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Abstract— We propose and investigate a minimalistic model
for distributed detection using a sensor network. The signal
of interest is a priori unknown. When a signal is present,
sensors receive scaled, delayed and noisy versions of it, and
signal presence is decided solely based on the correlation between
sensor observations. We obtain encouraging performance results
for both centralized and distributed detection, and subsequent
centralized signal estimation. We observe that temporal align-
ment of sensor observations prior to combining is the bottleneck
that determines the SNR threshold after which these methods
work well. For ideal temporal alignment, detection performance
improves exponentially with the number of sensors.

I. INTRODUCTION

We consider a problem in distributed detection and estima-
tion motivated by the goal of designing sensor networks which
can “discover” new phenomena for which explicit signal mod-
els are not yet available. In order to undertake such a design,
we must first answer the following fundamental question: how
do we draw a distinction between “signal” (i.e., a manifestation
of an interesting phenomenon) and “noise” (i.e., contributions
to sensor readings not associated with interesting phenomena)?
The need for making a careful distinction is not as important if
the signal-to-noise ratio (SNR) is high enough (e.g., if we can
define signal presence simply by a sensor reading exceeding
a threshold), but becomes critical at low SNR, which might
be typical for a sparse sensor deployment. In this paper, we
consider one possible approach for making such a distinction,
based purely on the correlation between neighboring sensors:
an interesting signal is present if neighboring sensors show
correlated readings, whereas uncorrelated sensor readings cor-
respond to noise. We validate our approach in a simple setting
in which all sensors received a scaled and delayed version
of the signal, corrupted by additive white Gaussian noise
(AWGN) which is uncorrelated across sensors. In each time
window, or epoch, the sensor network must decide whether or
not a signal is present. If it decides that a signal is present, then
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it must construct a good estimate of the signal from the sensor
readings. One of the key requirements is temporal alignment of
the sensor data prior to combining for detection or estimation.

In order to obtain fundamental performance benchmarks,
we first consider a centralized system with temporally aligned
sensor data. Treating the unknown signal as a nuisance pa-
rameter, we consider a Generalized Likelihood Ratio Test
(GLRT) which reduces to comparing the largest eigenvalue of
the sample covariance matrix to a threshold. Using asymptotic
results from random matrix theory, we show that this decision
rule guarantees that the probability of miss decays exponen-
tially (with the number of sensors) for a fixed probability of
false alarm. When the received signals are not temporally
aligned, we continue with the GLRT approach, treating the
unknown delays as additional nuisance parameters. The delay
estimation required for this approach turns out to be the
technical bottleneck that determines the SNR threshold beyond
which the system exhibits good detection performance. We
then investigate a distributed system in which the communi-
cation costs for monitoring for signal presence are reduced
by restricting only a subset of the sensors to broadcast their
observations in each epoch, in order to initiate a procedure
for arriving at a consensus as to whether a signal is present.
Finally, we show that, once the data is synchronized, the sensor
observations can be combined to produce a reasonable estimate
of the signal. Performance results for synthetic signals, as well
as for an acoustic bird call, show that the performance of
both signal detection and estimation is significantly improved
relative to that obtained using a single sensor, despite the
minimalistic signal model.

Related work: Most prior research on distributed detection
(e.g., see [1],[2], and the references therein) is based on
explicit signal models, unlike the implicit modeling here.
Reference [3] investigates detection of an unknown signal
in a multi-channel system, but assumes that the data on the
various channels are synchronized (as we point out, temporal
alignment is a major bottleneck in our system). Source lo-
calization and estimation with multiple sensors, where there
is no explicit signal model, is investigated in [4], [5], [6].



However, the limits of signal detection are not considered
and the issue of temporal alignment is treated with different
assumptions. Furthermore, the impact of communication costs
is not considered in this prior literature, which focuses on
sensor arrays rather than sensor networks.

