the DMMSE Output

In our performance evaluations for the flat-fading
model (1), we will consider differential phase-shift keying
(DPSK) transmission where the transmitted symbols satisfy

, with denoting the sequence
of information symbols for the th user. Assuming that the

are zero mean and independent across users and time
(i.e., both and ), the transmitted symbols are also,
and assumption 1) stated at the beginning of this section holds.
DPSK is naturally matched to the DMMSE criterion, since
the latter gives the MMSE solution up to complex scaling.
We will assume that symbol decisions for the information
sequence are based on the standard differentially co-
herent decision statistic . Specifically,
we focus on binary DPSK and employ the decision rule

sign . For larger PSK
alphabets, significant performance gains can be obtained using
block differential demodulation [26], [27], if the channel is
approximately constant over a larger block of symbols, but
we do not investigate such issues here. Another option, not
explored in detail here, is to use the DMMSE algorithm for
robust adaptation (the robustness is because the correlator taps
do not have to rotate to track fades) and to perform coherent
demodulation after resolving the scalar ambiguity at the output
of the correlator via the use of pilot symbols.
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III. ADAPTIVE ALGORITHMS

We now provide a number of adaptive algorithms for imple-
menting the DMMSE criterion (see Section IV-D for a note
on their complexity). We consider a DPSK system as in Sec-
tion II-D, and assume that the sequence
is known in training mode and can be estimated in decision-di-
rected mode.

A. Gradient-Based Adaptive Algorithms

Two recursive algorithms, termed scaled RLS and scaled
normalized least mean squares (NLMS), respectively, obtained
based on heuristic reasoning in our previous work [6], [28], can
be interpreted as approximate implementations of the DMMSE
criterion. Proceeding as when deriving the conventional RLS
or NLMS algorithms, the gradient of the unconstrained cost
function

is given by ,
where the error .
Thus, given that the receiver is on the constraint surface, one
method of iterative minimization is to perform an RLS or NLMS
update based on a stochastic version of the preceding gradient,
as usual. However, after the update, the correlator obtained may
lie outside the constraint surface. It is then scaled back to the
surface, using the “stochastic constraint” . Other
techniques are also applied to optimizing the performance fur-
ther (see [28] and [6] for details). However, the key issue is
that the scaling places successive updates roughly on the con-
straint surface, thereby avoiding the zero solution (some prac-
tical issues regarding the implementation are discussed in Sec-
tion III-A.2). Since RLS can be viewed as a whitened stochastic
gradient algorithm, the scaled RLS and scaled NLMS algo-
rithms thus obtained can both be viewed as projection gradient
algorithms. For completeness, we provide the description of the
scaled RLS algorithm (which is used to generate some of the
numerical results reported here) below. The scaled NLMS algo-
rithm is found not to perform well in a time-varying environ-
ment, and is not described here.

1) Scaled RLS Algorithm: The scaled RLS adaptation [28]
is as follows.

First, compute

(21)

then update the scaled RLS receiver

(22)

The factor represents a slowing down of the RLS update,
which appears to help alleviate the effect of unreliable estimates
during deep fades of the desired signal.

2) Effect of Scaling: We can now illustrate the discussion in
Section II-C of gradient descent on the unconstrained DMMSE

Fig. 1. Magnitude of correlator c[n] for unscaled (top) and scaled (bottom)
RLS adaptations with E =N = 20 dB.

cost function via a concrete adaptive implementation. To this
end, consider an unscaled RLS algorithm, which is identical to
(21) and (22) except that the scaling in the denominator is elimi-
nated. An algorithm equivalent to the latter was reported in [10],
where it was called differential least squares. Since RLS can
be viewed as stochastic gradient descent in the whitened do-
main, we expect from the discussion of gradient descent in Sec-
tion II-C that the unscaled RLS solution will “point in the right
direction,” but will ultimately converge to the zero correlator. To
see this, consider the explicit unscaled RLS iteration, removing
the scaling from (22)

(23)

with

As shown in Fig. 1, the unscaled RLS correlator does con-
verge to zero, while the scaled RLS correlator does not. How-
ever, the correlator magnitude for the latter fluctuates wildly,
due to the stochastic scaling we employ (as discussed later, an
averaged scale factor may be more appropriate for practical im-
plementations).

