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Abstract—This paper investigates the effect of oscillator phase
noise on a multiuser millimeter wave (mmWave) massive MIMO
uplink as we scale up the number of base station antennas, fixing
the load factor, defined as the ratio of the number of simultaneous
users to the number of base station antennas. We consider a
modular approach in which the base station employs an array
of subarrays, or “tiles.” Each tile supports a fixed number of
antennas, and can therefore be implemented using a separate
radio frequency integrated circuit (RFIC), with synchronization
across tiles accomplished by employing a phased locked loop
in each tile to synthesize an on-chip oscillator at the carrier
frequency by locking on to a common lower frequency reference
clock. Assuming linear minimum mean squared error (LMMSE)
multiuser detection, we provide an analytical framework that
can be used to specify the required power spectral density (PSD)
mask for phase noise for a target system performance. Our
analysis for the phase noise at the output of the LMMSE receiver
indicates two distinct effects: self-noise for each user which is
inversely proportional to the number of tiles, and cross-talk
between users which is insensitive to the number of tiles, and
is proportional to the load factor. These analytical predictions,
verified by simulations for a 140 GHz system targeting a per-
user data rate of 10 Gbps, show that tiling is a robust approach
for scaling. Numerical results for our proposed design approach
yield relatively relaxed specifications for phase noise PSD masks.

Keywords: Phase noise, millimeter wave, THz, multiuser,
massive MIMO, 5G, next generation wireless, modular, array
of subarrays.

I. INTRODUCTION

The emergence of millimeter wave communication has pro-
duced unprecedented possibilities for next generation mobile
networks. In addition to the large amounts of available spec-
trum, much of it unlicensed, the band has immense potential
for spatial multiplexing. The small wavelengths (5 mm at
60 GHz, only 2 mm at 140 GHz) imply that hundreds or
even thousands of antenna elements can fit on relatively small
platforms, producing massive electronically steerable arrays
with very small beamwidth. Most prior research in mmWave
systems assumes RF beamforming, which employs one RF
chain for the entire array, or hybrid beamforming, which em-
ploys a number of RF chains which is much smaller than the
number of antenna elements in the array. However, advances
in silicon implementations of mmWave hardware imply that,
at least for a moderate number of antenna elements, it is
possible to build low-cost RFICs with one RF chain for each
antenna, opening up the possibility of all-digital beamforming
for multiuser MIMO. In this paper, we investigate modular
architectures using such RFICs as “tiles,” in a regime where

the number of antennas per tile is fixed, but the size of the
overall antenna array is scaled up by increasing the number of
tiles. We consider uplink communication wherein a mmWave
base station receives simultaneous transmissions from many
receivers using a digitally controlled phased array antenna,
with the number of simultaneous users scaling linearly with
array size. Our goal is to understand whether phase noise is a
bottleneck for scaling in this scenario.

Phase noise has a distinctive effect on the performance of
a communication link. While additive noise can be countered
by increasing signal power, the multiplicative nature of phase
noise leads to distortion that scales with signal power, and
hence to performance floors that can only be alleviated by
reducing oscillator noise. Since realizing low-noise oscillators
is challenging at higher carrier frequencies, we are interested
in how much we can relax phase noise specifications while
attaining a target system-level performance. To this end, we
develop in this paper a framework for analyzing the impact
of phase noise in massive MIMO, modeling its propagation
in the proposed tiled architecture. Each tile is controlled by
a separate RF chip that performs down conversion as well as
analog-to-digital conversion, alleviating the need to transport
analog RF signals across the entire frontend. In order to
emulate a single large array, the tiles must be synchronized
in frequency and phase, meaning they need to be locked
to a common reference. We are interested in massive base
station arrays with hundreds of antennas (e.g., horizontally
steered linear arrays with half-wavelength spacing), for which
distributing a stable clock at mmWave carrier frequencies is
challenging and power-inefficient. Instead, a low-frequency
reference is distributed to the tiles, and is multiplied up to the
carrier frequency via a PLL on each tile. Thus, the sources of
phase noise in this architecture are the common low-frequency
reference, and the VCOs driving the PLLs in the tiles, as
depicted in Figure 1.
Concept system: While our analytical framework is general,
our numerical evaluations are based on a concept system
operating at a carrier frequency of 140 GHz, with common
low-frequency reference at 10 GHz. We consider single carrier
QPSK modulation at 5 Gbaud symbol rate, corresponding to
an uncoded bit rate of 10 Gbps per user, and N = 256 base
station antennas per sector. The load factor β, defined as the
ratio of simultaneous users to antennas, varies from β = 1

16
to β = 1

2 (with a nominal value β = 1
4 ), which corresponds

to sector-level uncoded throughputs ranging from 160 Gbps to
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Fig. 1: Architecture of the tiled multiuser massive MIMO
receiver and signal processing chain (left); schematic of two
step LO generation (right).

1.28 Tbps. These aggressive specifications may well be beyond
what is required in deployed systems, but they allow us to
explore the limits of system performance when we impose
reasonable constraints on the hardware. For the load factors
of interest, spatial matched filtering does not yield acceptable
performance, hence we consider LMMSE reception, arguably
the simplest multiuser detection strategy we could adopt in
exploring these limits.

We now summarize our contributions, and then place these
in the context of prior literature.

A. Contributions

We propose the architecture depicted in Figure 1, and model
the propagation of phase noise through each of the blocks
depicted therein: the tile-level PLLs, the LMMSE multiuser
detector, and decision-directed phase drift tracking for each
user’s stream at the LMMSE output. We provide a simple
yet accurate model of the impact of phase noise on system
performance. The resulting analytical framework is used to
provide design guidelines that greatly simplify the complicated
task of joint hardware/system development. This includes
determining maximum allowable phase noise power spectral
density (PSD) masks for oscillators so as to guarantee the
desired performance level for a given system configuration.

Our focus is on the impact of phase noise on uplink
demodulation, and we assume that the variations of the spatial
channels for the users are much slower than the dynamics
of the receiver phase noise. Thus, we assume ideal channel
estimates at the base station (which might, for example, be

obtained at the beginning of a frame). This enables us to
compute a “naive” LMMSE receiver which does not account
for, or track, subsequent variations due to phase noise. We
also consider an LMMSE receiver which accounts for the
statistics of the phase noise, which is what would be learnt
by a continuously adaptive implementation.

In the absence of phase noise, LMMSE reception suppresses
multiuser interference (and forces it to zero in the absence of
noise), thus avoiding performance floors at high SNR. Phase
noise, on the other hand, leads to impairments which scale
with signal strength, leading to performance floors. However,
our analysis shows that this performance floor can be improved
by increasing the number of tiles and lowering the load factor.
Indeed, a key conclusion from the scaling laws we derive is
that, for a given oscillator quality, the tiled massive MIMO
system is more robust to phase noise than a single-input
single-output (SISO) link, and our ambitious system goals are
achievable with moderate phase noise masks.