II. SYSTEM MODEL

There are N sensors, labeled S1,S2, . . . ,SN . We consider
a discrete time system with real-valued observations, in which
the observation window over which a detection decision is to
be made spans T time instants. Let yi denote the received
signal at the ith sensor over the observation window i.e. yi =(
yi[0], yi[1], . . . , yi[T − 1]

)T , modeled as follows:
Null Hypothesis H0: When no event of interest occurs in
the time window, the signals at the sensors are independent,
discrete-time, unit variance, White Gaussian Noise (WGN) i.e.
yi = ni (1 ≤ i ≤ N) where ni ∼ N(0, I) and E(ninTj ) = 0
when i 6= j.
Alternate Hypothesis H1: When an event of interest occurs
within the window, the received signals are scaled and delayed
versions of a common signal corrupted by noise. To avoid edge
effects, we assume that the non-zero portions of the signal
are received entirely in the same time window by all sensors.
With this assumption, we can simplify notation, denoting the
common signal s =

(
s[0], s[1], . . . , s[T − 1]

)T as spanning
the entire observation window of length T (even though, in
practice, the observation window is chosen to be longer than
the expected signal length), and interpreting delays as circular
shifts. Let hi denote the channel gain and di denote the delay
seen by the ith sensor. Let Dk denote the delay operator, that
delays a signal (circularly) by k discrete-time instants. We then
have the following model under H1:

yi = hiDdis + ni, 1 ≤ i ≤ N (1)

We make a couple of general observations: (1) We can only
measure relative delays between sensors and not the “absolute”
delays themselves i.e we can only estimate {d2 − d1, d3 −
d1, . . . , dN−d1}. Therefore, without loss of generality, we can
set d1 = 0 and estimate only the other variables. (2) Once the
signal has been detected, it can only be estimated up to a scale
factor, since the channel gains and the signal waveform are
unknown. Therefore, when performing signal reconstruction,
we constrain it to have unit energy, and use the correlation
coefficient between the true signal and the estimated waveform
to judge the fidelity of our estimate.

III. CENTRALIZED DETECTION & ESTIMATION

In this section, we develop detection and estimation algo-
rithms assuming that the sensor observations {yi, i = 1, ..., N}
are available at a centralized location. Before addressing
the relative delays between the sensor observations, we first
consider temporally aligned signals to develop performance
benchmarks, and insight into the structure of the decision
statistics.

A. Temporally Aligned Signals

As a first step, suppose that, when there is a common signal
of interest, the sensed signals are temporally aligned, so that
we can set d1 = d2 = . . . = dN = 0 without loss of generality.
Even in this simplified setting, it is difficult to come up with
detection rules that satisfy precise definitions of optimality in
the absence of an explicit signal model [7], [1]. Therefore, we
first discuss the optimal estimate of the signal waveform in
this scenario and use this to obtain a GLRT detection rule.

1) Estimation: When the received signals are temporally
aligned, the model simplifies to: yi = his + ni (1 ≤ i ≤ N).
The optimal solution for this problem is discussed in [5],
[8], but is briefly reviewed here. Let us denote the matrix
[y1|y2| . . . |yN ] by Y. The optimal estimate of the signal
amounts to choosing the dominant left singular vector of
Y, which is the same as the dominant eigenvector of the
sample covariance matrix(upto a scale factor) Ry = YYT =∑N
i=1 yiyTi .
2) Detection: Given that the best estimate of the signal

waveform is the dominant eigenvector of Ry , we propose a
GLRT rule that compares λ1, the largest eigenvalue of Ry ,
to a threshold to decide between H0 and H1. Owing to space
constraints, we omit the proof of this fact. The rule is designed
as follows:

3) Setting the threshold: We use the asymptotic distribution
(as N,T → ∞) of the largest eigenvalue under the null
hypothesis to set the threshold for a given probability of false
alarm. The rationale behind this is that, even for small values
of N and T (for example, N = T = 10), the asymptotic
distribution serves as a very good approximation to the true
distribution ([9], [10]). We present the results regarding the
asymptotic distribution that have been put together from [11],
[9], [10] in a form suitable for our purpose. We consider
T > N . The scenario N > T is exactly analogous, and can
be handled by interchanging the time and space (i.e., sensor
label) variables.
Result: Let λ1 denote the largest eigenvalue of Ry =∑N
i=1 yiyTi where yi ∈RT , yi ∼ N(0, I) and E(yiyTj ) = 0

∀ i 6= j Let γ = T−1
N . We define center and scaling constants,

µNT and σNT , as:

µNT = N × (1 +
√
γ)2, σNT = N

1
3 × (1 +

√
γ)