In order to further explore the issue of scaling, we iterate (23)
to obtain

(24)

where . In Fig. 2, we plot
the largest eigenvalue of ; its decrease with implies, from
(24), that converges to the zero correlator.

Moreover, it is easy to see that the scaled RLS iteration (22)
yields a scalar multiple of the unscaled correlator, as follows:

(25)
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Fig. 2. Magnitude of maximum eigenvalue of V[n] for the unscaled RLS
adaptation with E =N = 20 dB.

Thus, for implementations which represent the correlators with
sufficient precision, the bit-error rate (BER) performance of the
scaled and unscaled RLS correlators should be precisely the
same. We have verified from our double precision floating-point
Matlab simulations that this is indeed the case.

There are several practical implications of the preceding ob-
servations. First, any scaling that keeps away from zero
will work. The particular scaling in the scaled RLS algorithm in-
troduced in [28] and reproduced in (21) is actually quite noisy,
and a more appropriate scaling might be based on averaging the
power at the output of the correlator, using an empirical estimate
of the correlation matrix , and the
constraint in (7), as follows:

(26)

The smoothed response of the correlator’s magnitude to this
scaling is shown in Fig. 3.

Second, the convergence to zero of the unscaled correlator is
often slow enough that, for packetized communication with a
small enough number of bits, scaling of the correlator may not
be required. For example, in Fig. 1, although the correlator norm
decreases by a factor of nine over 10 000 user data symbols, it
is still greater than one, which may be acceptable for moderate-
sized packets.

For the remainder of the paper, we focus on block rather than
recursive implementations of the DMMSE criterion, since these
extend more readily to multipath channels.

B. Block Power Updates

Replacing the statistical expectations and in Theorem 2
by empirical averages over observation intervals (i.e., training
over symbols) leads to a block adaptive implementation. This
is analogous to the block least-squares algorithm for standard

Fig. 3. Magnitude of correlator c [n], using scaling of (26) with E =N =
20 dB.

MMSE adaptation. We compute empirical estimates of and
as follows:

The generalized eigenvalue problem for the pair may
be solved by standard techniques such as the QZ method [24].
However, since only the dominant generalized eigenvector is re-
quired, an efficient algorithm is to apply the power method [24]
to the matrix until convergence. Given an initial
condition , the power method produces a sequence of
vectors as follows:

For

end (27)

The pair converges to the dominant eigenvalue,
eigenvector pair if the initial vector has a component in the
direction of the dominant eigenvector [24].

Remark 5: The power algorithm converges to the eigenvalue
with the largest magnitude, while the DMMSE criterion requires
the eigenvalue with the largest value, accounting for sign. Under
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the conditions of Theorem 2, , and hence , is nonnega-
tive definite so that the largest eigenvalue is positive. In the block
adaptive implementation above, the empirical average is non-
negative definite for any realization, but may only be approx-
imately nonnegative definite, so that may not be non-
negative definite. However, the negative eigenvalues are small
in magnitude, given that the steady-state matrix is nonnegative
definite. Hence, the power iterations should still converge to the
right solution. This has been the case in all the simulations in
this paper.

IV. EIGENRAKE RECEPTION FOR

FREQUENCY-SELECTIVE FADING

The preceding sections described the fundamentals of the
DMMSE criterion in the context of the flat-fading model (1).
We now discuss the extension of DMMSE concepts to fre-
quency-selective fading channels. The received vector for the

th symbol decision now takes the following form:

(28)

where the time-varying, multipath signal vector for the th user,
, is given by

Here, is the number of resolvable fading paths for the th
user, is the time-varying channel gain for the th resolv-
able path of the th user, and is the effective spreading
waveform for the th path of the th user.