The technical approach and results that lead us to these
conclusions are summarized as follows:
• Using a standard linearized model for the PLL in each tile,
we show that the PLL acts as a lowpass filter for the reference
phase noise, and a highpass filter for the VCO phase noise.
• The contribution of the reference phase noise at the PLL
output passes unchanged through the LMMSE multiuser de-
tector, and is highpass filtered by the constellation tracking
block. This, combined with the lowpass filtering of PLLs,
diminishes almost all of this component’s energy, and the im-
pact of reference phase noise on system performance becomes
negligible. Performance is therefore limited by the VCO phase
noise contributions at the tile PLL outputs, which is highpass.
• The performance of “naive” LMMSE and LMMSE account-
ing for phase noise statistics are virtually identical, which
implies that continuously adaptive implementations are not
required.
• Under a small phase approximation for the VCO phase noise
(accurate for the design regimes that we target), we compactly
characterize the LMMSE output of user k as follows (ignoring
additive thermal noise in this summary):

yk = ejψksk + Ik (1)

where the output phase noise ψk is self-noise from user k
with variance

σ2
φ

NT
, and the additive noise, Ik, is cross-user

interference with variance βσ2
φ, with σ2

φ denoting VCO phase
noise variance at the PLL output and NT the number of tiles.
Thus, the self-noise is reduced by increasing the number of
tiles, while multiuser interference is insensitive to the number
of tiles, but is reduced by decreasing the load factor.
• We provide an upper bound on the error probability for
QPSK in a SISO system, in terms of an effective SNR which
combines the effect of additive noise, self noise, and phase
noise-induced interference. We then use this to obtain an
accurate approximation to the error probability for our massive
MIMO model, including the effect of noise enhancement due
to interference suppression.
• We provide design examples on how to determine the max-
imum tolerable VCO phase noise variance, σ2

φ, for a desired



system-level performance, and how that maps to specifications
on the allowable phase noise PSD and PLL parameters. In
order to allow for a simplified error correction framework with
hard decisions (appropriate for the very high data rates of
interest), we target an uncoded BER of 10−3, which is easily
handled by lightweight high-rate binary error correction codes.
Numerical results show that the BER floor is well below this
target in the regimes of interest.

B. Related Work

The effect of various hardware impairments (such as ampli-
fier nonlinearity, low precision ADC and DAC, I-Q imbalance,
and phase noise) on massive MIMO systems has been the
subject of many modeling studies, including [1]–[5]. Among
these effects, the multiplicative action of phase noise is particu-
larly challenging to model, especially for large communication
bandwidth. Significant efforts have been made by the hardware
community to extract accurate models for phase noise from
the physics of oscillator circuitry. Various works have utilized
the framework established in [6] to develop descriptions for
the phase noise generated in different configurations [7]–[12],
typically by describing the PSD of the phase noise process.
Modeling the overall impact of phase noise on the communi-
cation link requires a system-level analysis that incorporates
such models of the phase noise into the signal reception and
decoding process, as carried out in [13] for a SISO link. Most
prior studies in this direction, however, have often employed
oversimplified models such as the pessimistic Wiener process
model considered in [14] or the white noise model assumed in
[15]. Many studies neglect the possibility of leveraging time
domain correlations in a phase noise process for suppressing
phase drift, unnecessarily tying system performance to channel
tracking overhead by relying on frequent CSI updates for drift
suppression [16], whereas tracking phase drift over time is
crucial in realizing the true capacity of a practical system
[17]. Furthermore, most studies that consider multiple antenna
systems assume either a common clock with fully correlated
phase noise across the array (synchronous clock distribution),
or a free-running oscillator at each element untethered to
a common reference (asynchronous distribution), producing
uncorrelated phase drifts at different antennas [15], [17]–[23].
The former is impractical at high carrier frequencies while
the latter suffers from beamforming degradation as a result of
rapid “channel aging” [23]. In [24], a two step synchronization
method is implemented to avoid these drawbacks. However,
the analysis therein is limited to SIMO and MISO commu-
nication where a multiple antenna base station communicates
with a single user.

In terms of modeling, the closest approach to ours in the
literature is that of [25], which investigates the effect of phase
noise on OFDM multi-user beamforming arrays. They assume
an independent oscillator at each array element locked to
a common lower frequency reference via a PLL multiplier
and model the filtering effects of the PLL on common and
independent phase noise. In their analysis, the authors rely
on a subset of subcarriers acting as pilots for phase noise
tracking, and derive SINR predictions for single user and

multiuser beamforming that predict similar scaling laws as our
analysis. However, as shown in this and other studies, phase
noise poses an inherent challenge for OFDM systems: The
inter-carrier interference caused by phase noise increases with
the number of subcarriers posing a fundamental limit on the
bandwidth of an OFDM system impacted by phase noise [25]–
[34]. OFDM also has other drawbacks for mmWave systems:
the linearity required to handle high peak-to-average ratios
is difficult to realize at reasonable power efficiency at high
frequencies, and the precision required in analog-to-digital
conversion is a challenge at large bandwidths. We therefore
focus on a single carrier system in this paper. Note that, at
such high frequencies, the number of significant paths in the
channel is small, and beamforming with large arrays rejects
multipath, thus eliminating ISI and providing a frequency-flat
single path channel even at GHz bandwidths.

A key distinguishing aspect of the approach in the present
paper is that it abstracts the oscillator phase noise models
developed by hardware experts into a rigorous system-level
framework in which the propagation of phase noise through
signal processing blocks is accurately modeled. To the best
of our knowledge, this is also the first paper to consider a
hierarchical approach to scaling massive MIMO with a fixed
number of antennas per tile. The analysis is distilled into
compact scaling laws for modular MIMO which succinctly
link performance to hardware and system design parameters.

The current work is a significant extension of preliminary
results reported in our conference paper [35], including a
more detailed theoretical treatment of phase noise scaling,
introduction of BER approximations via effective SNR and
SINR, derivation of LMMSE reception accounting for phase
noise statistics, and validation of our analytical estimates via
full system simulations.

II. SYSTEM MODEL

We consider uplink multiuser MIMO in which the base
station, equipped with an N -element digitally steered array,
simultaneously receives signals sent by K users. The load
factor is defined as the ratio of users to array size, and denoted
by β = K/N .

We consider line-of-sight (LoS) channels between users and
the base station. Our focus is on the impact of phase noise
on multiuser demodulation rather than on channel estimation.
Thus, we consider durations over which the spatial channels
are well modeled as constant, and assume that the spatial
channels at the beginning of such durations are known to the
receiver. We discuss this assumption further in our conclusions
in Section VII. The vector hk represents the channel of user k,
with complex amplitude gk and angle of arrival θk. For ease
of notation we define the spatial frequency corresponding to
θk as ωk = (2πd/λ) sin θk, where d is the array inter-element
spacing (half the wavelength), and λ is the carrier wavelength.
User k’s channel can thus be represented by the sinusoid,

hk = gk

[
1, ejωk , ej2ωk , . . . , ej(N−1)ωk

]T
. (2)

For simplicity, we assume that the K spatial frequencies are
distributed uniformly over (−π, π) (rather than uniformly over



angles of arrival). In order to limit the variation in performance
across users, we assume that users that are too close in spatial
frequency are orthogonalized in time or frequency domain,
maintaining a minimum pairwise distance of 2π/N in spatial
frequency between users. While our analytical framework
easily accommodates variations in user power, we assume
perfect power control on the user side (|gk| = 1,∀k) for
simplicity of exposition.