(
1 +

1√
γ

) 1
3

As N,T →∞ with T
N → γ, the cumulative density function

of the random variable Z = λ1−µNT

σNT
converges to the Tracy-

Widom distribution of order 1 which we denote by F1(z) [11].
We propose a detection test of the form Z ≷H1

H0
η, where η

is a threshold to be decided. Given a tolerable false alarm
probability εfa, we set the threshold (η) to be F−1

1 (1− εfa).
A key point to note is that, for a given value of εfa, η doesn’t
change with the parameters of the problem (N,T ) as long as
they are sufficiently large. We now bound the probability of
miss of this decision rule and examine its asymptotics with
the number of sensors.
Let es = s

||s|| denote a unit vector in the direction of s



and Es = ||s||2 denote the energy in the signal. Let Er =
Es ×

(
1
N

∑N
i=1 h

2
i

)
denote the average received energy (of

the signal component) at the sensors. Under H1, we lower
bound λ1 (which is a random variable) for any realization of
the noise. By the definition of the largest eigenvalue of Ry ,
we have

λ1 ≥ eTs Ryes = eTs

( N∑

i=1

(his + ni)(his + ni)T
)

es (2)

=
N∑

i=1

(hi
√
Es + wi)2 , V

where wi = eTs ni ∼ N(0, 1) and E(wiwj) = δ[i − j]. Thus,
V is a lower bound to λ1 for any realization of the noise. The
random variable V has a non-central chi squared distribution
with N degrees of freedom and a non-centrality parameter θ =∑N
i=1 h

2
iEs = NEr. Let us define β = µNT +ησNT

N . Using
λ1 ≥ V and a Chernoff bound to upper bound P (V < Nβ) ,
we can show that for Er > β − 1, the probability of miss is
upper bounded as Pmiss ≤ e−Nψunknown with ψunknown > 0
given by

ψunknown = βsmin +
1
2

ln(1− 2smin)− Ersmin
1− 2smin

where 1− 2smin =
1 +

√
1 + 4βEr
2β

(3)

For large N , β ≈ (1 +
√
γ)2 and the constant ψunknown

becomes independent of N .
While we have fixed the probability of false alarm in the

preceding design, it is also possible to choose the threshold to
achieve an asymptotic decay in both the false alarm and miss
probabilities in the number of sensors.

The price of minimalism: We compare the Chernoff bound
above with the rate of decay of the miss probability when the
signal model is known. To focus on the key issue, we assume
that the channel gains are all unity. The rate of decay of the
miss probability when the signal model is known, which we
denote by ψknown, is given by,

ψknown = 1
2 ×

[√
Er − Q−1(εfa)√

N

]2

≈ Er

2 (for large N ).

As Figure 1 shows, while an exponential improvement in
performance can be achieved in our system by increasing the
number of sensors (as long as the SNR is above a minimum
value), there is indeed a steep price paid for not knowing the
signal model.

B. Temporal Alignment Algorithm

When the sensed signals are not temporally aligned (under
H1), we need to correct for the timing offsets before we can
use the largest eigenvalue of the sample covariance matrix as
a decision statistic. The Maximum Likelihood (ML) estimate
of the relative delays (jointly estimated with the signal and
the channel gains) would involve searching over all possible
delays for each sensor, and the complexity grows exponentially
with the number of sensors. We therefore propose a GLRT-
like detector, treating the delays as nuisance parameters, based
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Fig. 1. A comparison of the Chernoff bound exponents with N = 20 sensors
and γ = 3, as a function of SNR. Since the channel gains are taken to be
unity, the SNR is same at all the sensors.

on a simpler two-stage delay estimation algorithm, as follows.
In the first stage, we make a coarse estimate of the relative
delay between sensor i and sensor j. After estimating the delay
between every pair of sensors, we use consistency checks
among the estimated delays to arrive at a set of delay estimates
with respect to sensor S1.

1) Stage 1: Pairwise Delay Estimation: Let Rij [k] denote
cross-correlation of the signals received at sensors i and j
which is given by Rij [k] =

∑
n yi[n]yj [n − k]. The coarse

estimate of the relative delay di − dj is given by, d̂ij ,
arg maxk |Rij [k]|

2) Stage 2: Pruning the estimates: We note that the delay
estimates that are made are not all independent and need
to be internally consistent. These constraints help us make
a more reliable estimate of the delays with respect to S1.
Let eij be the error incurred in the estimation of di − dj
i.e., di − dj = d̂ij + eij . The errors are not independent
and in fact, their statistics (conditioned on H1) would depend
on the signal and its autocorrelation properties. Numerical
simulation indicates that the probability density functions
of the errors are well modeled by a Laplacian distribution.
Ignoring the dependence between the errors, this motivates an
“ML” estimator at the second stage that minimizes the cost
function: J =

∑N
i=1

∑N
j=1 |eij | =

∑N
i=1

∑N
j=1 |d̂i− d̂j− d̂ij |.