For fast-fading channels, uncorrelated multipath components
from an interfering user appear as different “users” to a linear
MMSE or DMMSE receiver, which therefore tries to separately
suppress the interference corresponding to each multipath
component. This interferer multiplication phenomenon leads to
increased noise enhancement, as is well known [6], [22]. This
penalty is unavoidable for any linear interference-suppression
scheme, unless the multipath components of the interfering
users are tracked and combined prior to interference suppres-
sion. We do not focus on this issue here, since our interest is in
the effect of multipath fading for the desired user (and in the
absence of knowledge or estimates of the desired user’s channel
at the receiver, as in [14]). Thus, it is convenient to rewrite the
model (28) as follows, hiding the structure of the interference
due to other users and noise in a single vector :

(29)

We have seen in Section II that the DMMSE-based algo-
rithm avoids tracking the fading gain for a single path by the
use of differential demodulation. However, if the desired user
undergoes multipath fading, in order to automatically combine
two paths, the DMMSE-based algorithms must track the time-
varying linear combination , which
amounts to tracking the relative complex gain
with the single-path techniques of Section III. This imposes a

limit on the automatic multipath combining capability of the
DMMSE-based algorithm as the fading rate increases [6]. It is
necessary, therefore, to extend the basic DMMSE criterion to a
multipath setting.

The idea is to convert the frequency-selective fading channel
into several parallel frequency-nonselective fading subchan-
nels, apply the basic DMMSE algorithm for obtaining an
interference-suppressing correlator for each subchannel, and to
then noncoherently combine the correlator outputs for each sub-
channel to obtain the decision statistic. Further, the preceding
should be accomplished without knowledge of the subchannels.
Therefore, we describe next a DMMSE-based approach, termed
the eigenrake receiver, which achieves interference suppression
and diversity combining without requiring explicit information
regarding the multipath fading gains or timing.

A. The Eigenrake Receiver

Consider the generalized eigenvalue problem (8) in
Theorem 1, where the matrices and are defined as in
(9). Let denote the eigenvectors corre-
sponding to the positive eigenvalues. The eigenrake receiver
employs a subset of these as correlators to obtain both interfer-
ence suppression and diversity. Specifically, application of the
th correlator yields the decision statistic

(30)

where

(31)

is the effective fading gain on the th subchannel, and is the
residual interference plus noise at the output of the th correlator.
The outputs of these subchannels are then combined to generate
the following decision statistic for differential demodulation:

(32)

where the are combining gains. For differentially en-
coded data, this statistic is fed to a slicer. For example, for bi-
nary DPSK, the bit estimates are given by

sign (33)

We discuss the structure and properties of the eigenrake receiver
in the next section.

B. Structure of Eigenrake Receiver

For the signal model (29), assuming that the fading gains for
different multipath components of the desired user are uncorre-
lated, we have

(34)

(35)

where, for the th multipath component of the desired user (with
total multipath components), denotes the

average strength, and denotes the



MADHOW et al.: DIFFERENTIAL MMSE: A FRAMEWORK FOR ROBUST ADAPTIVE INTERFERENCE SUPPRESSION 1385

correlation between the fading gains in successive symbol inter-
vals. As was done for the flat-fading environment in Remark 4
and Section II-C, it is useful to develop the frequency-selective
fading notation in the whitened domain for the derivation of the
eigenrake receiver and its properties.

Whitened Domain: Using (15)–(18), as well as the whitened
representation of given by

the corresponding eigenvalue problem (8) becomes

(36)

Note that there is a one-to-one correspondence between the
eigenvectors of (8) and (36): is an eigenvector of (8) if and
only if is an eigenvector of (36) with the same eigen-
value. For , let denote the eigenvectors
corresponding to the positive eigenvalues for the whitened
problem (36). Thus, the decision statistics in both domains are
identical; that is

In the whitened domain, the received signal model (29) can be
rewritten as

(37)

where , .
We are now ready to formally state the properties of the eigen-

rake receiver in the form of the following theorem.
Theorem 3 (Eigenrake Receiver): The eigenvectors

, satisfy the following properties.

1) The number of branches in the eigenrake receiver is at
most equal to the number of multipath components for
the desired user; that is, .