For the concept system described in Section I, our nominal
configuration is an N = 256 element array with K = 64 users,
or β = 1/4. We consider single-carrier digital modulation
with Gray coded QPSK, and use uncoded BER of 10−3

as our performance target, since low frame error rates can
be achieved using high-rate error correction codes at this
BER. We assume here that the bandwidth B (5 GHz for
our concept system) equals the symbol rate 1/Tsymb, but the
analysis easily extends to accommodate excess bandwidth.
Nominal beamformed SNR (not including phase noise) is 14
dB. This provides a margin of 4 dB compared to the 10
dB required SNR for 10−3 BER for a SISO link without
multiuser interference or phase noise. LMMSE reception is
used to separate user data streams, and constellation tracking
with window size of 10 is performed at the output of each
channel to offset slow-time-scale oscillator phase drift. While
we use uncoded BER as our performance metric here, our
SINR-based analytical framework easily extends to alternative
metrics such as spectral efficiency.

The modular architecture. Figure 1 depicts the modular
structure of an N -element array containing NT tiles, each
with M elements, so that N = NTM . In our nominal
configuration, the number of tiles, NT , is set to 16 and the
number of elements on each tile is M = 16. We define the
“underloaded” case where the number of users is no larger
than the tile size, i.e., K ≤ M or equivalently βNT ≤ 1. In
this regime, the measurements obtained from a single tile are
enough for accurate reception at high SNR (e.g., with zero-
forcing) and scaling laws differ significantly from the nominal
mode of operation. Since our goal is to scale up the system
(K,N → ∞) while keeping tile size M and load factor β
constant, the underloaded regime will not be the operating
condition of a large system and is of limited interest for
scaling.

A 10 GHz reference is distributed to tiles and frequency
multiplied on-tile using a PLL-controlled VCO to produce the
140 GHz carrier. Since the phase noises at different VCOs are
independent, the carriers at different tiles contain independent
phase noise components. The system block diagram for this
process is depicted in Figure 2. In our running example, the
multiplication factor is Nf = 14, producing a 140 GHz carrier
from the 10 GHz reference clock. The PLL is type-2 with loop
resonance frequency of ωn = 10 MHz and damping factor of
ξ = 0.707, achieved by setting

kV = Nfω
2
n, HLP(s) =

1− 2ξ
ωn
s

s
. (3)

Receiver modeling. In the absence of phase noise, the
complex baseband signal received on the N -dimensional array

is described by
xideal = Hs + ν, (4)

where H = [h1...hK ] is the N × K channel matrix, s is a
K-dimensional vector containing the symbols transmitted by
users, and ν ∼ CN (0, N0 IN ) is the additive receiver noise
vector. Without loss of generality, we assume symbols are unit
power (Es = 1) and define the normalized noise power, σ2

ν =
N0

Es
. In the presence of phase noise, the received signals on

separate subarrays are distorted by different phase noise terms
during down conversion. Denoting by Hi the M ×K channel
matrix of the i’th subarray, we have

H =


H1

H2

...
HNT

 , (5)

and the phase distorted received signal is modeled as

x = ejφ0


H1e

jφ1

H2e
jφ2

...
HNT e

jφNT

 s + ν (6)

where φi is the contribution of VCO phase noise at tile i
(independent across tiles) and φ0 is the reference phase noise,
which is identical for all tiles. Since the additive noise, ν, is a
vector of i.i.d. symmetric complex Gaussians, its distribution
is rotationally symmetric and is unchanged by phase noise,
hence we use the same symbol to represent its phase distorted
version. A linear receiver, ΓK×N , is used to estimate the
transmitted symbols as

y = Γ x, (7)

which is mapped to the closest symbols in the constellation to
obtain ŝ. The distortion caused by phase noise on the estimated
output is described in detail in later sections along with optimal
linear receiver design.

III. PHASE NOISE MODELING

A perfectly noiseless carrier has constant complex baseband
amplitude, C(t) = A. In a noisy setting, the complex envelope
of an oscillator output becomes C(t) = A+n(t) = A+nc(t)+
jns(t), where n(t) is a complex Gaussian random process and
nc and ns are its real and imaginary parts. For A � |n(t)|,
we obtain our standard phase noise model

C(t) = Aejφ(t) (8)

where φ(t) = ns(t)
A is a Gaussian random process with power

expressed in dBc, or dB relative to carrier power. We note that
amplitude distortion is much less critical, especially as hard
limiters are often used to equalize the amplitude.

As is conventional in the hardware literature, we denote
the PSD of phase noise φ as L(f). The dynamics of active
components in oscillators produce colored phase noise in the
output sinusoid [6]–[8], [13]. This phase noise is modeled as
a combination of white noise and lowpass components with
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PSD proportional to 1/f , 1/f2, and 1/f3. Oscillator phase
noise PSD is thus described parametrically by

L(f) = a0 +
a1

f
+
a2

f2
+
a3

f3
. (9)

For simplicity we assume here that all clocks are unit
amplitude (A = 1). When a noisy oscillator is used to down-
convert an RF signal, the bandpass phase noise in the oscillator
output is directly transferred to the demodulated baseband
signal. For digital communication this translates to rotation of
the baseband symbols relative to the transmitted constellation
points.

A. Phase noise in the tiled array

Figure 2 shows the linearized PLL model. The signal
described by this model is the phase of the input and output
signals and therefore predicts accurately how VCO and refer-
ence phase noise are affected in the process. The phase noise
at the output of this system is the sum of contributions from
the reference and VCO phase noise; the former is identical
in all tiles, whereas the latter is independent from one tile
to another but identical over elements of the same tile. The
relation between phase noise at the output of the PLL and
reference and VCO phase noise is described through the model
of Figure 2 as

φ̃(s) = φ̃vco(s) +
kV
s
HLP(s)

(
φ̃ref(s)−

φ̃(s)

Nf

)
(10)

where ũ denotes the frequency domain representation (Laplace
transform) of the time domain function u, and kV is the VCO
conversion gain. With some manipulation, we arrive at the
PLL filters applied to each phase noise source,

φ̃(s) = HPLL
ref (s)φ̃ref(s) +HPLL

vco (s)φ̃vco(s), (11)

where

HPLL
ref (s) =

NfkVHLP(s)

Nfs+ kVHLP(s)
,

HPLL
vco (s) =

Nfs

Nfs+ kVHLP(s)
.

The loop filter, HLP, is lowpass, therefore we observe that the
PLL acts as a lowpass filter for reference phase noise and a
highpass filter for VCO phase noise.

The filtering of reference phase noise by the PLL leaves
only its low frequency components which results in a slow-
varying signal that changes on a time scale of many symbols
(hundreds or even thousands, depending on the filter band-
width and symbol rate). Furthermore, this noise is constant

TABLE I: Examples of q coefficients for nominal system.

q0 (Hz) q1 q2 (Hz−1) q3 (Hz−2)

HPLL
vco 5× 109 11 2.2× 10−7 1.6× 10−14

HPLL
ref HW

∗ 1.1× 109 13 6× 10−7 2× 10−13

σ2
φ = 0.11, σ2

0 = 2.4× 10−3

over the array and passes through the linear receiver to the
output where it can be tracked and compensated as described
in the next section. We see, therefore, that the overall impact
of reference phase noise on demodulation is very small. Of
course, as discussed in Section VII, accounting for reference
phase noise is important for channel estimation.