The preceding cost function depends on the l1 norm of the
residuals (eij) rather than the l2 norm, which handles outliers
due to large estimation errors in the first stage better [12],
which is especially crucial at low SNR. Since the objective
function J is convex in the delays, the delay estimation in
the second stage is accomplished efficiently using a convex
optimization solver [13].

The temporal alignment algorithm, which largely dictates
the overall system performance, performs very well for moder-
ate and large values of SNR, but fails for extremely low values
of SNR. Thus, the detection performance with our GLRT
approach exhibits a distinct thresholding effect, improving
rapidly once the SNR is above a minimum value required for
effective temporal alignment.

C. Summarizing Centralized Algorithms

In this part, we summarize the centralized algorithms for
the case when the signals are not temporally aligned.



(1) Number the sensors arbitrarily from 1 to N . Run the two-
stage time synchronization algorithm to estimate the delays
at various sensors relative to sensor 1. Call the estimates
(d̂1 = 0, d̂2, . . . , d̂N ). (2) Form the sample-covariance matrix
of the delay-corrected version of the sensed signals Ry =∑N
i=1

(D−d̂iyi)
(D−d̂iyi)T . (3) Let λ1 denote the largest

eigenvalue of Ry and v denote the corresponding eigenvector.
(4) Detection: Fix a threshold η based on the tolerable false-
alarm probability using the Tracy-Widom distribution. Com-
pare Z = λ1−µNT

σNT
with η and declare H1 if Z > η and H0

otherwise. (5) Estimation: Declare v
||v|| to be estimate of the

signal. We will use the normalized inner product maximized
over all possible shifts, given by ρ = maxδ

|vT (Dδs)|
||v||×||s|| to

quantify the fidelity of our estimate.

IV. DISTRIBUTED DETECTION

For a network of distributed sensors, centralized detection
requires that each sensor send its observation over each
window when monitoring for signal presence. The associated
energy consumption may be excessive, especially when signals
of interest appear rarely. We therefore investigate a distributed
system in which the amount of communication associated with
monitoring for signal presence is reduced: in a given window,
only a subset (of size M < N ) of the sensors broadcast their
received signals to all other sensors. The broadcasting subset
can change over different observation windows in order to
increase the network lifetime. For our purpose, we consider
a specific observation window, and describe a distributed
detection algorithm, assuming, without loss of generality, that
sensors S1,S2, . . . ,SM have broadcast their observations.

1) Sensors S1,S2, . . . ,SM broadcast their sensed signals
y1,y2, . . . ,yM respectively.

2) Round 1: Sensor Si, i > M , uses the broadcast
signals along with its own received signal (yi) to
make an estimate of delays of the signals received at
S2,S3, . . . ,SM and Si with respect to S1 using the two-
stage time synchronization algorithm. We shall denote
these estimates by τ

(i)
1 = 0, τ (i)

2 , . . . , τ
(i)
M , τ

(i)
i where

τ
(i)
j denotes the delay of the signal received at Sj with

respect to S1 as estimated by Si.
Similarly, sensors S1,S2, . . . ,SM use the broadcast
messages to estimate the delays with respect to S1. Note
that the information available at these sensors is the
same and therefore, the delay estimates made at these
sensors are the same. We denote these delay estimates
by τ (0)

1 , τ
(0)
2 , . . . , τ

(0)
M .

3) Round 2: At the end of the first stage, every sensor
broadcasts the delay estimates that it made. This is done
so that more reliable estimates of the delays are made
by pooling in the information that is common to all
sensors. Sensor Si broadcasts (τ (i)

1 = 0, τ (i)
2 , . . . , τ

(i)
M ).