2) For each , the correlator is an interfer-
ence-suppressing, near–far resistant linear receiver, pro-
viding an estimate of the desired symbol sequence (up to
complex scaling).

3) As long as are approximately equal for all , the
effective fading gains are approximately uncorre-
lated for different , . That is, the eigenrake
receiver provides -fold diversity.

Proof: Using (34) and (35), we obtain that

where

(38)

The form of (38) is that of an MMSE correlator for which the
desired signal is the th multipath component of the desired
user, and the interference corresponds to the interference due to

other users, as well as the other multipath components of the de-
sired user. Thus, inherits the classical interference-suppres-
sion properties of the MMSE correlator (including its near–far
resistance).

Now, consider an eigenvector of corresponding to a
nonzero eigenvalue . Such an eigenvector must satisfy

so that is a linear combination of the interference-suppressing
correlators . Hence, also suppresses in-
terference, is near–far resistant, and produces a scaled version
of the desired symbol sequence. Further, since each eigenvector
corresponding to a positive eigenvalue must be a linear combi-
nation of , the number of such vectors that
can be linearly independent is at most . Thus, the number
of eigenvectors is at most . This completes the proof of
properties 1) and 2).

To show diversity, it is easier to work in the whitened domain,
where (35) reduces to

Comparing this with the covariance matrix for the whitened de-
sired signal vector, given by

we see that as long as is approximately the same for each
, is approximately a scalar multiple of . Thus, the eigen-

vectors of provide an approximate Karhunen–Loeve (KL) de-
composition of the whitened desired signal vector , which
implies that the effective fading gains along the directions of
these eigenvectors are approximately uncorrelated (and hence,
approximately independent, if the fading coefficients are jointly
complex Gaussian). This proves property 3), and completes the
proof of the theorem.

Remark 6: The condition that be approximately the
same for all is satisfied in practice, since for typical
fading rates (the fading gains for a given multipath component
are roughly equal across successive symbols).

Remark 7: The eigenrake receiver achieves implicit timing
acquisition, interference suppression, and diversity, providing a
KL decomposition of the faded signal vector in the whitened
domain, without requiring explicit estimation of the location or
strengths of the multipath components for the desired user.

Remark 8: In order to get the full performance benefit from
the eigenrake receiver, it is important to employ correlators
that coincide with the eigenvectors with positive eigenvalues.
Simply choosing correlators lying in the subspace spanned by
these eigenvectors does not work as well. Thus, an application
of subspace-tracking methods, such as [29]–[32] (or the or-
thogonal iteration of [8] and [24]), will, at best, yield results
comparable to the eigenrake receiver.
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C. Combining Rule

It remains to specify the combining gains in (32). If the
number of multipaths of the desired user were known, then
by Theorem 3, the eigenrake receiver should use at most the
eigenvectors corresponding to the largest eigenvalues of (8)
for demodulation in (32). Among these correlators may be some
that should be deselected, because their output is of poor quality
(due to low signal strength or bad interference patterns for the
corresponding multipath component). However, the eigenrake
receiver has no prior knowledge of the number of multipath
components or the quality of the corresponding correlators, and
employs instead a selection strategy based on the eigenvalues of
(8) to choose which correlators to use. Once this set is selected,
we have found by experimentation that equal-gain combining is
the most effective approach. Specifically, the combining rule we
use is

if
if

To choose the threshold , consider the DMMSE constrained
cost function in (6). If a correlator is working well, then
we must have . But, from (11),

, which means that for a correlator that is
producing a good reproduction of the desired symbol sequence.
From our numerical results, we find that , which balances
the tradeoff between false indication (i.e., incorrectly indicating
a specific path is present) and failed detection (i.e., not detecting
the presence of a particular path), works well.

Alternatively, it is possible to optimize the combining gains
, based on an estimate of the signal-to-interference ratio (SIR)

on each branch. Denote the desired signal power at the output
of the th correlator by , and interference-plus-noise power
by . At the output of correlator , the average power of the
net received signal is (by virtue of the normaliza-
tion we have imposed). The average power of the desired signal
is , assuming that

. Hence, the averaged interference-plus-noise power
is . It can be shown that the maximal ratio com-
bining coefficients in (32) should be set as (i.e.,
the same as classically defined in [33] and recently reissued in
[34]), approximating the outputs of the fingers of the eigenrake
as independent, differentially coherent Rayleigh fading chan-
nels with Gaussian noise. However, based on our simulations,
such optimization does not improve upon the simpler equal gain,
selective combining strategy described earlier.