VCO phase noise, on the other hand, is constant for ele-
ments on one tile, but independent over different tiles, and
therefore affects the spatial processing of multiuser detection
in a nontrivial manner. We define by φi(t) the VCO phase
noise in the carrier of tile i and derive its variance as

Eφ2
i = σ2

φ =

∫ B/2

−B/2
Lvco(f)

∣∣HPLL
vco (f)

∣∣2 df (12)

where Lvco(f) is the VCO phase noise PSD and B is the sys-
tem bandwidth. As we demonstrate in upcoming discussions,
the impact of phase noise on the tiled multiuser system is
determined by this variance, which is a linear function of the
oscillator phase noise coefficients introduced in (9), expressed
as

σ2
φ =

3∑
i=0

qiai, qi =

∫ B/2

−B/2

1

f i
∣∣HPLL

vco (f)
∣∣2 df. (13)

If the largest tolerable phase noise variance for a system is
σ2
φmax, any L(f) mask that satisfies

∑
qiai ≤ σ2

φmax maintains
the desired system performance. Table I reports the values of
these coefficients for our nominal configuration.

We now provide a simple upper bound (Theorem 1) on
the BER for Gray coded QPSK in a SISO system with both
phase noise and additive noise, defining an equivalent SNR
that combines the effects of both. We use this result in Section
V, where we characterize the SINR in our MIMO system, to
estimate the BER.

B. Equivalent SNR for SISO BER with phase noise
Consider a Gray coded QPSK signal (corresponding to

independent BPSK streams along I and Q) distorted by phase
noise ϕ(t) and additive complex Gaussian noise n(t),

y(t) = ejϕ(t)s(t) + n(t), (14)

where E|s|2 = Es, E|n|2 = N0, and ϕ ∼ N (0, σ2
ϕ). In the

absence of phase noise, the BER of this system is given by
the well-known formula

BERσ2
ϕ=0 = Q

(√
Es
N0

)
= Q

(√
SNR

)
, (15)

where SNR := Es/N0. In the absence of additive noise, on
the other hand, the BER is closely approximated as

BERN0=0 = Q

( π
4

σϕ

)
= Q

(√
SNRϕ

)
, (16)
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where we define the phase noise SNR as

SNRϕ =
π2

16σ2
ϕ

. (17)

We now define an equivalent SNR obtained by adding the two
distortion effects:

SNR−1
eq = SNR−1 + SNR−1

ϕ . (18)

The following theorem states that this equivalent SNR provides
a pessimistic prediction for the BER of the system described
in (14) in the regimes of operation we are interested in.

Theorem 1. The BER of the system described in (14) - (18)
is upper bounded by

BER <U := Q
(√

SNReq

)
+

1

2

(
Q
(√

SNR
)
−Q

(
√

SNR +

√
2SNR
πSNRϕ

))
+Q

(
2
√

SNRϕ
)
. (19)

Proof. See Appendix A.

Remark 1. At high SNR, the upper bound U is domi-
nated by its first term, Q(

√
SNReq). Specifically, note that

SNR, SNRϕ ≥ SNReq, where the inequalities are strict when
both SNR and SNRϕ are finite. It is therefore easy to see, given
that Q(x)

.
= e−x

2/2 for large x, that1

lim
SNR→∞

SNRϕ→∞

U

Q
(√

SNReq
) = 1 =⇒ U

.
= Q(

√
SNReq). (20)

Indeed, as illustrated in Figure 3, the first term in (19) is an
upper bound on BER in all SNR regimes of interest to us.
Thus, the overall distortion in (14) is pessimistically modeled
by additive noise corresponding to SNReq defined by (17) and
(18), and we can use the simplified expression

BER ≈ Q
(√

SNReq

)
(21)

for deriving design guidelines. For the multiuser MIMO sys-
tem that we are interested in, we replace SNReq by SINReq.

1The symbol A .
= B represents asymptotic equivalence, with logA

logB
→ 1.

IV. MULTIUSER RECEPTION

For simultaneous reception of the K user signals, we
employ LMMSE interference suppression followed by per-
user constellation tracking, as described below.

A. LMMSE reception

Assuming phase noise terms are small (which we ensure by
design for the regimes of interest), we use the approximation
ejε ≈ 1 + jε to write (6) as

x ≈ ejφ0Hs + ν + ejφ0


H1jφ1

H2jφ2

...
HNT jφNT

 s. (22)

Since the common phase shift term ejφ0 is seen by all users’
signals, it does not affect the structure of multiuser detection.
It is useful, therefore, to consider a version of the received
signal with the common phase factored out, as follows:

x̃ = xe−jφ0 ≈ Hs + ν +


H1jφ1

H2jφ2

...
HNT jφNT

 s. (23)

We do not change our notation for the circular complex
Gaussian noise vector ν, since its distribution is rotationally
invariant. We derive the LMMSE receiver for the signal model
(23), and correct the common phase rotation, ejφ0 , after the
LMMSE block. In this signal model, the VCO phase noise
terms, {φi}, introduce an additional distortion term to the
classical multiuser reception model described by (4). In the
absence of phase noise, the LMMSE receiver for model (4) is
given by

ΓLMMSE = HH
(
HHH + σ2

νI
)−1

. (24)

For the phase noise distorted model of (22), with the ejφ0

factor set aside, we derive the LMMSE receiver by treating
the channel-dependent distortion,

z =


H1jφ1

H2jφ2

...
HNT jφNT

 s (25)

as an additional noise term. Assuming that the user symbols
are unit power and uncorrelated, E ssH = IK and the
covariance matrix of this distortion is of the form

Cz = σ2
φ


H1H

H
1 0 . . . 0

0 H2H
H
2 . . . 0

...
...

. . .
...

0 0 . . . HNTHH
NT

 (26)

where σ2
φ is the filtered VCO phase noise variance described

by (12). The optimal linear receiver for a phase noise distorted
system is therefore calculated as

ΓLMMSE = HH
(
HHH + σ2

νI + Cz

)−1
. (27)



In terms of implementation, the naive LMMSE receiver
(24) may be realized using one-shot channel estimates at the
beginning of a coherence frame while the receiver of (27) may
be obtained by empirical adaptation over a period long enough
to capture noise statistics. If the variance of phase noise
is known, the optimal receiver (27) may also be computed
analytically from channel measurements (e.g., at the beginning
of the frame).