Each sensor estimates the delay of the signal received
at Sk (1 ≤ k ≤ M ) with respect to S1, to be d̂k ,
median(τ (0)

k , τ
(M+1)
k , . . . , τ

(N)
k )

4) Round 3: Each sensor forms the matrix R̃y given

by R̃y =
∑M
i=1

(D−d̂iyi)
(D−d̂iyi)T . Let vy denote

the dominant eigenvector of Ry which has unit norm.
Sensor Sk now transmits a single number quantifying
its confidence in certifying the presence of a common
signal. The “confidence indicator” (µk) is given by
µk = maxδ |vTy D−δyk|2.
Now sensor S1 forms µ =

∑N
k=1 µk and makes a

decision on the existence of a common signal based on
the value of µ.

V. RESULTS

In this section, we present simulation results for the detec-
tion and the estimation problems. We consider both “wide-
band” and “narrowband” signals, where we use the terminol-
ogy to refer to signals whose autocorrelation functions exhibit
sharp and broad peaks, respectively. For known signal models,
it is well known that wideband signals lead to better delay
estimates [7]. However, in our setting, where the delays and
the signal model are unknown, wideband signals actually lead
to performance deterioration: missing a sharp autocorrelation
peak leads to a potentially large error in the delay estimate,
which in turn causes a deterioration in detection and estimation
performance. Effectively, under our GLRT approach, the sys-
tem has to work harder at implicitly estimating more degrees
of freedom for a wideband signal, and hence performs worse,
as illustrated by the results below.

In our simulation model, we set the number of sensors,
N = 20. The wideband signal model consists of i.i.d. Gaussian
random variables embedded in the “middle” of the observation
window for different lengths of time to vary the SNR. The nar-
rowband signals we have considered include synthetic signals
such as triangular and rectangular waveforms and a portion of
the pheasant’s bird-call. For the bird call, the observation win-
dow length is taken to be T = 400. For all other signals, T =
256. The channel gains are modeled as independent random
variables uniformly distributed over [0.5, 1]. For reference, the
channel gain at sensor S1 is taken to be 1 and the SNR values
reported correspond to those measured at sensor S1. The
delays with respect to S1 are modeled as independent random
variables that take values uniformly in the range [4,30]. The
noise is modeled as independent and identically distributed
(across time and sensors) standard Gaussian random variables.
For the distributed detection algorithm, we set the number of
broadcasting sensors M = 6.

We now briefly discuss the results.
1) The probability of a miss is quite small even for rather

low values of tolerable false alarm probabilities.
2) The performance is worse for wideband signals due to

the large losses of SNR pooling gain resulting from even
small synchronization errors.

3) In both the centralized and distributed detection
schemes, we observe the thresholding effect associated
with temporal alignment. We observe that there is a
significant improvement in the detection performance for
an SNR increase of 0.5 dB (from −5.78 dB to −5.27
dB) in the wideband case. This occurs because of better
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Fig. 2. Performance of Centralized Detection scheme with wideband and
narrowband signals. The SNR values marked refer to those measured at the
sensor where the signal strength is maximum.
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Fig. 3. Plot of correlation coefficient (ρ) between the reconstructed waveform
and the original noiseless waveform

synchronization at a slightly higher SNR, which results
in significantly better performance.

4) Figure 5 shows the noiseless section of the pheasant bird
call and a noisy version of the same. We see that the
reconstructed version of the bird-call closely resembles
the original noiseless version even though the received
signal at any individual sensor is extremely noisy.

5) From Figure 5, we see that correlation coefficient be-
tween the true signal and the estimated waveform is
consistently high even when the SNR is low. However,
it must be pointed out that estimation accuracy exhibits
the same thresholding effect and excellent reconstruction
requires a certain minimum SNR.

VI. CONCLUSION

We have shown that effective detection and estimation is
possible using a minimalistic signal model based on correla-
tion between neighboring sensors. The performance improves
exponentially as a function of the number of sensors, assuming
that temporal alignment of sensor readings can be achieved.
The problem of temporal alignment appears to be the key
bottleneck in our system, and determines the SNR thresh-
old beyond which rapid performance improvements can be
obtained by increasing the number of sensors. The example
system considered here illustrates that sensor correlation po-
tentially provides a powerful mechanism for discovering new
phenomena of interest. Future research includes developing
more detailed insight into the model considered here and its
natural generalizations, such as multiple signals, colored noise,
and multimodal sensing.
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