D. On the Implementation Complexity of DMMSE

For the single-correlator DMMSE algorithms given in Sec-
tion III, the implementation is of the same order of complexity
as standard MMSE correlators. The scaling in the denominator
of (22) is the only difference between the scaled RLS recursion
and standard RLS adaptations [21]. For block power updates,
the complexity is dominated by the computation of , since
the power algorithm in (27) usually converges in a few itera-
tions (details of the convergence analysis can be found in [24]).
Thus, block power updates are comparable in complexity to
standard least squares solutions for (2). However, obtaining up

to eigenvectors for the eigenrake receiver generally requires
more complex approaches to solving the eigenvalue problem in
(8). One approach [24] applies the QZ algorithm, resulting in

computational complexity. In [35], a tight bound on this
problem was shown to be when the
relative error is bounded by . Alternatively, an “online” re-
cursion, such as in [36], may be applied.

V. NUMERICAL RESULTS

For comparison among the receivers proposed in this paper
and other standard approaches, we simulate several MMSE and
DMMSE receiver implementations as well as a standard Rake
receiver. For DMMSE reception, results are obtained using
the following methods: block power update of Section III-B;
eigenrake of Section IV-A with knowledge of the number of
desired user multipaths present, as well as without multipath
knowledge, but using the selective-combining rule of Sec-
tion IV-C; scaled RLS, as described in Section III-A.1; and
the unscaled RLS from Section III-A.2. Both unscaled and
scaled RLS DMMSE receivers are simulated using differential
decoding where the decoded symbol estimates are given by

sign . Addi-
tionally, to demonstrate the standard MMSE receiver in (2), a
standard RLS MMSE algorithm [21] is simulated using direct
decoding, where the recursive correlator updates are computed
via

and the decoded symbol estimates are computed as
sign . For benchmarks, included are results
obtained using instantaneous, ideal versions of the MMSE so-
lution and standard Rake. Both of these techniques assume per-
fect knowledge of all the users’ spreading waveforms and fading
gains, and are computed at every symbol time. The instanta-
neous, ideal MMSE solution is computed as

(39)

where is computed as in (14), appropriately modified for
multipath and perfect channel knowledge

The instantaneous, ideal Rake solution is computed as

(40)

In both cases, the symbols are differentially decoded via
sign .

For all results reported here, we consider a synchronous
CDMA system, given by (1) for flat fading, and (34) for mul-
tipath fading. The processing gain , with and
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Fig. 4. SIR/SNR averaged over 250 adaptations for K = 4 and a flat-fading
channel using ideal MMSE, standard RLS MMSE (with direct decoding), block
power DMMSE, and scaled RLS DMMSE. The training period is T = 60

symbols, and the RLS adaptations switch to decision-directed mode after
training.

four users, each with a fixed but randomly chosen spreading
sequence. The Rayleigh fading coefficients are generated
independently for different paths and users using a modified
Jakes simulator [37]–[39], with a normalized Doppler spread
of 0.01 (see the discussion in Section II of parameters that
might correspond to such a system). When there are multiple
users present, each interfering user has average power 20 dB
higher than that of the desired user. We thereby demonstrate
that DMMSE interference suppression is robust under severe
near–far conditions, which is to be expected, given the theoret-
ical results on near–far resistance proven in Section IV-B.