B. Per-user constellation tracking

Reference phase noise is common over the array and
therefore passes through the linear receiver to the output of
all channels, i.e.,

y = Γx = ejφ0Γx̃. (28)

The common phase φ0 at the output of linear multiuser
detection can be tracked in decision-directed fashion. For
example, letting ŝk denote the hard decision for sk, a decision-
directed estimate of output phase noise is given by

φ̂out = ∠ (ykŝ
∗
k) . (29)

This overall phase distortion contains highpass contributions
from tile VCOs and a lowpass component that is the filtered
reference phase noise, φ0. By taking the averaged estimate
over a W -long window of symbols, the lowpass component is
isolated as

φ̂0(t) = ∠

(
W∑
i=1

yk(t− iTsymb)ŝ∗k(t− iTsymb)

)
(30)

which is used to predict and undo the reference phase drift
before making hard decisions for user k’s symbol at time
t. Assuming error-free symbol detection, this “constellation
tracking” process can be abstracted as a windowed demeaning
filter applied to the output phase noise, with impulse response

hW (t) = δ(t)− 1

W

W∑
i=1

δ(t− i Tsymb) (31)

where Tsymb = 1/B is the symbol duration. The window
size, W , is a tunable design parameter; a smaller window can
track phase drift faster and has a larger rejection bandwidth,
but introduces greater noise enhancement at high frequencies.
This effect is clearly shown in Figure 4b where the frequency
response of the tracking filter is depicted for different window
sizes. Constellation tracking captures the slow variations in
φ0, and acts as a highpass filter for the common phase noise.
On the other hand, as noted earlier, the tile PLLs act as
lowpass filters for the common phase. This cascade therefore
diminishes almost all of the reference phase noise power. The
variance of the residual reference phase noise can now be
computed using the abstracted tracking model as

Eφ2
0 = σ2

0 =

∫ B/2

−B/2
Lref(f)

∣∣HPLL
ref (f)HW(f)

∣∣2 df
(32)
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Fig. 4: (a) Effective filters applied to VCO and reference phase
noise in the PLL. (b) Frequency response of constellation
tracking filter for different window sizes (with respect to phase
signal). W = 1 is equivalent to differential modulation.

which depends on the filtering bandwidths of the PLL and
constellation tracking process. This value is reported in Table
I for the nominal configuration along with the total filtering
coefficients applied to the ai components of Lref(f) satisfying
σ2

0 =
∑3
i=0 qiai. The filtering effects of PLL and derotation

on VCO and reference phase noise are depicted in Figure 4a.
We also note that, although not explicitly indicated in the

notation, the transmitted symbol sk will contain the phase
drift from the kth transmitter’s local oscillator. The per-user
constellation tracking at the output of the multiuser detector
automatically tracks and corrects the low-frequency portion
of this phase drift as well, thus automatically maintaining
frequency synchronization for each user in a manner that is
decoupled from multiuser detection.

The impact of constellation tracking on the per-tile VCO
phase noise is less significant, as this is already a highpass
signal. This impact is slight noise enhancement at the higher
end of the spectrum (evident in Figure 4b) which, in our
running example, increases output VCO phase noise power
by about 0.7%. If the bandwidth of HPLL

vco is smaller than
that of HW , constellation tracking may decrease the output
VCO phase noise variance. It is worth noting that constellation
tracking has no effect on the cross-user interference caused by
VCO phase noise since it is applied after multiuser reception
where crosstalk is produced.

V. INTERFERENCE ANALYSIS

Without loss of generality, we base our interference analysis
on the signal model (23) with common phase factored out. For
this model, the output of linear receiver Γ is approximated by

y ≈ ΓHs + Γν +

NT∑
i=1

jφiΓiHis (33)

where Γi denotes the i’th K ×M block of Γ. That is,

Γ = [Γ1 Γ2 ...ΓNT ]. (34)



The naive LMMSE receiver (24) focuses on suppression
of the coherent (across tiles) interference in the first term.
For our nominal load factor of β = 1

4 , and under the
assumed minimum spatial frequency separation of 2π/N ,
the resulting LMMSE receiver does not lead to a significant
attenuation of the desired signal. The LMMSE receiver (27)
does much the same, since the phase noise causing the third
term is significantly smaller than the coherent interference
(as φi � 1). Furthermore, the third term is not coherent
across tiles ({φi} are independent), and a zero-forcing receiver
that satisfies ΓZFH = αIK , does not zero out the cross-user
interference in this term, as ΓZF,iHi 6= αIK and therefore∑
jφiΓZF,iHi 6= αIK . Of course, in the highly underloaded

regime where K ≤ M , tile level zero-forcing is possible
and, as our simulations show, the optimal receiver will in
fact converge to per-tile zero forcing as SNR grows large.
In the scaling regime of interest to us, K grows with array
size while M stays constant, therefore tile-level interference
suppression is not feasible. We estimate per-tile interference,
therefore, under the following approximation.
Approximation: At the tile-level, both LMMSE variants are
assumed to be approximately aligned with the spatial matched
filters:

Γi ≈
1

N
HH
i (35)

Numerical verification: We have verified this approximation
via extensive Monte Carlo simulations over many realizations
of the channel in different (non-underloaded) regimes, but
report only an example result: at our nominal SNR of 14 dB,
the normalized correlation between the LMMSE receiver and
the spatial matched filter, at the tile level, is found to exceed
0.97 with probability 99%.

Under the approximation (35), the strength of the diagonal
entries of the subarray receiver output are equal to

| (ΓiHi)k,k | =
M

N
(36)

and the off-diagonal entries are zero-mean with variance

E
∣∣∣(ΓiHi)k,l

∣∣∣2 =
M

N2
, (k 6= l) (37)

with the randomness caused by random positioning of users
in the cell. We can now state the following result.

Theorem 2. Under the approximation (35), VCO phase noise
causes multiplicative self-noise and additive cross-user inter-
ference described by

yk ≈ γejψsk + I (38)

where

Eψ2 =
σ2
φ

NT
, Eγ = 1− 1

2
σ2
φ, E|I|2 =

K − 1

N
σ2
φ ≈ βσ2

φ.

(39)

Proof. Setting aside the reference phase noise and additive
thermal noise,

y = Γ


H1e

jφ1

H2e
jφ2

...
HNT e

jφNT

 s. (40)

The output of channel k is a combination of contributions from
the desired and interfering users which we separate as

yk =

(
NT∑
i=1

(ΓiHi)k,ke
jφi

)
sk +

∑
l 6=k

(
NT∑
i=1

(ΓiHi)k,le
jφi

)
sl.

The multiplicative self-noise is derived using the first and
third order Taylor expansions of sine and cosine functions,
respectively, as

NT∑
i=1

(ΓiHi)k,ke
jφi ≈ M

N

NT∑
i=1

(cosφi + j sinφi)

≈ 1

NT

NT∑
i=1

(1− 1

2
φ2
i ) + jφi

≈

(
1− 1

2NT

NT∑
i=1

φ2
i

)
+ j

(
1

NT

NT∑
i=1

φi

)
= γ + jψ ≈ γejψ (41)

where γ = 1 − 1
2NT

∑NT
i=1 φ

2
i is an average of identically

distributed non-zero-mean variables, and is therefore well-
approximated by its expected value, γ ≈ Eγ = 1 − σ2

φ

2 and
ψ = 1

NT

∑NT
i=1 φi is an average of zero-mean i.i.d. Gaussian

random variables, with variance Eψ2 =
σ2
φ

NT
.