First, we consider frequency-nonselective fading for each
user. Since the signal-to-noise ratio (SNR) for the desired trans-
mission varies with time due to fading, the ability of an adaptive
algorithm to track the channel and to suppress interference is
gauged by the difference between the SIR and SNR, rather
than the raw value of SIR [6]. Thus, with the AWGN power
set so that the desired user’s average dB, we
plot SIR/SNR (dB) averaged over 250 adaptations in Fig. 4 for
four schemes: ideal MMSE, standard RLS MMSE with direct
decoding, block power DMMSE, and scaled RLS DMMSE.
The algorithms have a training length of symbols, after
which the block power receiver is fixed, and both the standard
and scaled RLS receivers switch to decision-directed mode.
Both RLS receivers were simulated with .
Clearly, the standard RLS MMSE algorithm with direct de-
coding cannot track the fading at all, and actually begins to
diverge immediately after the training period. The block power
DMMSE algorithm is able to track the desired user’s signal,
but at a level 1.5–2 dB worse than the scaled RLS DMMSE
algorithm. In Figs. 5 and 6, we plot the average BER for
1 and 4, respectively, over 2000 simulations at each for
six schemes: ideal MMSE and Rake, block power DMMSE,
standard RLS MMSE, unscaled and scaled RLS DMMSE, and
eigenrake DMMSE (using only one correlator). For the simula-
tions, the training length was symbols per packet, and

Fig. 5. BER for K = 1 user in a flat-fading channel using ideal MMSE and
Rake, standard RLS MMSE (with direct decoding), block power DMMSE,
unscaled and scaled RLS DMMSE, and eigenrake DMMSE receivers. The
training period is T = 100 symbols, and the RLS adaptations switch to
decision-directed mode after training.

Fig. 6. BER for K = 4 users in a flat-fading channel using ideal MMSE and
Rake, block power DMMSE, unscaled and scaled RLS DMMSE, and eigenrake
DMMSE receivers. The training period is T = 100 symbols, and the RLS
adaptations switch to decision-directed mode after training.

the packet length was 2000 symbols. In Fig. 5 with , all
of the receivers perform similarly well, except for the standard
RLS MMSE with direct decoding. The ideal Rake and MMSE
receivers match exactly, since there are no interferers. Further,
the block power and eigenrake receivers match exactly, since
they are equivalent when there is no multipath or MAI, and are
only slightly worse than the ideal MMSE receiver. Both the
unscaled and scaled RLS DMMSE receivers perform just in the
gap (and the same, as discussed in Section III-A.2) between the
eigenrake and ideal MMSE, while the standard RLS MMSE
fails completely to track the channel-fading gains. In the pres-
ence of other users in Fig. 6, the results are similar to
those for the single-path, no-interferer case with one exception:



1388 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 53, NO. 8, AUGUST 2005

Fig. 7. BER for K = 1 user with M = 2 multipath components using ideal
MMSE and Rake, block power DMMSE, unscaled and scaled RLS DMMSE,
and eigenrake and selective eigenrake DMMSE receivers. The training period is
T = 100 symbols, and the RLS adaptations switch to decision-directed mode
after training.

Fig. 8. BER for K = 4 users with M = 2 multipath components for the
desired user using ideal MMSE, block power DMMSE, unscaled and scaled
RLS DMMSE, and eigenrake and selective eigenrake DMMSE receivers.
The training period is T = 100 symbols, and the RLS adaptations switch to
decision-directed mode after training.

the ideal Rake fails completely due to MAI. The MAI causes
an approximately 3-dB decrease in performance for the group.

Next, we consider a situation in which the desired user has
two independently faded multipath components, while each in-
terferer still sees a single-path fading channel. Average BER
is plotted in Figs. 7 and 8 for the case of multipath
components for the desired user, and 2000 symbol packets with
training length symbols. An additional curve is shown
in these BER plots for the multipath case: the selective eigen-
rake DMMSE implementation is tested (i.e., the combining rule
of Section IV-C is used). For , Fig. 7 shows the di-
versity gains obtained by the eigenrake and selective eigenrake
algorithms, while the single-correlator implementations of the

Fig. 9. BER for K = 4 users with M = f1; 2; 3; 4g multipath components
for the desired user using the ideal MMSE and the eigenrake DMMSE receivers,
with the number of eigenrake correlators fixed as the number of multipaths for
the desired user.