We evaluate cross-user interference by using the small-phase
approximation (first order Taylor expansion of ex) to obtain

NT∑
i=1

(ΓiHi)k,l e
jφi =

NT∑
i=1

(ΓiHi)k,l +

NT∑
i=1

jφi(ΓiHi)k,l

= (ΓH)k,l +

NT∑
i=1

jφi(ΓiHi)k,l

≈
NT∑
i=1

jφi(ΓiHi)k,l (42)

with (ΓH)k,l ≈ 0 resulting from the LMMSE receiver
effectively suppressing cross terms in ΓH using all N degrees
of freedom. The covariance of cross-user interference is thus
found to be

E|I|2 = E

∣∣∣∣∣∣
∑
l 6=k

(
NT∑
i=1

(ΓiHi)k,le
jφi

)
sl

∣∣∣∣∣∣
2

= (K − 1)NT σ
2
φ E|(ΓiHi)k,l|2

= (K − 1)
NTM

N2
σ2
φ =

K − 1

N
σ2
φ ≈ βσ2

φ (43)
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Fig. 5: Scatter plot of received QPSK symbols on a 256-
element array for different load factors and number of tiles.
The output phase noise decreases as number of tiles increases
and interference is proportional to number of users (additive
noise set to zero).

Accounting for all multiplicative and additive noise terms
in the system, we arrive at the following model for the output
signal:

yk = γej(ψ+φ0)sk + I + ν′ (44)

where

γ = 1−
σ2
φ

2
, Eψ2 =

σ2
φ

NT
, Eφ2

0 = σ2
0 ,

EI2 = βσ2
φ, E|ν′|2 =

σ2
ν

N
.

Figure 5 shows scatter plots of the received QPSK symbols in
the I-Q plane for different values of K and NT . Based on the
preceding analysis, if load factor and tile size are kept constant,
phase noise is not a bottleneck in scaling to larger arrays. The
cross-user interference caused by phase noise only depends
on the ratio of users to array size and is therefore constant,
while output phase noise variance decreases as the number of
tiles grows. In fact, we expect performance to improve as the
system is scaled up, as long as loading, tile size, oscillator
PSD, modulation, and beamformed SNR (N/σ2

ν) are fixed.
Predicting the BER of a phase-distorted system. It is
convenient to model signal attenuation via noise amplification,
normalizing output signal power to unity. The equivalent
normalized variance for our tiled system can be determined
using Theorem 1 to be:

σ2
eq =

1

(1− 1
2σ

2
φ)2

(
σ2
ν

N
+ βσ2

φ +
16

π2

(
σ2
φ

NT
+ σ2

0

))
. (45)

This value is an expectation across randomly placed users,
and the true realization of SINR will vary across users. Since
we assume power leveling, this variation is primarily due
to variations in cross-user interference. In order to provide
a pessimistic prediction, we substitute the average cross-talk
power βσ2

φ with a value which is 3 standard deviations above
its mean: (

β + 3
0.82
√
β

NT

)
σ2
φ (46)

with the constant 0.82 reflecting the upper bound limit of the
standard deviation of the Dirichlet kernel, i.e.,

lim
M→∞

√√√√Eδ∼U(−π,π)

((
sinMδ/2

M sin δ/2

)2

− 1

M

)2

M ≈ 0.82.

Due to the rapid decay of the Q function, BER is dominated
by the worst-case, and we expect this pessimistic approach
to be close to the average BER. The equivalent SINR is thus
modified to

σ2
eq =

1

(1− 1
2σ

2
φ)2

(
σ2
ν

N
+ (β + 2.46

√
β

NT
)σ2
φ

+
16

π2

(
σ2
φ

NT
+ σ2

0

))
. (47)

We now account for the reduction in SINR due to the
reduction in signal power (modeled equivalently as noise
enhancement) caused by suppression of the coherent interfer-
ence. At moderate load factors (e.g., β = 1/4) and SNRs,
this SINR penalty is well (and pessimistically) approximated
by that due to a zero-forcing receiver. Let ρ denote the
normalized cross-correlation between the spatial channels for
two randomly chosen users. If the spatial frequencies are
uniform over (−π, π), then E[|ρ|2] = 1

N (see Appendix B).
When we enforce a minimum spatial frequency separation
of 2π/N , we can actually show that E[|ρ|2] ≤ 0.1

N (again,
see Appendix B). In order to evaluate the impact of scaling,
therefore, we set

E[|ρ|2] =
α

N
(48)

where α is a factor that depends on the minimum spatial sep-
aration (or, more generally, the distribution of users’ relative
spatial frequencies), equal to 0.1 in our system model. Now,
denoting by ρlk the normalized cross-correlation between the
spatial responses for users l and k, the output signal power, S,
of LMMSE (normalized to the matched filter output power) is
bounded, using (48), as follows

S ≥ 1−
∑
l 6=k

|ρlk|2

=⇒ ES ≥ 1− (K − 1)E[|ρ|2] ≥ 1− αβ (49)

which, by virtue of the law of large numbers, is accurate
as K,N → ∞ with β fixed. Using the right-hand side of
(49) as an approximation, we obtain the following pessimistic
prediction of the equivalent SINR and resulting BER.

SINReq ≈
1− αβ
σ2

eq
, BERQPSK ≈ Q

(√
SINReq

)
.

(50)

This prediction, with α = 0.1 in (50), is expected to be accu-
rate in our regime of interest of K > M and moderate SNR.
In the underloaded regime, per-tile interference suppression
becomes feasible and, at high enough SNR, partial per-tile
interference suppression is incentivized even for K > M .
In such settings (not of interest in our scaling regime), our



prediction is overly pessimistic, and performance can be
significantly better than predicted.

In the next section we summarize our design framework,
and provide simulation results to validate our analytical pre-
dictions.

VI. NUMERICAL RESULTS

The models presented in this paper can be used to provide
an analytical cross-layer design framework using four key
observations.
• The reference oscillator phase noise is filtered by

the PLL and constellation tracking filters and appears
at the output of all channels with variance σ2

0 =∫
Lref(f)

∣∣HPLL
ref (f)HW (f)

∣∣2 df .
• VCO noise is filtered by the PLL resulting in tile phase

noise with variance
σ2
φ =

∫
LVCO(f)

∣∣HPLL
vco (f)

∣∣2 df . At the receiver output
this produces phase noise of variance σ2

φ/NT and additive
interference of power βσ2

φ.
• System performance is determined by parameters σ2

0 , σ2
φ,

NT , β, and σ2
ν/N (beamformed SNR). A pessimistic

prediction is given by the equivalent SINR

SINReq =
1− αβ
σ2

eq
,

σ2
eq = (1− σ2

φ)−2

(
SNR−1 + (β +

2.46
√
β

NT
)σ2
φ

+
16

π2

(
σ2
φ

NT
+ σ2

0

))
,

where α = 0.1 for the specifications of our system model.
• Permissible phase noise PSD can be expressed as a linear

constraint on the L(f) coefficients,∑
qiai ≤ σ2

φ or σ2
0 , (51)

with q factors obtained by (13).
Using the preceding guidelines, trade-offs between different
design choices are modeled as simple analytical relationships
that predict system performance with reasonable accuracy. In
this section we provide numerical validation for the above
framework and examine the scaling laws derived from it. The
nominal system configuration is summarized in Table II.