other techniques grow progressively worse in performance as
the SNR improves. This is expected, since the single-correlator
techniques actually experience the extra paths of the desired
user as interference. Here again, the ideal Rake and MMSE re-
ceivers are equivalent, but only approximately 3 dB better than
the eigenrake receivers operating with knowledge only of the de-
sired user’s training sequence. In Fig. 8 for , we see that
both the standard and selective eigenrake receivers are robust to
strong MAI (the ideal Rake receiver is omitted, due to its poor
performance). At higher , when the effect of MAI is dom-
inant, adaptive selection of eigenrake correlators is 0.5–1 dB
better than fixing the number of correlators to equal the number
of paths. We attribute this to the ability of the selective eigen-
rake to adaptively “deselect” paths suffering too great a level of
interference.

Finally, Figs. 9 and 10 show the BER for the eigenrake re-
ceiver (with equal gain combining) as the number of correlators
and the number of multipath components for the desired user
are varied, without recourse to an adaptive selection mechanism.
There are three strong interferers , each with a single
path. In Fig. 9, is varied from 1 to 4, with the number of
correlators always set as . The performance of the
ideal MMSE receiver improves monotonically with , while
the performance of the eigenrake improves until , but
degrades for . This is probably due to the fact that as
the number of paths increases with fixed, the likelihood
of one of the eigenrake correlators seeing a bad crosscorrelation
pattern also increases. On the other hand, the ideal MMSE re-
ceiver sees a single effective spreading waveform, regardless of
the number of paths. In Fig. 10, we fix , and vary
from 1 to 4. The performance improves as increases, until

. However, when , the addi-
tional correlator cannot be linearly independent by Theorem 3,
and the performance degrades significantly, compared with that
for , while still showing diversity gains relative to a
single correlator. We conclude, therefore, that adaptive selection
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Fig. 10. BER for K = 4 users with M = 3 multipath components for the
desired user using the eigenrake DMMSE receiver with N = f1; 2; 3; 4g
correlators for detection, with the ideal MMSE solution included for
comparison.

of the number of correlators, as done by the selective eigenrake,
is crucial to balancing the effects of diversity gains and residual
interference, and that mismatch between the number of correla-
tors and paths severely degrades performance.

VI. CONCLUSIONS

We have shown that the DMMSE criterion leads to adaptive
linear receivers which are robust to rapid channel time vari-
ations, unlike adaptive algorithms based on the conventional
MMSE criterion. The near–far resistance and interference-sup-
pression properties of the resulting DMMSE solution are
shown by establishing equivalence with a channel-compen-
sated MMSE solution. For frequency-selective fading, the
DMMSE criterion is extended to obtain the eigenrake receiver,
which provides implicit timing acquisition, diversity, and inter-
ference suppression.

In addition to its robustness to fading, DMMSE reception is
also robust to lack of carrier synchronization, and is, therefore,
attractive for packetized transmission in rapidly varying net-
work topologies. For example, it has recently been employed
in cross-layer design of medium-access-control mechanisms in
wireless networks, where it has proven effective in permitting a
number of rapidly moving terminals to randomly access an ac-
cess point employing a DMMSE receiver [40], [41], [47].

Beyond the initial exposition of the DMMSE criterion in this
paper, much further work remains on detailed receiver design,
comparison with other approaches, and development of efficient
numerical techniques. For example, it is necessary to resolve
practical issues, such as whether to use noncoherent techniques
in conjunction with DMMSE, possibly with multiple symbol
detection [26], [27], or whether to use DMMSE for robust in-
terference suppression, followed by separate channel-gain re-
covery for coherent detection. Another possible direction for fu-
ture work is integration of DMMSE with sophisticated coding
techniques, such as those used for turbo multiuser detection

[42], [43], and single-user noncoherent communication based
on joint channel and data estimation [44], [45].

While we consider short spreading sequences in this paper, a
novel interpretation of the DMMSE criterion for systems with
long spreading sequences yields rapidly converging adaptive
beamformers that do not require overhead in terms of training
symbols [9], [46]. A detailed exploration of the practical impli-
cations of this (e.g., to commercial cellular CDMA systems) is
an important topic for future work.
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