We first provide an example of an acceptable phase noise
mask for our nominal system specifications. We use the model
of (9) to generate phase noise signals. The reference phase
noise PSD is a factor of Nf lower than that of the VCO. In
practice, the reference is likely to be a high quality crystal res-
onance oscillator with very low phase noise. The shape of the
curve (ai parameters) is chosen such that low-pass components
have approximately equal contribution (a1q1 = a2q2 = a3q3),
and the same combined impact as the constant component for
our nominal system (a0q0 = a1q1 + a2q2 + a3q3). Figure 6
shows the resulting L(f) mask which indicates feasible phase
noise requirements for our target system, as THz oscillators
with lower L(f) have been reported in the literature [36].

Using the PSD curve shown in Figure 6, we isolate the
two distortion terms described in Theorem 2 as follows. To

TABLE II: Nominal simulation configuration

Parameter: N M NT β fc Nf B

Value: 256 16 16 1
4

140 GHz 14 5 GHz
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Fig. 6: Acceptable VCO phase noise mask for BER < 10−3

and 10 Gbps rate in nominal system. Parameters: a0 = 2.25×
10−11 W/Hz, a1 = 9 × 10−4 W, a2 = 9 × 102 WHz, a3 =
9× 108 WHz2.

measure self-noise, we set up the end-to-end multiuser system
with β = 1/4 and LMMSE reception (as described in Section
IV). We then set the transmitted symbol, sk(t), to zero for
all but one user throughout each simulation sequence and
set the additive noise to zero (but use the nominal value for
σ2
ν in deriving the LMMSE receiver). Figure 7 depicts self-

noise for the designated user as a function of tile size and
phase noise variance for a 256-element array. The analytical
predictions are also plotted for comparison. We observe that
simulation results follow the analytical prediction closely,
and the diversity provided by independent VCOs reduces the
output phase distortion.

To isolate the cross-user interference, we perform a similar
simulation but this time set the designated user’s signal to
zero while all other users remain active. This way we only
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Fig. 7: Self interference phase noise and amplitude attenuation
for 256 element array with 64 users. Dashed lines depict
analytical predictions of
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get cross-user interference signal at the designated output,
the variance of which is the interference power. In Figure 8
we report the cross-user interference variance averaged over
many realizations for naive LMMSE (that ignores the effect of
phase noise) and optimal LMMSE for nominal and high SNR.
Both receivers follow the analytical prediction, E|I|2 = βσ2

φ,
fairly closely in most regimes. For an underloaded system
at high SNR, analytical results overestimate interference for
LMMSE reception since per tile interference suppression
becomes possible, as discussed in Section V.

Full system simulations that include the effects of VCO
and reference phase noise, as well as realistic implementation
of constellation tracking were performed to quantify the ef-
fect of system parameters on performance. Figure 9a depicts
performance as a function of tile size for various choices
of load factor, assuming beamformed SNR of 14 dB and
phase noise PSD depicted in Figure 6. When the array is
divided into a larger number of tiles, self-noise is suppressed
and BER decreases, but if β remains constant the cross-user
interference does not change with NT and therefore creates
a performance floor. In Figure 9b we depict the same results
for a high SNR system. As expected, we see that BER is
overestimated considerably for optimal LMMSE reception in
the underloaded regime. In both of these cases, we see that
the fully synchronized case, corresponding to NT = 1, suffers
more from phase noise than any of the tiled structures and has
the highest BER. This indicates that, even if distributing the
carrier directly is practically possible, a tiled structure is still
preferable and improves the overall performance.

Finally, Figure 10 shows how performance scales with
beamformed link SNR in the presence and absence of phase
noise. The performance floor caused by phase noise, especially
its cross-user interference effect, is clearly visible in this
figure. This floor can only be suppressed by reducing the
load factor as shown in Figure 9. By comparing realistic drift
tracking with the idealized model of (32) we see that, at low
SINR, a decoding error can deteriorate tracking performance
and cause additional errors in consecutive symbols. This effect
can be mitigated by adding a margin to the target SINR. For
our nominal setup, idealized performance is recovered with
0.5 dB higher SINR, which is achieved by scaling down all
noise terms uniformly, i.e., increasing SNR and reducing L(f)
each by 0.5 dB (not depicted here). As expected, our analytical
predictions are only pessimistic for the idealized case and may
underestimate BER for a realistic system at low SINR.

VII. CONCLUSIONS

Our analytical framework implies that, as far as the per-
formance floor due to phase noise is concerned, a modular
architecture with fixed-size tiles can be used to scale all-
digital mmWave multiuser MIMO up arbitrarily by increasing
the number of tiles, keeping oscillator noise characteristics,
bandwidth and load factor fixed. A naive LMMSE receiver
that employs one-shot channel estimates while ignoring phase
noise, along with constellation tracking at the output, is found
to work well. Our analysis provides specific guidelines to
hardware designers on permissible phase noise PSD charac-
teristics, and the specifications corresponding to our concept
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Fig. 9: Full system simulation results for the nominal configu-
ration using L(f) function of Figure 6 varying load factor
and number of tiles (N = 256 fixed). Optimal LMMSE,
naive LMMSE (ignoring phase noise; solid narrow lines), and
prediction of (50) plotted for comparison.
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Fig. 10: Performance (BER) as a function of SNR with and
without phase noise. Solid narrow curve (light blue) assuming
idealized constellation tracking, i.e., no error propagation.

system are achievable in low-cost silicon processes. While the
discussion here has been limited to uplink communication,
analogous arguments can be made for downlink transmission.
While LMMSE precoding is not as straightforward to compute
as LMMSE reception, similar bounds and scaling laws can
be shown to hold in downlink with (suboptimal) zero-forcing
precoding. Detailed treatment of MU-MIMO downlink is left
for future study.

While the scaling laws in Theorem 2 apply to arbitrary
constellations (e.g., see numerical results for 16QAM in our
preliminary results [35]), the BER estimates based on Theorem
1 are specialized to Gray coded QPSK. Extension of such
estimates for larger constellations is an interesting topic for
future work. While our analysis focuses on the impact of
phase noise on demodulation, assuming ideal one-shot channel
estimates are available, it is important to investigate how phase
noise affects channel estimation. We expect reference phase
noise to become more significant, since we can no longer count
on attenuation due to post-demodulation constellation tracking.
Such explorations are best undertaken in the context of specific



receiver architectures. For example, the training period, and
hence the impact of phase noise, can be significantly reduced
by beamspace techniques which exploit the sparsity of the
mmWave channel, as indicated in preliminary results reported
in [37].

The results here, along with analogous results regarding the
impact of nonlinearities [1], indicate that hardware impair-
ments such as phase noise and nonlinearities do not repre-
sent fundamental bottlenecks for scaling all-digital mmWave
MIMO, and provide specific design guidelines for hardware
front end design. Of course, building RF hardware based
on these design prescriptions is a significant challenge, as is
management of the complexity of digital signal processing as
bandwidth, number of antennas, and number of simultaneous
users, scale up. Again, beamspace techniques [37], [38] rep-
resent a promising framework for this purpose.
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APPENDIX A
PROOF OF THEOREM 1

Gray coded QPSK corresponds to independent bits sent
along I and Q. By symmetry, we focus, without loss of
generality, on the probability of error in the I bit when
transmitting s = ej

π
4 . Consider system 1 and system 2 with

signal models

y1 = sejϕ + n, y2 = s+ nϕ + n,

where ϕ ∼ N (0, σ2
φ) and nϕ ∼ CN (0, 16

π2σ
2
φ). An error occurs

in the I bit when y crosses the vertical boundary into the region
Re(y) < 0. In the two signal models, this happens when

Re(y1) = cos
(π

4
+ ϕ

)
+ ni < 0, (52)

Re(y2) =
1√
2

+ Re(nϕ) + ni < 0, (53)

where ni is the real part of the complex Gaussian variable
n. To compare the probability of these two occurrences, we
define the additive variable as Re(nϕ) = −

√
8
π ϕ which is a

cos( /4 + φ) 

φ

__8
_

φ
__

2
_
1 __8 φ_

_

/4

Fig. 11: Margin left for additive noise n after phase distortion
and equivalent additive distortion.

zero-mean Gaussian with variance 8
π2σ

2
ϕ. Since p(ϕ ≥ 0) =

p(ϕ < 0) = 1
2 , error probabilities can be expressed as

P (e) =
1

2
P (e|ϕ ≥ 0) +

1

2
P (e|ϕ < 0)

=

∫ ∞
0

P (e|ϕ) p(ϕ)dϕ+

∫ 0

−∞
P (e|ϕ) p(ϕ)dϕ.

For system 1 and system 2 we have

P1(e|ϕ) = Q

(
cos(π4 + ϕ)

1√
2
σn

)
, P2(e|ϕ) = Q

 1√
2
−
√

8
π ϕ

1√
2
σn

 ,

where σ2
n = N0/Es is the normalized additive noise variance.

For any ϕ ∈ [0, π4 ], it holds that

cos
(π

4
+ ϕ

)
≥ 1√

2
−
√

8

π
ϕ =⇒ P1(e|ϕ)− P2(e|ϕ) ≤ 0

and, due to symmetry between ϕ ∈ [0, π4 ] and ϕ ∈ [π4 ,
π
2 ],

P1

(
e|π

2
− ϕ

)
= 1−P1(e|ϕ), P2

(
e|π

2
− ϕ

)
= 1−P2(e|ϕ)

=⇒ P1

(
e|π

2
− ϕ

)
−P2

(
e|π

2
− ϕ

)
= −(P1(e|ϕ)−P2(e|ϕ))

therefore,(
P1

(
e|ϕ ∈ [0,

π

2
]
)
− P2

(
e|ϕ ∈ [0,

π

2
]
))

p
(
ϕ ∈ [0,

π

2
]
)

=

∫ π
2

0

(P1(e|ϕ)− P2(e|ϕ))p(ϕ)dϕ

=

∫ π
4

0

(P1(e|ϕ)− P2(e|ϕ))
(
p(ϕ)− p

(π
2
− ϕ

))
dϕ < 0

since, in the latter interval, 0 ≤ ϕ ≤ π
4 ≤

π
2 − ϕ ≤

π
2 and

therefore p(ϕ)−p
(
π
2 − ϕ

)
≥ 0 while P1(e|ϕ)−P2(e|ϕ) ≤ 0.

Meanwhile, for ϕ > π
2 , we have 1√

2
−
√

8
π ϕ < cos

(
π
4 + ϕ

)
and P1(e|ϕ) < P2(e|ϕ). We can therefore conclude that

P1(e|ϕ > 0) < P2(e|ϕ > 0).

For negative values of ϕ we have the following bounds. In
system 1, for any value of −π2 < ϕ < 0 the conditional error
is upper bounded by that of ϕ = 0 and we have

P1(e|ϕ < 0) < P1 (e|ϕ = 0) + p
(
ϕ < −π

2
|ϕ < 0

)
= Q

(
1√
2

1√
2
σn

)
+ 2Q

( π
2

σϕ

)
.

In system 2, on the other hand, we use Jensen’s inequality and
strict convexity of Q(·) on (0,∞) to get the lower bound

P2(e|ϕ < 0) = Eϕ<0 [P2(e|ϕ)]

> P2 (e|Eϕ<0[ϕ]) = Q

 1√
2

+
√

16
π3σϕ

1√
2
σn


which implies,

1

2
P1(e|ϕ ≥ 0) < P2(e)− 1

2
P2(e|ϕ < 0)

< Q

 1√
2√

1
2σ

2
n + 8

π2σ2
ϕ

− 1

2
Q

 1√
2

+
√

16
π3σϕ

1√
2
σn

 .



We therefore obtain an upper bound for the overall error rate
as,

P1(e) =
1

2
P1(e|ϕ ≥ 0) +

1

2
P1(e|ϕ < 0)

<
1

2
P2(e|ϕ ≥ 0) +

1

2

(
Q

(
1√
2

1√
2
σn

)
+ 2Q

( π
2

σϕ

))

< Q

 1√
σ2
n + 16

π2σ2
ϕ


+

1

2

Q( 1

σn

)
−Q

1 +
√

32
π3σϕ

σn

+Q

( π
2

σϕ

)
= Q

(√
SNReq

)
+

1

2

(
Q
(√

SNR
)
−Q

(
√

SNR +

√
2SNR
πSNRϕ

))
+Q

(
2
√

SNRϕ
)
. (54)

APPENDIX B
COMPUTATIONS OF SPATIAL INNER PRODUCTS

Let a(ω) =
(
1, ejω, ..., ej(n−1)ω

)T
denote the response of

an n-element linear array to spatial frequency ω. Note that

‖a(ω)‖2 = n. (55)

Applying this to (35) for n = M gives us (36). The magnitude
of the inner product between the responses for two different
spatial frequencies ω1 and ω2, with ∆ω = ω1 − ω2, is given
by

|〈a(ω1),a(ω2)〉| = |1+ej∆ω+...+ej(n−1)∆ω| =
∣∣∣∣ sinn∆ω/2

sin ∆ω/2

∣∣∣∣
The corresponding normalized inner product is the magnitude
of the well-known Dirichlet kernel:

κn(∆ω) =

∣∣∣∣ sinn∆ω/2

n sin ∆ω/2

∣∣∣∣ (56)

If ω1, ω2 are independent and uniform over (−π, π), then
modulo 2π, ∆ω is uniform over (−π, π). Squaring the | · |
term in (B) and taking expectations, the contribution of cross-
terms of the form ejk∆ω , where k is a nonzero integer, is zero.
We therefore obtain

E
[
|〈a(ω1),a(ω2)〉|2

]
= n (57)

Applying this for n = N0 gives us (37). We may also write
this as

E
[
|κn(∆ω)|2

]
=

1

n
(58)

Applying this for n = N gives us α = 1 in (48).

To see what happens when we enforce a minimum spatial
separation 2π/n, note that |x| ≥ | sinx|, so that κn(x) ≥
| sin(nx/2)

nx/2 |. We can now calculate that

1

2π

∫ 2π/n

−2π/n

κ2
n(x)dx ≥ 1

2π

∫ 2π/n

−2π/n

∣∣∣∣ sin(nx/2)

nx/2

∣∣∣∣2 dx
=

1

nπ

∫ π

−π

∣∣∣∣ sin(u)

u

∣∣∣∣2 du ≥ 0.90

n
. (59)

Setting n = N , under the assumed minimum spatial separation
of 2π

N , we therefore obtain that E|ρ|2 ≤ 0.1
N ,so that we may

set α = 0.1 in (48).
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